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Abstract 

Our understanding of how the mammalian somatosensory system detects noxious cold is still limited. While the role 
of TRPM8 in signaling mild non-noxious coolness is reasonably understood, the molecular identity of channels 
transducing painful cold stimuli remains unresolved. TRPC5 was originally described to contribute to moderate cold 
responses of dorsal root ganglia neurons in vitro, but mice lacking TRPC5 exhibited no change in behavioral responses 
to cold temperature. The question of why a channel endowed with the ability to be activated by cooling contributes 
to the cold response only under certain conditions is currently being intensively studied. It seems increasingly likely 
that the physiological detection of cold temperatures involves multiple different channels and mechanisms that mod-
ulate the threshold and intensity of perception. In this review, we aim to outline how TRPC5 may contribute to these 
mechanisms and what molecular features are important for its role as a cold sensor.

Keywords Transient receptor potential canonical, Cold sensation, Voltage-dependent gating, Thermo-TRP channel, 
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Background
Among the mammalian thermosensitive transient recep-
tor potential (thermo-TRP) channels identified so far, 
three are activated by cooling or by noxious cold temper-
atures: TRPM8, TRPA1 and TRPC5 [1–3]. The last one 
identified was the canonical transient receptor potential 
5 (TRPC5) [4], whose role as a transduction ion channel 
for cold is still the least explored. TRPC5 has been iden-
tified as a key molecular component for cold detection 
under certain neuropathic conditions [5] and for medi-
ating cold pain in odontoblasts [6]. Its possible involve-
ment in the regional adaptation to cold temperatures in 

the peripheral nervous system has been suggested [4]. 
TRPC5 knockout mice exhibit resistance to inflamma-
tory pain and mechanical hypersensitivity, indicating 
that TRPC5 plays a role in the development of persistent 
pain after injury [5]. Since TRPC5 was first cloned [7–10] 
(then termed TRP5 or capacitative  Ca2+ entry channel, 
CCE2), most functional studies have been performed 
in the indirect mode of its activation by  Gq/11  protein-
coupled receptor stimulation, common to the entire 
canonical TRP (TRPC) receptor subfamily [11, 12]. The 
discovery of the specific TRPC4 and TRPC5 channel 
activator (−)-Englerin A [13] and the highly potent and 
selective inhibitor Pico145 [14] almost two decades later 
enabled more specific functional studies on TRPC5 in 
native and overexpression models. TRPC5 channels are 
found in various tissues, including the brain, but also in 
peripheral tissues, notably in the liver, heart, and kidney, 
gastrointestinal tract, blood vessels, ventricular myocytes 
and synoviocytes [12, 15]. An important role for TRPC5 
in many physiological and pathophysiological processes 
has been described and includes the central nervous 
and cardiovascular systems, the kidneys and various 
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metabolic disorders [12]. TRPC5 is also widely distrib-
uted in different cell populations of the human lung, sug-
gesting the involvement of this channel in pulmonary cell 
function [16]. Recently, a missense variant in TRPC5 has 
been identified (NM_012471.2:c.523C>T, p.(Arg175Cys)) 
in patients with an X-linked disorder presenting as intel-
lectual disability and/or autism [17], and disruption of the 
TRPC5 gene has been shown to cause obesity, behavioral 
problems such as anxiety, reduced social interactions, 
outbursts of aggression and, in mothers, postpartum 
depression [18]. A number of excellent reviews on vari-
ous aspects of TRPC5 structure, pharmacology and phys-
iological function have recently appeared, and we refer 
the reader to them [19–29]. Here, we review the progress 
in the understanding of molecular basis underlying poly-
modal gating of TRPC5 and focus on its thermosensitive 
properties.

