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ABSTRACT: DNA-stabilized silver nanoclusters (AgN-DNAs)
have sequence-tuned compositions and fluorescence colors.
High-throughput experiments together with supervised machine
learning models have recently enabled design of DNA templates
that select for AgN-DNA properties, including near-infrared
(NIR) emission that holds promise for deep tissue bioimaging.
However, these existing models do not enable simultaneous
selection of multiple AgN-DNA properties, and require
significant expert input for feature engineering and class
definitions. This work presents a model for multiobjective,
continuous-property design of AgN-DNAs with automatic
feature extraction, based on variational autoencoders (VAEs).
This model is generative, i.e., it learns both the forward mapping from DNA sequence to AgN-DNA properties and the inverse
mapping from properties to sequence, and is trained on an experimental data set of DNA sequences paired with AgN-DNA
fluorescence properties. Experimental testing shows that the model enables effective design of AgN-DNA emission, including
bright NIR AgN-DNAs with 4-fold greater abundance compared to training data. In addition, Shapley analysis is employed to
discern learned nucleobase patterns that correspond to fluorescence color and brightness. This generative model can be
adapted for a range of biomolecular systems with sequence-dependent properties, enabling precise design of emerging
biomolecular nanomaterials.
KEYWORDS: variational autoencoder, silver nanocluster, DNA, interpretable machine learning, fluorescence, near-infrared

Metal nanoclusters are promising emitters for a range
of photonic applications.1 DNA-stabilized silver
nanoclusters (AgN-DNAs) are fluorophores with

sequence-defined properties and significant promise for
applications in bioimaging and biosensing. These emitters
range in size from about 10 to 30 silver atoms and are
stabilized by single-stranded DNA oligomers.2 AgN-DNAs
exhibit favorable fluorescence properties, including high
quantum yields,3,4 large Stokes shifts,5,6 and diverse fluo-
rescence colors ranging from blue/green to near-infrared
(NIR).2 Because of the sequence-dependent interactions
between DNA and silver,7 the specific size and shape of an
AgN-DNA depends strongly on the sequence of its templating
DNA oligomer.8 This results in the templating DNA sequence
influencing AgN-DNA properties such as absorbance and
fluorescence spectra, quantum yield, extinction coefficient, and
chemical stability (Figure 1a).9−11 Recent efforts have focused
on developing AgN-DNAs with bright NIR emission in the
tissue transparency window (700−1400 nm) and with
sufficient stability for in vivo deep tissue imaging.12−14 Several

studies have reported AgN-DNAs with low toxicities to
mammalian cells,15,16 making these tunable fluorophores
attractive for applications in bioimaging and biosensing.
However, the DNA sequence space is expansive, with 4L

possible L-base sequences, making the design of DNA
templates for AgN-DNAs a major challenge and hindering
the development of suitable fluorophores. Moreover, the
sequence-to-color rules that govern AgN-DNAs are highly
complex. Together, these factors have slowed progress to
develop AgN-DNA fluorophores that are tailored for specific
applications. Such a design challenge is general to sequence-
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encoded biomolecules and materials derived from nucleic
acids, peptides, and proteins.17−20

Supervised machine learning (ML) has shown success as a
design tool for AgN-DNAs with targeted fluorescence proper-
ties. Simple ML classifiers and classifier ensembles have been
trained using experimental data libraries of about 700 to 2700
DNA sequences and their corresponding AgN-DNA emission
peak wavelength and brightness.21−23 AgN-DNA-based sensors
called NanoCluster Beacons have also been designed by this
approach.24 Most recently, a chemistry-informed ML model
composed of an ensemble of support vector machine (SVM)
classifiers was used to design DNA templates that stabilize
AgN-DNAs with NIR peak emission >800 nm, achieving 12-
fold greater likelihood of selecting DNA sequences for AgN-
DNAs in this color window.25 This model’s success relied on
the use of chemistry-motivated features inspired by the first X-
ray crystal structures of AgN-DNAs.

26,27 The model’s simplicity
and chemically relevant features also enabled the use of feature
analysis tools to interpret the sequence-to-color rules learned
by the model. A brief review of ML-guided design of AgN-
DNAs, as well as an overview of ML concepts for biomolecular
materials, can be found in recent work.28

Despite the success of past ML-guided discovery of AgN-
DNAs, existing approaches have several major limitations.
First, the models only map sequence onto a single AgN-DNA
property, e.g., emission color, and are not well-suited for
simultaneous control over multiple important properties such
as emission color, brightness, chemical stability, sensitivity to
analytes, etc. This limits their utility for designing AgN-DNAs
that are well-tailored for imaging and sensing applications,
which require such control over multiple properties. Second,
the necessity of chemistry-informed features (as in ref 25) is a
major limitation when there is insufficient known information
about the fundamental properties of a materials system. At
present, very few AgN-DNAs have solved crystal struc-
tures,26,27,29,30 and first-principles computational methods to
predict AgN-DNA structures are still in development.10,31,32

The lack of fundamental knowledge is a general challenge for
developing ML-guided design methods for emerging materials
systems. In such cases, structure−property relationships can be

too poorly understood to inform ML feature engineering, and
first-principles computational models may still be in develop-
ment.33−35 Thus, progress in materials discovery would be
substantially accelerated by the development of artificial
intelligence models that enable multiobjective design and
automatically perform feature extraction.
Here, we present a variational autoencoder (VAE) model for

