Skip to main content
. 2024 Sep 17;9(39):40907–40919. doi: 10.1021/acsomega.4c06113

Table 5. Prediction Accuracies (R2) in the Additive-Out Ablation Study for the Test1–Test4 Datasets of the BHC Reactiona.

  Test1 Test2 Test3 Test4
MPNN 0.93 (0.00) 0.90 (0.00) 0.71 (0.00) 0.52 (0.00)
MPNN(3.0m) 0.87 (0.00) 0.88 (0.00) 0.74 (0.00) 0.62 (0.00)
transformer 0.91 (0.00) 0.91 (0.00) 0.64 (0.01) 0.44 (0.00)
transformer(random) 0.56 (0.00) 0.61 (0.00) 0.21 (0.00) 0.29 (0.00)
MPNN-transformer 0.87 (0.01) 0.88 (0.01) 0.59 (0.03) 0.64 (0.01)
MPNN-transformer(3.0m) 0.87 (0.01) 0.90 (0.00) 0.74 (0.01) 0.61 (0.01)
a

For each model and dataset, the average (standard deviation) of the R2 value for the Test1–Test4 datasets of the BHC reaction using the five ensemble models is reported. Transformer: the transformer encoder layer. Transformer(random): the transformer encoder layer with random input vectors. MPNN: the MPNN part of the proposed model in Figure 2. MPNN(3.0m): MPNN with contrastive learning using 3.0 million compounds. For each test dataset, the highest R2 value is highlighted in bold.