Structural features of TRPC5
As with other membrane proteins, it is only in the last 
few years that the molecular architecture of the TRPC5 
channel and the precise mechanisms of its activation have 
begun to be better understood [30, 31]. Using advanced 
cryoelectron microscopy (cryo-EM) techniques, a total 
of 10 TRPC5 channel structures in near-atomic to atomic 
resolution have been published so far in different confor-
mational states. The first cryo-EM structure of TRPC5 
was resolved in 2019 and deposited in the Protein Data 
Bank under accession code 6AEI [32]. Other structures 
followed describing the apo state of the channel [33, 34] 
and its complexes with the activator riluzole [35], sev-
eral inhibitors [33, 36] and Gαi protein [34] (Fig. 1). The 
structure of TRPC5 consists of a transmembrane domain 
and a cytosolic domain comprising approximately 70% of 
the molecular weight of the channel. To form a functional 
ion channel, TRPC5 assembles into a tetramer with a 
fourfold symmetry consisting of either only TRPC5 subu-
nits or can heteromerize with TRPC1 or TRPC4 subu-
nits [37–39] (Fig.  1B). Each TRPC5 subunit consists of 
six transmembrane α-helices (S1-S6), with helices S1-S4 
forming the voltage-sensor-like domain (VSLD) and the 
region between S5 and S6 forming the pore domain. The 
cytosolic region contains the N-terminal domain com-
posed of four ankyrin repeats positioned below the helix-
loop-helix domain (HLH, comprised of seven α-helices), 
and the C-terminal subdomain formed by a connecting 
helix (also termed „rib helix”) followed by a coiled-coil 
domain located beneath the permeation pore (Fig.  1A–
C). The C-terminal segment including last ~ 210 amino 
acids (21.6% of the total sequence) represents an intrinsi-
cally disordered region (IDR) that is not resolved in any 
of the published structures (Fig. 1C–E). As in many other 
eukaryotic ion channels, the intrinsically disordered 

region is supposed to play important roles in channel 
function, localization and protein–protein interactions 
[40–43]. IDRs in proteins generally provide stability and 
resistance to cold treatment [44, 45], and so it is con-
ceivable that the distal C terminus could provide proper 
TRPC5 channel function during cold-dependent activa-
tion. The distal C-terminal part contains the PDZ-bind-
ing motif „VTTRL” within which the first threonine T970 
(human TRPC5 numbering) is a critical phosphorylation 
target for protein kinase C (PKC) [46]. Its phosphoryla-
tion promotes the association of the channel with  Na+/
H+ exchanger regulatory factors 1 and 2 (NHERF1/2), 
which in turn prevents the activation of the channel by 
diacylglycerol (DAG), a major physiological activator that 
controls the gating of most TRPC channel family mem-
bers [47–49] (Fig. 2). The central ion conduction pathway 
has two major restriction points: the upper gate with the 
selectivity filter marked by glycine G581 and the lower 
gate formed by the side chains of I621, N625 and N629. 
TRPC5 is critically regulated by  Ca2+ [50] that binds to 
the negatively charged intracellular pocket of the inner 
vestibule of VSLD [33]. This region is an important regu-
latory site and a potential target for various modulatory 
agents [33, 35, 51]. VSLD, near the S2-S3 and S4-S5 link-
ers, is occupied by a phospholipid, most likely phosphati-
dylinositol 4,5-bisphosphate  (PIP2), which is critical for 
TRPC5 channel activation [34, 52].

TRPC5 as a cold sensor in peripheral nervous system 
and in odontoblasts
TRPC5 is the only member among the TRPC family 
classified as a thermo-TRP channel. Its cold sensitiv-
ity was first discovered using electrophysiological and 
 Ca2+-imaging recordings on HM1-HEK293 cells stably 
expressing human muscarinic type 1 receptor (hM1) and 
heterologously expressing the mouse TRPC5 orthologue 
[4]. In these experiments, TRPC5 activity was potenti-
ated by temperatures decreasing from 37 to 25  °C, sug-
gesting its possible role in mild cold temperature sensing. 
Series of behavioral assays including thermal place pref-
erence test and noxious cold, heat and mechanical stim-
ulations were performed in mice (129S1/SvImJ strain) 
with deleted TRPC5. However, no shift in temperature-
dependent behavior was detected when compared with 
wild-type mice. Despite these negative results, Zim-
mermann et al. [4] did not completely exclude the chan-
nel from being possibly involved in the mechanisms of 
thermosensation, especially in the range of 37–25 °C, but 
they concluded that TRPC5 is not essential for noxious 
cold sensing. The loss of TRPC5 led to significant adap-
tive changes. Skin-nerve recordings in intact animals 
revealed an increase in the number of fibers sensitive to 
menthol (a TRPM8 activator) and a lowered threshold 
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for mechanical stimuli, indicating a potential functional 
replacement of TRPC5 with TRPM8 or other channels 
activated (or modulated) by menthol. In contrast, in 

isolated dorsal root ganglia (DRG) neurons, the TRPC5 
deletion caused a decrease in TRPM8 expression and 
a reduction of cold-sensitive neurons. It has been 