AgN-DNA design that (1) learns to map DNA sequence
directly onto multiple AgN-DNA properties without requiring a
class-based approach, (2) automatically extracts features during
the learning process, (3) can be used as a generative model for
multiobjective design of AgN-DNAs, and (4) can be
interpreted to gain insights into how DNA sequence selects
AgN-DNA properties. We train the VAE to encode both
emission peak wavelength (“color”) and brightness as
independent latent dimensions. The model is then employed
to generate new template sequences for brightly emissive AgN-
DNAs in the green and NIR spectral regions, which are
experimentally validated to test the efficacy of the model
(Figure 1b). Finally, Shapley analysis is implemented to
interpret nucleobase-to-property patterns, providing insights
into how DNA sequence selects AgN-DNA properties. This
work presents a versatile workflow for developing ML
techniques that could be broadly applied to sequence-based
biomaterials. By avoiding the need for user-performed
featurization and instead directly using biomolecular sequence
as input, and by enabling design for multiple properties,
models of this type can be applied to a wide variety of design
problems, particularly those where there is little fundamental
knowledge about detailed materials properties.

RESULTS AND DISCUSSION
Training Data Preparation and Statistics. This study

focuses on AgN-DNAs stabilized by 10-base DNA sequences,
which are by far the most widely studied and can produce AgN-
DNA products with a diversity of spectral properties and peak
emission ranging from ca. 400 to 1200 nm.6,8,21−23,25,36 (Past
work showed that sequence-to-color rules for AgN-DNAs are
general across a range of DNA oligomers, and that ML models
trained on 10-base sequences can also design AgN-DNA

Figure 1. (a) Schematic of relationship between DNA sequence, AgN-DNA structure (PDB accession code 6M2P, adapted with permission
from ref 10., copyright 2023 American Chemical Society), and resulting emission properties. (b) Schematic of generative VAE model for
multiobjective design of AgN-DNAs. The VAE is trained on input DNA sequences paired with corresponding nanocluster properties: peak
emission wavelength and brightness. Latent space is normally distributed and serves two key purposes: (i) design of new sequences with
desired properties by sampling proxy property dimensions for desired ranges of peak wavelength (WAV Proxy) and brightness (LII Proxy)
and (ii) interrogation by Shapley value analysis of important DNA features automatically extracted by the VAE.
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templates of other lengths23). To date, 3003 10-base sequences
and the properties of their associated AgN-DNA products have
been reported.25 However, only 105 of these sequences have
AgN-DNA spectral peaks reported for peak wavelengths greater
than 800 nm.25,36 While recent ML-guided design showed
success for predicting AgN-DNAs using incomplete training
information in the NIR spectral range,25 this incomplete
spectral information for 72% of the training sequences is likely
to limit the effectiveness of ML models for designing NIR AgN-
DNAs.
Therefore, we experimentally synthesized AgN-DNAs for all

of the prior studied 3003 DNA sequences and gathered
complete emission spectral information from 400 to 1400 nm.
High-throughput AgN-DNA synthesis was performed using
uniform conditions (see Methods section). Rapid parallel
fluorimetry was performed under universal ultraviolet (UV)
excitation37 on a commercial multimode fluorimeter sensitive
up to ca. 800 nm and a custom plate reader sensitive to 700−
1400 nm emission.38 Data curation takes into account the
different spectral responsivities of the two fluorimeters. Details
of automated synthesis, fluorimetry, and spectral data analysis
procedures are provided in past works,8,22,25 Methods section,
and Supporting Information.
Figure 2 shows the distributions of peak wavelength and

peak brightness for all AgN-DNA products stabilized by the
3003 DNA templates. Peak brightness is measured by
normalized local integrated intensity (LII) of the Gaussian
fit, i.e., the area under the curve of the Gaussian peak.22 (Peaks
with LII values <0.5 were excluded from Figure 2 and training

data due to consideration of the commercial plate reader’s
signal-to-noise ratio. Sequences whose associated spectra
exhibit >3 spectral peaks were also omitted from the training
data. See details in Methods section and Supporting
Information.) The multimodal wavelength distribution in
Figure 2a is expected due to the so-called “magic number”
properties of AgN-DNAs.6,8 This complete experimental
screening of all 3003 10-base sequences identified 157 emissive
AgN-DNA sequences with λp > 800 nm (Figure 2a, inset),
which is more than double the number of training instances in
this long-wavelength range in the previous available incomplete
data library.
Finally, each DNA sequence is labeled by the peak

wavelength, λp, and LII of the brightest spectral peak in its
associated emission spectrum. The relative frequency of DNA
sequences that yield a single emissive AgN-DNA versus
sequences that can stabilize multiple distinct AgN-DNA
products with distinct sizes and emission peaks has been
reported previously.8,22 While prior ML-guided studies have
avoided “multicolored” DNA sequences because they likely
contain nucleobase patterns shared by multiple sizes of AgN-
DNAs, which could challenge effective learning, here we do
not exclude these sequences from the training data library. This
provides a greater learning challenge, in addition to the
challenge of multiobjective design for λp and LII.
Training and Tuning the VAE. Next, we trained a deep

