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ABSTRACT
Background From the pathway perspective, 
metabolites have the potential to improve knowledge 
about the aetiology of psychiatric diseases. Previous 
studies suggested a link between specific blood 
metabolites and mental disorders, but some Mendelian 
randomisation (MR) studies in particular are insufficient 
for various reasons.
Objective This study focused on bias assessment 
due to interdependencies between metabolites and 
psychiatric mediation effects.
Methods In a multistep framework containing network 
and multivariable MR, direct effects of 21 mutually 
adjusted metabolites on 8 psychiatric disorders were 
estimated based on summary statistics of genome- wide 
association studies from multiple resources. Robust 
inverse- variance weighted models were used in primary 
analyses. Several sensitivity analyses were performed 
to assess different patterns of pleiotropy and weak 
instrument bias. Estimates for the same phenotypes from 
different resources were pooled using fixed effect meta- 
analysis models.
Findings After adjusting for mediation effects, 
genetically predicted metabolite levels of six metabolites 
of lipid, amino acid and cofactors pathways were directly 
associated with overall six mental disorders (attention- 
deficit/hyperactivity disorder, bipolar disorder, anorexia 
nervosa, depression, post- traumatic stress disorder and 
schizophrenia). Point estimates ranged from −0.45 (95% 
CI −0.67; −0.24, p=1.0×104) to 1.78 (95% CI 0.85; 
2.71, p=0.006). No associations were found with anxiety 
and suicide attempt.
Conclusions This study provides insights into new 
metabolic pathways that seems to be causally related to 
certain mental disorders.
Clinical implications Further studies are needed to 
investigate whether the identified associations are effects 
of the metabolites itself or the biochemical pathway 
regulating the metabolites.

BACKGROUND
Worldwide, around 970 million people live with 
a mental disease, and about 50% of people will 
develop a mental disorder at some point in their 
lives.1 Furthermore, mental disorders account for a 
high percentage of the total global burden of disease 
in adults.2 Although various theories have been 
put forward, the exact pathophysiology of most 
psychiatric diseases remains unclear. Subsequently, 

inaccurate diagnostic criteria and an incomplete 
understanding of the underlying pathophysiology 
pose a major challenge in the treatment of psychi-
atric disorders.3 In addition, psychiatric disorders 
such as depression are often accompanied by other 
psychiatric diseases at the same time or during the 
course of the illness.4 A recent Mendelian rando-
misation (MR) study from our research group 
could, for example, show that attention- deficit/
hyperactivity disorder (ADHD) serves as an early 
indicator of other mental disorders due to shared 
psychopathologies or is an independent risk factor 
for several other common psychiatric disorders.5 
Thus, a better understanding of psychiatric diseases 
in terms of underlying pathogenesis could lead to 
more advanced and targeted treatment options.

Metabolomics have the potential to improve 
knowledge of the aetiology of psychiatric disorders 
by identifying new pathways to diseases and to iden-
tify potential biomarkers.6 The blood metabolome, 
which is influenced by a variety of endogenous and 
exogenous factors, provides a snapshot of human 
physiology and reflects aspects of human health 
and diseases.7 Observational studies and systematic 
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reviews suggested that metabolic abnormalities are involved in 
the pathophysiology of psychiatric disorders.6 More recently, 
some MR studies were conducted to identify metabolites, which 
could play an aetiological role in psychiatric diseases.8 9 However, 
most of these studies focused on single psychiatric diseases8 or 
used MR approaches9 that are not able to satisfy appropriately 
the non- negligible MR assumption of horizontal pleiotropy. A 
key point is that many of the genetic instruments are associated 
with more than one metabolite. Ignoring such associations by 
performing univariable MR analyses leads to biased estimates 
(often overestimation).

Objective
The present study demonstrates the need for consideration of 
these associations and estimates lifetime effects while accounting 
for dependencies between all metabolites and considering poten-
tial mediation effects using the multivariable MR approach, 
including a recently proposed method to address weak instru-
ment bias.