Fig. 1 General architecture and intrinsically disordered regions of the TRPC5 channel. A Ribbon diagram of a single subunit of human TRPC5 
generated using AlphaFold prediction server. The residues are colored using a per-residue confidence score pLDDT (predicted local distance 
difference test: scale bar with heat map from blue, pLDDT > 90; to orange, pLDDT < 50). Indicated domains: N-terminal akyrin repeat domain 
(ARD), helix-loop-helix domain (HLH), voltage sensor-like domain (VSLD) formed by the transmembrane spanning helices S1-S4, the pore domain 
formed by helices S5 and S6 and a reentrant loop in-between, containing a disulfide bond between cysteines Cys553 and Cys558 and a short 
pore helix. The C-terminus contains TRP helix (TRP), connecting helix (CH), coiled-coil domain (CCD) and a long (~ 200 amino acids) disordered 
region. B Phylogenetic tree generated for human TRPC1, TRPC3-7 amino acid sequences using MAFFT (v7) with default parameters. Surface 
map of the tetrameric structure of TRPC5 channel with indicated ribbon representation of one subunit (left) and as a heteromer with two TRPC4 
subunits and one TRPC1 subunit. In native tissues, TRPC5 forms homomers or heteromers with TRPC1 and TRPC4. C Linear scheme of the TRPC5 
domains shown in A. D Predicted average disorder score based on the sequence of human TRPC5 was obtained using PONDR VLXT, PONDR 
VL3, VLS2, IUPRED, PrDOS, AIUPred, AlphaFold, APOD, AUCPreD, DisEMBL, PreDisorder, DISOPRED3, IDP-Fusion, SPOT-Disorder and Metapredict. 
Line and gray envelope indicate mean ± standard deviation of the disorder score obtained from 15 prediction servers. Yellow shaded area (> 0.5) 
depicts disordered regions. E Structurally resolved residues in the 10 currently available structures of mouse or human TRPC5: The Protein Data 
Bank accession codes are indicated in black for apo-structures, in red for structures with inhibitors, in green for structure with activator riluzole, 
and brown for TRPC5 with the Gαi3 protein: 6AEI [32], 6YSN [36], 7E4T, 7D4P, 7D4Q [33], 7WDB [35], 7X6C, 7X6I, 8GVW, and 8GVX [34]
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suggested that cold sensitivity of TRPC5 could be crucial 
in different mechanisms of temperature adaptation, such 
as in modifying vascular perfusion, neurite outgrowth 
or in modulation of transcription or metabolism, rather 
than mediating a response to noxious stimuli.

It was not until a decade later that a significant involve-
ment of TRPC5 in the detection of cold stimuli was dis-
covered, in a mouse model of peripheral neuropathic 
pain [5] and in mouse teeth [6]. Using the spared nerve 
injury model of peripheral neuropathy, Sadler et al. dem-
onstrated that global TRPC5 knockout mice failed to 
develop cold allodynia (measured as withdrawal latencies 

to hindpaw dry ice stimulation following spared nerve 
injury) in contrast to wild-type mice [5]. Bernal et  al. 
studied the mechanisms of cold sensing in teeth, focus-
ing on TRPC5, TRPM8 and TRPA1 channels [6]. TRPM8 
together with TRPA1 are responsible for the majority of 
mild and noxious cold transduction in rodent skin [53] 
and multiple studies support their possible involvement 
in thermosensation in humans as well [54–58]. However, 
in dental temperature sensing, neither of these channels 
seem to play the crucial role [59]. Using a mouse model 
of evoked dental pulp injury, which has been associated 
with increased sucrose consumption [60], Bernal et al. [6] 