learning model to map DNA sequence onto λp and LII.
Specifically, we employed the property-regularized VAE
introduced by Moomtaheen et al.39 As shown schematically
in Figures 1b and S1, the VAE encodes DNA sequences into a
low-dimensional latent space. Constraints were placed on two
dimensions of the latent space during training to ensure that
the model learns to order sequences in latent space similar to
their corresponding values of λp and LII, i.e., the two latent
space dimensions are property-regularized. These two latent
dimensions are referred to as “wavelength (WAV) proxy” and
“LII proxy” respectively. Simultaneously, the model also learns
to reverse this latent space encoding by mapping latent space
locations back to the original sequences. A detailed description
of the model can be found in Supporting Information Section
1.1.
Intuitively, the latent space serves as a map, encoding both

properties and sequences, with regions in latent space
corresponding to DNA sequences that produce AgN-DNAs
with similar spectral properties.40−43 The encoder and decoder
of the VAE allow both forward and backward transformations.
In the forward direction, the model maps DNA sequences onto
a continuous distribution of proxy properties. The backward
transformation can be used to sample points from a latent
space region and decode these points into sequences, thus
generating new DNA templates whose properties are likely to
be similar to those in the sampled region. As a generative ML
model, the VAE enables direct design of AgN-DNAs by
eliminating the need to screen prospective candidate sequences
through a discriminative ML model, which can be computa-
tionally costly and time-consuming.
The VAE is trained using a standard iterative process, batch

gradient descent. Batches of 32 sequences are provided to the
model, which learns to encode and decode sequences while
also ordering sequences in WAV proxy and LII proxy latent
space dimensions according to the properties of their
corresponding sequence.39 Training a VAE also requires
selection of various hyperparameters that control how the

Figure 2. Distributions of (a) peak wavelength λp (inset: high-
wavelength range) and (b) normalized local integrated intensity
(LII) for all AgN-DNA products produced by 10-base DNA
sequences in the training data set.
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model learns. This step is essential to avoid pitfalls such as
overfitting, which can diminish a model’s utility for making
predictions about data that is not included in the training data
set. To configure the VAE model’s hyperparameters, we
employed a training/validation split of 90:10% of the training
data, respectively. Hyper-parameters were selected based on
the optimal ordering of the latent dimensions for WAV proxy
and LII proxy for the validation data set, as well as accurate
reconstruction of the original sequences by the decoder
(details provided in Supporting Information Section 1.2,
including accuracy and breakdown of loss plots in Figure
S2a,b). To assess the ordering of WAV proxy and LII proxy
values during the course of training, we monitored average
WAV proxy and LII proxy values for sequences in four λp
ranges and four LII ranges during training. (Recall that these
proxy values correspond to the two regularized dimensions of
the latent space vector, which is calculated by passing the
sequence through the encoder.) The four λp ranges were
defined based on known chemical differences among AgN-
DNAs, specifically, magic numbers that correlate λp to
nanocluster composition and shape8 and are responsible for
the multimodal distribution in Figure 2a. These ranges were
defined as follows: Green, λp > 590 nm; Red, 590 nm < λp <
660 nm; Far Red, 660 nm < λp < 680 nm; NIR, λp > 800 nm.
(Note: here, we use “NIR” to refer to λp > 800 nm, as
consistent with past work25). Details for LII proxy are provided
in the Supporting Information Figure S2.
It is important to note that the VAE is not a class-based

model. Training sequences are labeled by the scalar values of λp
and LII, not by categories of these parameters, such as the
Green, Red, Far Red, and NIR ranges defined above. The VAE
is not provided any information about λp and LII ranges;
rather, we simply used these ranges to monitor how well the
VAE learns to map sequences with similar structure−property
relationships into similar regions of latent space, thereby
selecting hyperparameters and the number of training epochs
accordingly. This level of care is important for training ML
models for materials design to ensure that models are
appropriately configured for meaningful prediction.
Figure 3 shows that the selected hyperparameters ensure

that mean WAV proxy of the four λp ranges are ordered such
that Green < Red < Far Red < NIR. Figure S2f shows the
corresponding correct ordering of LII proxy. Green, Red, and
Far Red mean WAV proxy are correctly ordered after very few
epochs (Figure 3a), as are LII proxy values (Figure S2f)
However, nearly 3000 epochs were required for the VAE to
learn the correct ordering of NIR mean WAV proxy. Moreover,
the distributions of WAV proxy values of Far Red and NIR
ranges for the trained VAE show a greater degree of overlap
than between other consecutive wavelength ranges (Figure
3b). Such increased overlap of NIR and Far Red WAV proxy
values may result from the limited number of NIR training
sequences, as well as the increased complexity of AgN-DNAs
that emit above about 700 nm. Recent studies have shown that
the structure−property relationships of longer-wavelength
AgN-DNAs are much more diverse than visibly emissive AgN-
DNAs. While a clear distinction exists between the valence
electron counts of green-emissive AgN-DNAs (with 4 valence
electrons) and red-emissive AgN-DNAs (with 6 valence
electrons), AgN-DNAs with λp < 700 nm have been reported
with varying valence electron counts of 6, 8, 10, and 12.36,44

