Table 5. Prediction Accuracies (R2) in the Additive-Out Ablation Study for the Test1–Test4 Datasets of the BHC Reactiona.
| Test1 | Test2 | Test3 | Test4 | |
|---|---|---|---|---|
| MPNN | 0.93 (0.00) | 0.90 (0.00) | 0.71 (0.00) | 0.52 (0.00) |
| MPNN(3.0m) | 0.87 (0.00) | 0.88 (0.00) | 0.74 (0.00) | 0.62 (0.00) |
| transformer | 0.91 (0.00) | 0.91 (0.00) | 0.64 (0.01) | 0.44 (0.00) |
| transformer(random) | 0.56 (0.00) | 0.61 (0.00) | 0.21 (0.00) | 0.29 (0.00) |
| MPNN-transformer | 0.87 (0.01) | 0.88 (0.01) | 0.59 (0.03) | 0.64 (0.01) |
| MPNN-transformer(3.0m) | 0.87 (0.01) | 0.90 (0.00) | 0.74 (0.01) | 0.61 (0.01) |
For each model and dataset, the average (standard deviation) of the R2 value for the Test1–Test4 datasets of the BHC reaction using the five ensemble models is reported. Transformer: the transformer encoder layer. Transformer(random): the transformer encoder layer with random input vectors. MPNN: the MPNN part of the proposed model in Figure 2. MPNN(3.0m): MPNN with contrastive learning using 3.0 million compounds. For each test dataset, the highest R2 value is highlighted in bold.