Fig. 2 Schematic representation of main interactions of TRPC5 channel with signaling proteins in a cellular context. The indirect mode of TRPC5 
activation is mediated downstream of the  Gq/11-protein coupled receptor activated phospholipase C (PLC) signaling pathway that leads 
to the cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate  (PIP2) into two second messengers: diacylglycerol (DAG) and inositol 
1,4,5-triphosphate  (IP3), all of which are implicated in the regulation of TRPC channel activation.  IP3 binds to  IP3 receptors  (IP3R), resulting in  Ca2+ 
release from the endoplasmic reticulum (ER). The rise in intracellular  Ca2+ concentration is sufficient and necessary to activate TRPC5. DAG activates 
the channel under specific conditions. A prerequisite for DAG sensitivity of TRPC5 is a dissociation of the scaffolding NHERF protein  (Na+/H+ 
exchanger regulatory factor) from the PDZ-binding motif ”VTTRL” located right at the end of the C-terminus. This dissociation can be achieved 
in several ways: a phospho-null mutation of the former threonine from the “VTTRL” motif (T970), a charge-neutralizing mutation of the first 
PDZ domain of NHERF, inhibition of the protein kinase C (PKC), or the depletion of  (PIP2). The PKC phosphorylation of T970 leads to TRPC5 
desensitization, and  PIP2 plays a role in maintaining PLC-independently evoked channel activity. Binding of Gαi3 subunit to the ankyrin repeat 
domain  (IYY57-59 in the loop connecting ankyrin repeats 1 and 2) increases the sensitivity of TRPC5 to  PIP2. In analogy with TRPC4, calmodulin (CaM) 
can interact with the connecting (rib) helix of the channel and restrict the mobility of the TRP helix, thus locking the channel in the closed state 
at high  Ca2+ cytosolic concentrations. TRPC5 can partially function as a store-operated channel by interacting with the endoplasmic reticulum (ER) 
calcium sensor STIM1, the Stromal Interaction Molecule 1. After ER  Ca2+ store depletion, STIM1 undergoes a conformational change and interacts 
with Orai1: STIM1 looses the  Ca2+ bound to the N-terminal EF-hand domain (EFh) and undergoes from the tight state to the active, elongated 
state which allows it to interact with Orai1 (via the STIM1-Orai activating region; SOAR) and anionic phospholipids (via the lysine-rich region; K). 
This process is accompanied by oligomerization of STIM1 proteins to aggregates. Two positively charged lysines at the C-terminal end of STIM1 
(in the K region) interact with two negative residues conserved among TRPC1/3/4/5/6 (D652 and E653 in TRPC5). TRPC is capable of interacting 
with SOAR and this interaction involves Y241, L244 and L255 in the H5 helix (N-terminal helix-loop-helix region). Importantly, the clustering of STIM1 
at ER-plasma membrane junctions can be also induced by an increase in temperature above 35 °C, without depleting  Ca2+ stores, and this process 
is highly temperature dependent. All structures shown are taken from the PDB database or were predicted by AlphaFold Protein Structure Database
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excluded both TRPM8 and TRPA1 from being essential 
in mechanisms of inflammatory tooth pain in mice, often 
accompanied by cold hypersensitivity [61]. On the other 
hand, a significant involvement of TRPC5 was discovered, 
as its genetic deletion in mice with evoked dental pulp 
injury resulted in no shift in behavioral response. Further 
experiments, focused on studying the cold-dependent 
mechanisms in the entire tooth sensory system, involving 
electrophysiological recordings from single nerve fibers 
in intact and healthy mice teeth, revealed an important 
involvement of TRPC5 but also of TRPA1 in cold trans-
duction. This was further supported with pharmacologi-
cal and genetic inhibition of these channels, which led 
to a significantly lowered cold responses and a reduc-
tion of cold-sensitive fibers.  Ca2+-imaging of dissoci-
ated dental primary afferent neurons showed that the 
cold response was mediated mainly by TRPM8 and only 
slightly by TRPC5 and TRPA1. Quantification of TRPC5 
protein revealed high expression in odontoblasts, special-
ized cells located at the outer layer of dental pulp creat-
ing a barrier between soft and hard tissue. Using TRPC5 
reporter mice, the authors demonstrated that the expres-
sion of TRPC5 is largely restricted to the odontoblast cell 
layer in mouse and human teeth and suggested an essen-
tial sensory receptor function for TRPC5-expressing 
odontoblasts in tooth cold sensing [6].

Cold‑dependent properties of TRPC5 in heterologous 
expression system
The previously mentioned study by Zimmermann 
et  al. [4] explored the thermosensing ability of TRPC5 
in HM1-HEK293 cells stably expressing human mus-
carinic receptor type 1 (hM1) and transiently expressing 
mouse orthologue of the channel (C-terminally EGFP 
tagged). Whole-cell patch clamp recordings confirmed 
that TRPC5 is constitutively active at room temperature 
as described earlier [62] and revealed that lowering the 
temperature from 37 °C potentiates the channel. TRPC5 
activity was described to be the most temperature sen-
sitive in the range of 37–25  °C, which corresponds to a 
temperature coefficient Q10 ∼ 0.1, a value that is consist-
ent with other thermo-sensitive (thermo-TRP) channels 
[63]. TRPC5 currents evoked upon cooling remained 
constant over membrane potentials ranging from −  40 
to −  80  mV. The recorded cold responses were sensi-
tized in the presence of carbachol (100  µM), an agonist 
of muscarinic receptors, previously conventionally used 
to indirectly activate TRPC5 channels via an activation 
of  Gq/11 protein-coupled receptors, and the currents 
were strongly enhanced after the addition of  La3+. While 
lowering the temperature from 37 to 25  °C potentiated 
TRPC5 channel, subsequent warming to 40 °C decreased 
the TRPC5 mediated current responses, without and in 

the presence of carbachol and  La3+. In native tissues, 
TRPC5 heteromerizes with TRPC1 forming an ion chan-
nel that is characterized by altered functional properties 
[37, 64]. When TRPC5 (C-terminally EGFP tagged) was 
co-expressed with TRPC1 (C-terminally YFP tagged), 
cooling from 37 to 25  °C did not stimulate heteromeric 
TRPC1/5 channels. The cold activation of TRPC5 was 
also demonstrated in this study using  Ca2+-imaging 
recordings whereby an increase in intracellular calcium 
was observed in TRPC5 and hM1 expressing cells, how-
ever only after a carbachol application.