AgN-DNAs with λp < 700 nm can also exhibit either rod-like or
spheroidal nanocluster core geometries, as well as nanosecond-

lived fluorescence or microsecond-lived luminescence.2,10,45

Finally, dual-emissive AgN-DNAs have recently been reported,
exhibiting both fluorescence at green or red wavelengths and
also microsecond-lived emission at longer NIR wave-
lengths.31,46−48 These distinct nanocluster properties�com-
position, shape, and emission lifetime�which cannot be
distinguished solely by high-throughput fluorimetry, may be
correlated with distinct sequence-to-property mappings.
Together, these factors are expected to significantly challenge
the task of learning to accurately map DNA sequence onto
NIR emission properties.
Experimental Validation of the VAE. We experimentally

validated the VAE model’s utility for AgN-DNA design by
generating sequences for brightly fluorescent AgN-DNAs in
two different color ranges: λp > 590 nm (Green), and λp > 800
nm (NIR). These two spectral windows were selected because
they present the greatest design challenges due to having the
least amount of training data and because of known complexity
of NIR AgN-DNAs, and the historic difficulty in designing
brightly emissive green clusters.28 Following hyperparameter
tuning, the VAE was trained using all training DNA sequences
without a separate validation set, employing 4500 training
epochs. Then, we sampled the latent space of the VAE to
generate new template sequences that select for AgN-DNA
brightness and λp, using an efficient method called truncated
normal sampling to target latent subspace regions of desired
property values.39

New NIR sequences were generated by sampling the region
of latent space corresponding to the upper range of WAV
proxy values (associated with high λp values, see Figure 3b)

Figure 3. (a) Average wavelength proxy (WAV proxy) for Green
(green), Red (red), Far Red (dark red) and NIR (blue) λp ranges
as a function of training epoch. (b) Violin plots of WAV proxy
values for λp ranges. White points indicate mean WAVE proxy for
each λp range.
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and the upper range of LII proxy values. Specifically, we
employ truncated sampling49 where the target sampled WAV
proxy values exceed the mean of the NIR range (WAV proxy
>3.39) and target LII proxy values exceeding the NIR range
mean (LII proxy >0.56). Similarly, Green sequences were
generated by sampling the latent space in the region
corresponding to the lower range of WAV proxy values
(associated with low λp, see Figure 3b) and the upper range of
the LII proxy. The truncation bounds were selected based on
the Green range, sampling sequences below the mean WAV
proxy (WAV proxy < −3.01) and above the mean Green range
LII proxy (LII proxy > −1.17).
Next, sampled latent space points were converted to

sequences. First, latent space points were passed through the
VAE decoder. This step does not itself produce a sequence,
with discrete encoding values corresponding to each
nucleobase. Rather, decoding produces continuous weights
for position-dependent nucleobase. A one-hot encoding
approximation was then obtained by selecting the nucleobase
with highest decoded weight in each sequence position.
Because this process introduces error, candidate sequences
were re-encoded to verify that WAV proxy and LII proxy
values of candidates fall in the correct range of proxy
distributions (details of the re-encoding process available in
ref 39). Figure S6 shows that the distributions of sampled
sequences in latent space are shifted toward the preferred
WAV proxy regions. Sequences with re-encoded WAV proxy in
the target threshold range were retained in the candidate test
set for experimental AgN-DNA synthesis.
Finally, we ranked the generated Green and NIR sequences

in the candidate test set and selected the top 100 Green, and
the top 200 NIR generated sequences for experimental
validation. NIR candidate sequences with LII proxy values
that were greater than the mean LII proxy of NIR training
sequences were then ranked in descending order by re-
encoded WAV proxy, with a higher proxy value corresponding
to higher ranking. Similarly, Green candidate sequences with
LII proxy values that were greater than the mean LII proxy of
Green training sequences were ranked in ascending order by
re-encoded WAV proxy, with a lower proxy value correspond-
ing to higher ranking. This ranking ensures that we test
sequences likely to yield both high LII values and λp values in
the target wavelength range.
Experimental AgN-DNA synthesis and spectroscopic char-

acterization was performed for the 300 generated sequences
using the same experimental and spectral fitting procedures
used to generate training data. Figure 4a shows that the VAE
can effectively generate Green sequences, increasing the
relative abundance of Green products by 4.2 times. Similarly,
VAE-guided design increased the abundance of NIR peaks by
3.5 times (Figure 4b), which was the greatest relative change in
size as compared to other λp ranges. However, NIR-generated
sequences also produced a large number of Far Red products
(Figure 4b), with nearly equal relative change in the numbers
of Far Red and NIR sequences. This lack of specificity may
result from the large degree of overlap of WAV proxy values
between the NIR and Far Red ranges (Figure 3b), as well as
the relatively few NIR sequences for training and the
aforedescribed complexity of Far Red to NIR emitting AgN-
DNAs.
Improving Performance by Stratification. We hypothe-

sized that design of NIR AgN-DNAs can be further improved
by developing a model that better separates the distributions of

WAV proxy values for Far Red and NIR sequences. Therefore,
we modified the VAE to address the challenge of the significant
imbalance in observed λp values in the training data. For each
training epoch, random selection of 32 sequences from the
training library, whose λp distribution is shown in Figure 2a, is
unlikely to contain NIR sequences in most batches. This will
limit the VAE’s ability to learn sequence-to-NIR mapping
because it is possible that each randomly sampled batch of 32
sequences is not sufficiently diverse in properties. This issue
can be addressed by extra care to ensure that batches are
stratified, i.e., include sequences stabilizing AgN-DNAs across
the entire λp spectrum. Past work on classification demon-
strated that batch stratification (ensuring that each batch
contains classes in similar proportion to their frequency in the
whole training set) are advantageous for model accuracy.50