The second published study exploring the tempera-
ture-dependent properties of TRPC5 activation is based 
on the single-channel cell-attached recordings carried 
out on intact HEK293T cells transiently expressing the 
untagged human TRPC5 orthologue [65] (Fig.  3A, B). 
At 25  °C, TRPC5 exhibited a basal activity manifested 
by short openings of the channel. Lowering the temper-
ature to 5  °C prolonged the mean open dwell time and 
led to a strong increase in the open probability. TRPC5 
gating was strongly temperature dependent (Q10 ∼ 0.04) 
between 16 and 11 °C. This was accompanied by changes 
in entropy and enthalpy, pointing to significant confor-
mational changes. Around 8–5  °C, the channel activity 
became saturated. Cooling also affected the amplitude of 
unitary currents, which decreased ~ 1.5‐fold with a 10 °C 
drop in temperature. TRPC5 current responses to cold 
stimulation were further potentiated in the presence of 
the TRPC4/5 selective activator (–)-Englerin A [13] and 
were completely blocked by Pico145, a specific inhibi-
tor of TRPC1/4/5 channels [14]. An effect of carbachol 
(100  µM) on single-channel activity was also tested on 
HEK293T cells co-expressing plasmids encoding TRPC5 
channel and human muscarinic receptor  type 3 (hM3). 
Carbachol application enhanced the cold-evoked current 
responses, however, it led to a reduction of temperature 
dependence of TRPC5 gating (Q10 ∼  0.44). Milder cold 
dependence was also seen in the presence of (–)-Englerin 
A (Q10 ∼ 0.53). Analogous observations that the presence 
of an activator or sensitizer lowers the thermal activation 
threshold and temperature dependence have been seen 
for other temperature‐sensitive TRP channels [66, 67].

As noted above, threonine T970 in the distal C-termi-
nus of TRPC5 (corresponding to T972 in murine TRPC5) 
is a critical phosphorylation target for PKC [46]. The 
T970A mutation disrupts phosphorylation by PKC, pre-
vents desensitization that occurs after prolonged stimula-
tion with carbachol [46, 52], and enables activation of the 
channel by DAG [49]. These processes are tightly con-
trolled by  PIP2 [52]. At a single-channel level, the T970A 
mutant exhibited increased basal activity at 25  °C and 
considerably lower temperature dependence than wild 
type channels (Q10∼0.22). The half-maximal temperature 
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T1/2 was shifted by about + 4  °C, indicating an involve-
ment of T970 in the cold activation mechanisms [65].

Possible dependence of TRPC5 cold‑induced activity 
on STIM1 and Orai1
The TRPC5 channel can directly interact with stromal 
interaction molecule 1, STIM1, and the extent of this 
interaction determines its function as a store-operated 
channel (SOC) [68–70]. STIM1 is a multidomain  Ca2+ 

sensor with an amino-terminal EF hand  Ca2+-binding 
domain residing in the endoplasmic reticulum (ER) 
(Fig.  2). In response to  Ca2+ release from ER, STIM1 
clusters at ER/plasma membrane junctions and activates 
two subtypes of  Ca2+ channels in the plasma membrane, 
Orai and TRPC [71]. Whereas STIM1 is obligatory for 
the Orai channel activation [72], TRPC channels can 
function independently of STIM1 and Orai [73]. Exactly 
two STIM1 molecules are required to activate tetrameric 

Fig. 3 Changes in TRPC5 open probability upon cooling from 25 to 5 °C. A Representative recording of 7-min activity of one TRPC5 channel 
in response to cooling. 2 s expansions are taken at times indicated by colored vertical arrows. Single channel currents were measured 
from a HEK293T cell expressing human TRPC5 in cell-attached mode at pipette potential of + 120 mV. Downward deflections are inward currents; “o" 
indicates open level, “c” indicates closed level for each trace. Below, time course of mean open dwell times averaged over 6-s periods for recording 
shown above. Between 200 and 300 s (14–10 °C), the single-channel activity occurs in bursts separated by gaps. B Average open probability (Po) 
versus temperature plot shown as mean ± standard error of mean for 18 cells. The solid line is the best fit to a Boltzmann function. The estimated 
average temperature that causes 50% of the maximum response (T1/2) is 12.5 ± 0.01 °C. C Effects of temperature on TRPC5. The probability of TRPC5 
opening is increased upon heating after cooling. Representative time course of unitary currents recorded in the presence of carbachol (100 µM) 
in cell-attached mode at + 120 mV from HEK293T cell co-expressing wild-type human TRPC5 with human muscarinic receptor M3. Below, 2-s 
expansions, taken at times indicated by colored arrows above. Note a strong increase in TRPC5 activity at 25 °C after the second and third cold 
stimulation. This figure was adapted from ref. [65]
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TRPC channels [74] and the interaction of two conserved 
negative residues D652 and E653 with the polybasic 
K-domain at the C-terminal end of STIM1 is essential for 
TRPC5 activation [75].

The clustering of STIM1 is a highly temperature-
dependent process [76, 77]. Heat induces STIM1 clus-
tering that requires the polybasic K-domain and is 
independent of  Ca2+ store depletion. Ptakova et al. inves-
tigated whether the cold-dependent activity of TRPC5 
can be modulated by STIM1 [65]. They tested a “charge-
swap” mutant of human TRPC5, in which D652 and E653 
were replaced with lysines to prevent electrostatic inter-
action with STIM1. Compared with wild-type channels, 
the D652K/E653K mutant showed an increased probabil-
ity of opening at 25 °C, which increased only slightly with 
decreasing temperature to ~ 8°C, and even decreased 
with cooling to 5 °C. The temperature dependence of uni-
tary currents was no different from wild-type channels. 
These results indicate the involvement of STIM1 in cold-
dependent TRPC5 activation. Next, the authors explored 
the possible role of endogenous STIM1 in TRPC5 acti-
vation. Using two different inhibitors of the sarco/
endoplasmic reticulum  Ca2+-ATPase pump to deplete 
intracellular  Ca2+ stores, they did not observe any signifi-
cant effects on the single-channel TRPC5 activity at 25 °C 
within 2  min of treatment, indicating that activation of 
endogenous STIM1 by store depletion is not determining 
the channel gating. They concluded that cold activation 
of TRPC5 depends on the electrostatic interaction of the 
channel with the polybasic K-domain of STIM1 but does 
not depend on intracellular  Ca2+ stores. Overexpression 
of STIM1 caused both the wild-type TRPC5 and the dou-
ble mutant D652K/E653K channels to become insensi-
tive to cooling. The temperature of 37  °C is limiting for 
STIM1 protein that clusters at ER-plasma membrane 
junctions and, upon subsequent cooling to 25 °C, it acti-
vates endogenous Orai1 channels independently of  Ca2+ 
store depletion [76]. TRPC5 is tightly regulated by intra-
cellular  Ca2+ [46, 78] and the overexpression of STIM1 
might inhibit TRPC5 by disturbing  Ca2+ homeostasis in 
transfected cells downstream of the endogenous store-
operated channel Orai1. An interesting observation was 
that when TRPC5 was first exposed to cold, its activity 
increased strongly upon warming. This may be a physio-
logically relevant mechanism of TRPC5 regulation, as the 
probability of opening was also increased upon warm-
ing-after-cooling, when the channel was activated via a 
signaling pathway activated by the  Gq/11-protein coupled 
receptor M3 (Fig. 3C). Lee et al. [79] proposed a general 
model for the interaction between TRPC and STIM1: 
Under resting conditions, the N-terminus of TRPC inter-
acts with the C-terminus and shields it from interaction 
with STIM1. Cell stimulation causes a dissociation of the 

interaction between the C- and N-termini, which enables 
STIM1 to bind and stabilize the open conformation of 
the channel. STIM1 interacts with TRPC via its STIM1 
Orai1-activating region (SOAR) [74]. At low intracellular 
concentrations of  Ca2+, SOAR is occluded by the other 
STIM1 domains and cannot interact with the channel 
(see [69], and references therein). The results presented 
in [65] may indicate that at low temperatures, the dis-
sociation of the C- and N- termini of TRPC5 is largely 
delayed or prevented so that STIM1 cannot interact with 
and properly affect the channel.