While our model concerns continuous-valued properties and
not classification, we employ a similar stratification approach to
ensure the diversity of DNA sequences in training batches.
Specifically, our method organizes batches to include a broad
spectrum of sequences characterized by varying λp and LII
values. To this end, we discretize the continuous property
values into bins by employing quantile-based variable
discretization and then create batches that match the range
distribution of the overall data set (Figures S3 and4). Detailed
description is provided in Supporting Information Section 1.3.
Next, we again monitored WAV proxy and LII proxy during

training for the previously defined parameter ranges to
determine whether stratification enables the VAE to better
distinguish Far Red and NIR sequences (Figure S5). Figure 5a
shows average WAV proxy for the Green, Red, Far Red, and
NIR λp ranges for the stratified model. Compared to the
unstratified VAE (Figure 3a), the stratified VAE learns to
appropriately order sequences in the NIR range in latent space

Figure 4. Relative change in the number of sequences in each λp
range with high LII values >1 and the number of sequences with
“Dark” LII < 0.5, for sequences generated to be (a) Green and (b)
NIR.
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in far fewer epochs; the average NIR proxy exceeds average Far
Red proxy in less than 1000 epochs. Figure 5b illustrates that
the stratified model also exhibits significantly less overlap
between the distributions of WAV proxy for Far Red and NIR
ranges.

We experimentally tested the efficacy of the stratified VAE
model for generating NIR and Green sequences using the same
approach as for the unstratified model. Using the previously
described sampling strategy, we again generated 100 Green
and 200 NIR candidate sequences for experimental validation.
For both wavelength ranges, VAE-guided design increased the
abundance of AgN-DNAs within the target spectral window.
Unlike in the unstratified model, the increase for both Green
and NIR using the stratified VAE was markedly greatest for the
intended spectral range as compared to other λp ranges (Figure
6a,c). The relative abundance of Green sequences increased by
3.7 times (Figure 6a), and 58% of all sequences exhibited the
desired λp > 590 nm (Figure 6c). Furthermore, the stratified
model was especially successful at multiobjective design of
“bright” Green sequences; the majority of designed Green
sequences yielded LII values above the previously defined
threshold of LII > 1.0, and average LII values of designed
Green products shifted higher than the training data (Figure
6c). Past work reported that design of green-emissive AgN-
DNA with high brightness was especially challenging due to
sequence motifs shared by Green AgN-DNAs and “dark” DNA
sequences that do not stabilize emissive products.22 The
stratified VAE model overcomes this challenge, designing the
brightest Green-emissive AgN-DNA identified to date.
As hypothesized, the stratified VAE was notably more

successful at design of NIR AgN-DNAs than the unstratified
model, increasing the relative abundance of NIR AgN-DNAs by
4.9 times (Figure 6b,d). Moreover, 10 of these had λp > 900
nm. Most significantly, the LII values of NIR AgN-DNAs
designed using the stratified VAE was shifted significantly
higher as compared to the training data (Figure 6f). This
finding shows that even with limited training data, generative
models can be designed and configured to be effective tools for
AgN-DNA design.
Model Interpretation. The complexity of VAE models

makes it nontrivial to interpret what the model has learned
about the mapping of DNA sequence onto AgN-DNA
properties. In general, the lack of interpretability of deep
learning models for chemical and materials design can limit

Figure 5. Stratified VAE latent space ordering of wavelength proxy.
(a) Average WAV proxy for the Green (green), Red (red), Far Red
(dark red), and NIR (blue) spectral windows as a function of
training epochs for stratified batch composition. (b) Distributions
of WAV proxy values for λp ranges. White points indicate mean
WAV proxy for each λp range.

Figure 6. Relative change in the number of sequences in each λp range with high LII value >1 and the number of sequences with “Dark” LII <
0.5, for sequences generated using the stratified VAE to be (a) Green and (d) NIR. All fluorescent peaks with LII > 1 for (b) Green designed
template sequences (green bars) and (e) NIR designed template sequences (blue bars), as compared to training data (gray bars). LII values
for (c) all Green products, compared to Green products in the training data set, and (f) all NIR products, compared to NIR products in
training data.
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their wider adoption because it is scientifically unsettling to use
black box algorithms.51 To address this challenge, and to
advance fundamental understanding of the sequence-struc-
ture−property relationships of AgN-DNAs, we adapted SHAP
(SHapley Additive exPlanations) analysis52 to interpret the
VAE’s model predictions.
Shapley value analysis is an approach from game theory,

where the goal is to attribute team success to individual
subteam contributions. In this study, the “team” is the
complete DNA sequence, “team members” are nucleobases
in specific positions on the template, and “subteams” are
subsequences of nucleobases, where a subsequence is a subset
of positions of the entire 10-nucleobase sequence. Success is
quantified by the VAE’s ability to order templates by WAV
proxy and LII proxy in latent space. We seek to quantify which
DNA subsequences contribute the most to the correct AgN-
DNA property mapping by the VAE. Subsequences are scored
using Shapley values based on their contributions to this goal.
Intuitively, if the nucleobases in a subsequence with a high
importance score are altered, the VAE’s prediction of the AgN-
DNA properties will be significantly changed. Details of
Shapley value formulation are provided in Supporting
Information Section 2.
Table 1 illustrates the top 10 scored subsequences identified