STIM1 and Orai1 channels are present in peripheral 
neurons and a recent study by Buijs et al. revealed a new 
mechanism through which extreme cold (mean thresh-
old around 10  °C) activates STIM1, causing aggregation 
of plasma-membrane Orai1 channels independently 
of  Ca2+ store depletion [80]. This mechanism is promi-
nent in sympathetic neurons and overlaps with another 
mechanism whereby cold suppresses two-pore potassium 
channels and triggers consequent membrane depolariza-
tion and action potentials via voltage-dependent calcium 
 (CaV) channels [81–84]. The authors demonstrated that 
the mechanism of cold transduction by STIM1 and Orai1 
operates at a rather local level, without the generation 
and propagation of action potentials. Given that TRPC5 
may co-occur with STIM1/Orai1 in certain cell domains 
(such as  PIP2-rich domains as in the case of TRPC3 [85]), 
a similar concept could reconcile the current ambiguous 
observations regarding the role of this channel in cold 
detection.

TRPC5 as a redox sensitive channel
One possible mechanism that may account for the cold 
sensitivity of TRPC5 is the cold stress-induced produc-
tion of reactive oxygen species (ROS). It has previously 
been demonstrated that redox signaling initiated by 
mitochondrial ROS generation underlies the cold sensi-
tivity of the TRPA1 channel [86]. Likewise, TRPC5 is a 
redox-sensitive channel that can be directly activated 
by both oxidants like hydrogen peroxide and antioxi-
dants, including endogenous redox protein thioredoxin 
and chemical disulfide reducing agents dithiothreitol 
and membrane impermeable tris(2-carboxyethyl) phos-
phine hydrochloride (TCEP) [87]. The channel can also 
be modulated by reactive nitrogen species (RNS) such 
as nitric oxide via S-nitrosylation of cysteine residues 
C553 and C558 [88]. Recent structural and functional 
studies have confirmed that these two cysteines form 
a disulfide bond in the extracellular loop connecting S5 
and the pore helix (Fig. 1A), and have demonstrated their 
key role in channel function, multimerization, trafficking 
and expression [32, 89–91]. The molecular mechanism 
through which cold-induced changes in ROS and RNS 
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may affect TRPC5 gating likely involves destabilization 
of the upper region of the selectivity filter of the channel 
[91].

TRPC5 as a potential drug target for cold pain
Currently, two TRPC5 inhibitors are registered in the 
ClinicalTrials database, GFB-887 targeting kidney dis-
ease and BI 1358894 targeting affective disorders (www. 
clini caltr ials. gov; NCT03970122, NCT04521478) [92, 
93]. Both agents were found to be well tolerated by par-
ticipants and have progressed to Phase 2 studies, but 
no TRPC5 inhibitor has yet been tested for cold or pain 
perception in humans. Although only an initial in  vitro 
finding, the latest results suggest that TRPC5 may be a 
previously unsuspected target for duloxetine, a com-
monly used, highly effective drug for severe forms of pain 
[51]. Results from  Ca2+-imaging, electrophysiology and 
molecular modelling demonstrated that duloxetine at 
clinically relevant concentrations inhibits human TRPC5 
in a state-dependent manner, including a cold-depend-
ent mode of activation, and its interaction site resides 

in an inner cavity of the VSLD. The inhibitory effect was 
observed in non-excitable HEK293T cells as well as in 
F11 cells derived from sensory dorsal root ganglia neu-
rons. The authors hypothesized that duloxetine may con-
tribute to analgesic effects in native peripheral neurons 
because it also inhibits the activity of homomeric TRPC4 
and heteromeric TRPC1/TRPC5 channels. Duloxetine 
was originally introduced to treat major depressive dis-
order [94, 95] and later on has been repositioned to treat 
several painful conditions. Currently, it is the only drug 
that has successfully undergone clinical trials and dem-
onstrated efficacy for severe cold-induced pain states 
associated with diabetic and chemotherapy-induced 
neuropathy [96, 97]. One of the peripheral mechanisms 
through which duloxetine exerts its antinociceptive effect 
is considered to be a blockage of voltage-gated sodium 
channels responsible for propagating action potentials 
[95, 98]. However, duloxetine is better at treating cold 
pain than other similarly acting drugs such as venlafax-
ine, thus the involvement of other targets can be antici-
pated [99]. Further testing of the effects of duloxetine in 

Fig. 4 Summary model for cold transduction mechanisms activated by cooling in somatosensory and/or sympathetic neurons. TRPM8 channels 
are activated at mild cold temperatures below 23 °C. The  Na+ and  Ca2+ ions permeating through TRPM8 channels (yellow cloud indicates  Ca2+ 
influx through the channels) lead to depolarization and subsequent activation of voltage-dependent calcium channels  (CaV) that can be blocked 
by verapamil. In the range of 25–35 °C, the voltage-gated potassium channels  KV7.1 (KCNQ1) are inhibited and contribute to depolarization. 
The contribution of  KV7.1 is sex-dependent. Stronger cold (threshold 13–15 °C) deactivates two-pore potassium channels (K2P), such as  K2P10.1 
(TREK2) and  K2P18.1 (TRESK), causing depolarization, activation of  CaV and calcium influx. Noxious cold < 10 °C induces translocation of STIM1 
to regions adjacent to the plasma membrane, aggregation of Orai1 channels and their subsequent opening independently of intracellular  Ca2+ 
stores. The clustering of STIM1 without depleting  Ca2+ stores can be initiated also by heating cells above 35 °C, which leads to Orai1-mediated 
 Ca2+-influx as a heat off-response. STIM1 is a dominant tether forming the endoplasmic reticulum-plasma membrane (ER/PM) junctions. Glutamate 
ionotropic kainate receptor 2 (GluK2), via its metabotropic function  (Gi/o-coupled), appears to be a major contributor to cold sensing in dorsal root 
ganglia neurons. Cooling may bring together, at the cellular and/or circuit levels, the channels in a  PIP2 rich domain within the ER/PM junctions 
to enhance communication between the channels and enable their regulation by  PIP2. The expression of some of these mechanisms may overlap. 
TRPC5 channels, which are highly sensitive to intracellular  Ca2+ might work in concert with TRPA1 and STIM1-Orai1 mechanism to cover the range 
of noxious cold-sensation. The summary model was created based on the following articles: [2, 53, 65, 76, 80, 85, 102–104]

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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specific animal models could provide additional insights 
into the possible mechanism of action.

Conclusions
In the last few years, new evidence has accumulated 
for the involvement of TRPC5 in cold perception, but 
a coherent picture has not yet emerged. Recently, the 
expression of TRPC5 in 75% of human sensory neurons 
has been demonstrated [5], however, the precise stoi-
chiometry of TRPC5 channels in the peripheral nervous 
system is still unknown. Recent study by Kollewe et  al. 
demonstrated that TRPC5 in rodent brain forms pre-
dominantly heteromers with TRPC1, TRPC4 and that 
only 9% of TRPC5 protein is present as homomers. Using 
high-resolution proteomics, the authors elegantly dem-
onstrated that TRPC channels co-assemble with a num-
ber of interactors that provide specificity and efficiency 
of their function [38]. It is likely that analogous identifi-
cation of TRPC5 interactomes in the peripheral nervous 
system will soon help elucidate the role of this channel 
in  vivo. At this stage of the research, it seems safe to 
assume that the thermosensitive properties of TRPC5 are 
involved in the transduction of painful cold in the teeth 
[6], the detection of ambient cold with threshold at body 
temperature [4], and in the development of cold allodynia 
in a specific animal model of neuropathic pain [5]. Still, 
there are more questions than answers. Some of them 
can be directly formulated on the basis of the information 
resulting from this review article: How the STIM1-Orai1 
cold transduction mechanism may affect TRPC5 in sen-
sory and sympathetic neurons? Do neurons use TRPC5 
to signal extreme cold, or does this channel function as 
an effector of the STIM1-Orai1 mechanism that operates 
at a local level without initiating a sensation propagating 
to consciousness? To what extent do different pro-algesic 
lipids, such as lysophosphatidic acid or lysophosphati-
dylcholine [100, 101], affect the temperature-dependent 
activation of TRPC5? Why is more significant activation 
of TRPC5 observed upon warming-after-cooling (i.e., 
upon removal of a cold stimulus) than when cold is held 
constant? Is cold-dependent activity of the C-terminally 
EGFP tagged mouse TRPC5 different from untagged 
human TRPC5? And how is the intrinsically disordered 
C-terminus of TRPC5 involved in cold-dependent gating 
of the channel? In a study by Buijs et  al., the functional 
expression of TRPC5 in cultured DRG neurons corre-
lated poorly with the sensitivity to a cold ramp from 32 °C 
to 4  °C [80]. The presence of TRPC5 was mainly tested 
by rosiglitazone (100 µM; a thiazolidinedione used as an 
antidiabetic drug). What would the functional profile of 
neurons look like if a more specific TRPC5 activator was 
used or the order of application of TRPM8, TRPA1 and 
TRPC5 agonists were reversed or combined with cold?

To stimulate further discussion and spark further 
research to decipher the exact mechanisms how TRPC5 
contributes to cold transduction, we propose a hypothet-
ical model for its possible role in the context of currently 
known mechanisms described in somatosensory and/or 
sympathetic neurons (Fig. 4).
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