by this method for four example sequences, two for the
property λp > 590 nm and two for the property λp > 800 nm.
Subsequences are ordered in Table 1 by importance score,
which is a measure of the subsequence’s influence on the
VAE’s mapping of sequences to the property of interest. Note
that subsequences are scored by importance for each sequence.
The important subsequences listed in Table 1 are thus specific
to the four example sequences listed at the top of the table and
do not necessarily represent the average effects of such
subsequences on λp. Moreover, it is important to note that in
this study, subsequences are position-dependent and therefore
contain information about both nucleobase type(s) and
nucleobase position(s) within the 10-base sequence. This
information is distinct from the positionally invariant motifs
reported by prior AgN-DNA studies.22,25

We next analyze the highest scored subsequences from all
DNA sequences in the training data to understand general
trends about nucleobase patterns that the VAE has learned to
be important for mapping sequence onto properties. Figure 7
summarizes the highest scored nucleobase patterns for
selecting λp, for each λp range. We find that Green sequences

with λp > 590 nm dominantly feature adenines, with cytosines
playing secondary role (Figure 7a). Adenines have high scores
at nearly every sequence position, with especially high scores
for positions 4 (P4) and 8 (P8). Cytosine is the most
prominent nucleobase in positions 3 (P3) and 5 (P5), and has
the second-highest score in P10. Guanines also have
moderately high scores in P6 and P7. These findings agree
with past reports of the importance of adenines in particular
for Green AgN-DNAs,

22,25 and this analysis provides more
information about where these adenines prominently feature
within Green-selecting DNA sequences.
Figure 7b,c show that cytosine- and guanine-abundant

subsequences are both important for Red (590 nm < λp < 660
nm) and Far Red (660 nm < λp < 800 nm). However,
distinctions exist in the relative positions of these cytosines and
guanines between Red and Far Red. Red sequences favor long
uninterrupted runs of cytosines from P1 through P7, guanine
scores becoming dominant at the 3′ end. Compared to Red,
Far Red sequences have relatively similar abundance of
cytosines and prevalence of guanines in P8 through P10, but
Far Red much more strongly favors guanine in P1 and P3 as
compared to Red sequences, with moderate guanine scores in
P4 and P5, as well.
Finally, NIR sequences (λp > 800 nm) predominantly

feature guanine-rich subsequences in P1 and P3 at the 5′-end
and lesser guanine content at the 3′ end as compared to Red
and Far Red (Figure 7d). Cytosines in P5 and P6 are also
important for NIR sequences. Comparison of the patterns for
Far Red and NIR shows some marked similarities, which likely
contributes to the unintended selection of Far Red sequences
during NIR sequence sampling.
We also performed Shapley value analysis on Green and

NIR sequences with high and low values of LII to evaluate the
impact of nucleobase patterns on emission peak brightness.
For each λp range, sequences with the top and bottom 30% of
LII values from the training data were defined as “bright” and
“dim,” respectively. We then analyzed their top 20 sub-
sequences. Figure 7e,g show the nucleobase content for
subsequences for bright and dim Green sequences. While
adenine positions are similar for bright and dim Green
sequences, bright Green sequences show a strong preference
for cytosines in P7 through P9, while dim Green prominently
feature thymines at the 3′ terminus. Subtler differences in
guanine content are also apparent between dim and bright
Green.

Table 1. Top 10 Sub-sequences Derived from the Primary Sequences at the Top of the Table and Ranked by Shapley Scores
that Reflect Proximity to the Mean of the λp Rangea

λp < 590 nm λp < 800 nm

index AAAATCCCTA AGAGTCCAAC GGGGACCTAA CGAGAACTCA

1 A − − − − C − − − − A − − − − − − − − − − G − − − − C − − − − G − − − − − − − −
2 − − − − − − − − T − − − A − − − − − − − − G − − − − C − − A − G − − − − − − − A
3 −A − − − − C − − − A − A − − − − − − − − G − − − − − − − A − G − − − − C − − −
4 A − − − − C − − − A A − − − − C − − − − G G − − − − C − − − − G − − − − − − C −
5 A − − − − C C − − A A − A − − − − − − C G − − − − − C − − A − − − − − − − − − A
6 − − A − T − − − − − A − − − − − C − − − − G − − − C − − − A − G − − − − C − C −
7 −A− −T C − − − − − − A − − C− − − − G − − − − − − − A − G − − − − C − − A
8 A − − − − C C − − − − − A − − − C − − − − G − − − C C − − A − G − − − − − − C A
9 − − A − T − C − − − A − A − T − − − − − G − − − − C − − − A − − − − − − C − − −
10 − A − − − − C C T − − − A − T − − − − − G G − − − C C − − − − G − G − − − − − A

aNucleobase positions that are not included in the sub-sequence are marked with “−”. This does not imply that any nucleobase can occupy “−”
positions; rather, it indicates that the nucleobases at “−” positions are less critical for the model’s predictions.
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Shapley value analysis for bright and dim NIR sequences
yields especially interesting insights. Bright NIR sequences
(Figure 7h) exhibit strong preference for cytosines in P1
through P5 and P9, P10, with moderate preference for
guanines throughout the sequence. These patterns share
commonalities with Red and Far Red sequences (Figure 7c),
and such commonalities could contribute to the challenge of
discriminating sequences among these wavelength ranges. In
contrast, dim NIR sequences (Figure 7f) have significantly
diminished preference for cytosines and an increased
preference for adenines, as well as specific preferences for
thymines at the 5′ end and guanines at central sequence
positions. These patterns of nucleobase importance are similar
to dim Green sequences in Figure 7e. Interestingly, sequences
generated by both the unstratified and stratified VAEs for
Green λp values sometimes yielded unintended NIR products

(Figures 4a and 6a). Because of recent reports of dual-emissive
AgN-DNAs that exhibit both green fluorescence and micro-
second-lived far red to NIR emission,31,46−48 we hypothesize
that there exist two “classes” of NIR AgN-DNAs, one whose
NIR emission results from a primary fluorescence process and
one whose NIR emission results from the less efficient and
therefore dimmer microsecond-lived process. Very recently
reported experimental methods may be able to separate these
two classes of emitters.53

Mass spectrometry has shown that AgN-DNAs stabilized by
10-base oligomers contain two to three oligomer copies per
AgN nanocluster core.44 Thus, the training DNA template
sequences in this study are almost certainly associated with
similar behavior, i.e., two to three identical DNA strands
encapsulate a single AgN. As stated above, the VAE performs
automatic feature extraction without any prior knowledge of

Figure 7. Top 20 subsequences derived from primary sequences, ranked by Shapley scores that reflect proximity to the mean of the λp range
for (a) Green, (b) Red, (c) Far Red, and (d) NIR sequences. Heat map illustrating the top 20 subsequences from Shapley value analysis for
(e) dim Green, (f) dim NIR, (g) bright Green, and (h) bright NIR sequences. “Dim” was defined as sequences with the bottom 30% of LII
values; “bright” was defined as the top 30% of LII values. Color displays the probability of A, C, G, T at each position. All probabilities are
shown as line graphs in Figure S7.
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this chemical behavior. It is not clear from Figure 7 whether
the average subsequence behavior reflects the fact that the
AgN-DNAs are stabilized by multiple oligomers. Future
research may address this, as well as on other possible
structure−property relationships that may be learned by
models with automatic feature extraction.
The sequence patterns identified by Shapley value analysis

for the stratified VAE are consistent with nucleobase “staple
motifs” scored as important for AgN-DNA color by Mastracco
et al.25 However, the previously reported staple motifs were
position-invariant and did not provide information about the
importance of nucleobase locations in the sequence. The
information presented here about nucleobase importance for
AgN-DNA color and brightness could enable computational
design of AgN-DNA model systems for first-principles
modeling. We hope that these findings inspire work by groups
who have begun to work on these topics.31,54

Lessons Learned. The VAE model presented here for
AgN-DNA requires no expert knowledge for feature engineer-
ing or problem formulation, unlike in past works. Our results
show that despite the complexity of deep learning models,
strategies can and should be implemented to assess their fitness
for making predictions regarding chemical and materials
design. For example, by monitoring proxy values for peak
wavelength and brightness, we identified that the unstratified
VAE struggled to capture sequence-to-color trends for the least
abundant wavelength range in the training data, λp > 800 nm.
By implementing stratification to address issues that arise due
to significant data imbalance, we significantly increased the
specific selection of NIR sequences by the VAE.
Experiments confirmed that the VAE model can effectively

generate sequences that select for two distinct AgN-DNA
properties: emission intensity and peak emission wavelength.
This multiobjective design approach is particularly important
for the design of bright Green AgN-DNAs, which have posed
challenges to past models.22,23,25 The model also enabled the
discovery of two NIR AgN-DNAs with brighter emission than
any similar products in the training data.
Implementation of Shapley value analysis can be used to

interrogate the VAE, learning the important nucleobase
patterns that select for AgN-DNA properties. This supports
that VAE models can be interpretable and that deep learning
applied to chemical and materials design does not necessarily
require sacrificing the level of interpretability that can be
achieved with simpler models.

CONCLUSIONS
This work presents the first model for multiobjective AgN-
DNA design and with automatic feature extraction. The
generative model, a regularized VAE, can effectively learn from
highly imbalanced training data and requires no domain
expertise for featurization. The model was challenged with the
task of generating DNA template sequences for two kinds of
AgN-DNAs: bright Green emitters and relatively rare bright
NIR emitters, which represent 28 and 7% of the training
instances, respectively. Experimental validation showed that
the stratified VAE effectively guides discovery of AgN-DNAs
with these target properties, increasing the relative abundance
of sequences that select for AgN-DNAs with Green and NIR
emission by 3.7 and 4.9, respectively. The designed sequences
also significantly yield AgN-DNAs with higher emission
brightness as compared to training data, demonstrating utility
for multiobjective design.

The VAE model can also be interpreted using our
implementation of Shapley value analysis. This approach
provided insights into the importance of DNA sequence
patterns for mapping of DNA sequence onto AgN-DNA
emission color and brightness, including the first information
about the importance of nucleobase patterns at specific
locations in DNA sequences for selecting AgN-DNA properties.
These findings may guide modeling efforts for these emerging
nanomaterials.31,54

Finally, we note that the model presented here can be
adapted for a range of sequence-based biomolecules and their
derived materials. This model would be well-suited for
designing nucleic acid nanomaterials whose sequence-struc-
ture−property relationships are not completely understood,
such as metal-mediated DNA complexes.55 This approach
could also generalize to protein and peptide-based materials,19

with especial utility for systems with intrinsic disorder,56 where
existing methods have less utility, and for emerging peptide-
and protein-stabilized metal nanoclusters.57

METHODS
High-throughput AgN-DNA Synthesis. AgN-DNA synthesis was

performed in 384 well microplates using robotic liquid handling. DNA
oligomers (Integrated DNA Technologies, standard desalting) were
mixed with an aqueous solution of AgNO3 and NH4OAc (Sigma-
Aldrich), pH 7. After 18 min, AgN-DNA solutions were reduced by a
freshly prepared solution of NaBH4 (Sigma-Aldrich), at 0.5 molar
ratio of NaBH4 to AgNO3. Final DNA concentration was 20 μM, and
final NH4OAc concentration was 10 mM. AgNO3 concentrations
were selected to match conditions at which training data were
collected in previous work,22,25,36 corresponding to a 5 Ag+/DNA
stoichiometry for measurements in the visible spectrum, and a 7 Ag+/
DNA stoichiometry for measurements in the NIR. Microplates were
then centrifuged at low speed for <60 s to remove any small bubbles.
Samples were stored in the dark at 4 °C and measured 7 days after
synthesis. Additional details are provided in the SI, and full
experimental details are provided in past publications.25

Spectroscopy and Data Processing. Fluorescence emission
spectra were collected using two microplate readers. A Tecan Spark
was used to acquire emission in the visible range (400−850 nm). NIR
emission (675−1425 nm) was measured in a Tecan Infinity 200 Pro
with a custom-built InGaAs photodetector,38 using 50 nm bandpass
filters and posteriorly correcting for detector spectral responsivity. For
both instruments, 280 nm light was used to universally excite all AgN-
DNAs.37

Custom spectral fitting routines were used to extract peak
wavelength, λp and peak brightness, LII. For visible emission spectra
(400−850 nm), spectra were fitted to the sum of one to three
Gaussians as a function of energy (in eV). LII values were assigned as
integrated intensity of the fitted Gaussian peak and then normalized
using a control AgN-DNA

58 that is included in all well plates to allow
LII values to be compared across different experiments. For data
collected on the custom NIR plate reader, peak λp was assigned as the
intensity-weighted average of the wavelength corresponding to
maximum measured intensity its two neighboring points to right
and left. Spectra with >3 peaks or with normalized LII < 0.5 were
excluded from training data passed on to the VAE. The resulting
training data set comprises 2204 10-base DNA sequences and their
peak wavelength(s) and brightness properties of the stabilized AgN-
DNAs. Details on spectroscopy and data processing are provided in
the SI and in past work.25

VAE Model. We employed the generative model introduced by
Moomtaheen et al.,39 with modifications including batch stratification
for balanced training. This model utilizes a bidirectional long short-
term memory based β-VAE framework (Figure S1). The framework
comprises two distinct encoder and decoder neural networks. The
encoder is trained to learn the posterior distribution qϕ(z|x) by
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passing through the one-hot encoded feature vectors and mapping
their associated λp and LII scores into a lower dimensional space, z,
creating distributions within the lower dimensional space. The
decoder, represented as pθ(x|z), reconstructs the latent space z back
to the original samples by learning likelihood distribution.

To ensure a decoupled and distinct latent space and to achieve a
precise reconstruction of the input DNA sequence, we utilize a loss
function consisting of three elements: reconstruction LREC, a
Kullback−Leibler (KL)-divergence LKL, and a third term correspond-
ing to regularization:

L L L L( , ) ( , )
a A

aVAE REC KL= + +

La is given by eq S2. The initial component in the loss function,
LREC, encourages the decoder to reconstruct the original samples
using the latent representations z effectively. The second component
penalizes the Kullback−Leibler (KL) divergence between the
approximated distribution qϕ(z|xi) and a prior distribution P(z), a
standard multivariate normal distribution. The final component
introduces property regularization, which is governed by the
hyperparameter γ. This ensures the lower dimensional space captures
the desired properties of the AgN-DNAs (specifically, peak wavelength
and brightness) in a joint manner. Additionally, the VAE is trained to
order training data for λp with a latent dimension serving as WAV
proxy, and similarly for LII in z, for a corresponding LII proxy
dimension in latent space.

VAE model hyperparameters were selected using a grid search with
a 90:10 training/test split. Optimal hyperparameters for the stratified
model were α = 0.007, β = 0.007, γ = 1, δ = 1, |z| = 15, h = 13, with a
single LSTM layer, and dropout not utilized. Optimal hyper-
parameters for the unstratified model were α = 0.003, β = 0.007, γ
= 2, δ = 1, |z| = 17, h = 15, a single LSTM layer, and dropout not
utilized. For experimental validation, the VAE was trained using all
training data without a separate validation set. Expanded details about
VAE architecture, training, and sampling are provided in the
Supporting Information.
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