METHODS
Study design: stepwise MR
MR is an instrumental variable framework for assessing causal 
effects of modifiable risk factors on health outcomes. By using 
genetic variants as instruments randomly allocated at the concep-
tion according to Mendel’s laws (segregation and independent 
assortment) and thus independent of any confounding factors 
of an exposure- outcome association, MR is a natural equivalent 
to an randomized controlled trial (RCT). One of the key chal-
lenges of MR is horizontal pleiotropy. Briefly, an instrument is 
not allowed to affect an outcome through any other path than 
through the exposure of interest. However, it is hardly possible to 
find genetic variants that are uniquely associated with a specific 
metabolite but not with other metabolites (online supplemental 
figure 1). As a consequence, the resulting estimate comprises a 
direct and an indirect effect, that is, an effect that can be directly 
attributed to a particular metabolite and an effect of at least one 
other metabolite (another path). We particularly aimed to assess 
the direct effects. Thus, to get unbiased estimates, horizontal 
pleiotropy must be considered. Multivariable MR (MVMR) is 
an extension to the standard MR and is able to estimate direct 
effects of each metabolite on the respective psychiatric outcome. 
We performed two- sample MVMR analyses with all available 
metabolites in one model per outcome to account for mutually 
interdependencies between them (online supplemental figure 2). 
In order to obtain an unbiased test of a causal relationship, three 
core assumptions defining an instrument have to be met in the 
multivariable setting. A genetic variant must be
1. Associated with at least one of the exposures (relevance 

assumption).
2. Independent of all confounding factors of the exposure- 

outcome associations (independence assumption).
3. Independent of the outcome given a set of exposures (ie, not 

affect the outcome directly, exclusion restriction assumption).
It is known that some psychiatric disorders do not occur inde-

pendently of each other and may therefore lie on a pathway 
between metabolites and another psychiatric disease. Thus, 
a three- step procedure was performed to identify and assess 
potential mediation mechanisms. If a metabolite was found to 
be associated with at least two psychiatric disorders in the first 
step, a network MR was used in a second step to identify paths 
between the affected outcomes. In this context, univariable MR 
was applied to determine any association between all possible 

combinations of outcomes related to a specific metabolite. The 
third step consisted of another multivariable MR that included 
the potential mediators as additional covariates to obtain unbi-
ased direct effects adjusted for the mediation component.

Data collection
Basically, data sources were selected with regard to the two- 
sample setting in order to avoid sample overlaps between 
exposure and outcome datasets. Where possible, datasets were 
restricted to genetic variants with a minor allele frequency of 
more than 0.01 and an imputation information score of at least 
0.8.

For metabolites, summary data were derived from a genome- 
wide association study (GWAS) by Shin et al.10 This GWAS inves-
tigated associations of 453 different metabolites in human blood 
and comprised up to 7824 participants from two distinct Euro-
pean population studies (KORA and TwinsUK).11 The cohort 
composition was described in online supplemental table 1.

Data for the following eight psychiatric disorders were 
taken from multiple sources: ADHD, anxiety, bipolar disorder, 
anorexia nervosa, depression, post- traumatic stress disorder 
(PTSD), schizophrenia and at least one suicide attempt. We 
included these psychiatric disorders to build on our earlier study 
in which we identified common psychopathologies between 
some of them.5 All phenotypes were selected with regard to data 
quality and appropriateness to the study design and research 
question. The iPSYCH project and the Psychiatric Genomics 
Consortium (PGC) provide summary level data based on clearly 
defined psychiatric phenotypes diagnosed by psychiatrists 
(ICD10 (international classification of diseases 10th revision) 
and DSM (diagnostic and statistical manual of mental disor-
ders)). Basically, the data from iPSYCH project and the PGC 
are of high quality, as cases were identified using register data 
(Danish Psychiatric Central Research Register that is linked 
with the Danish National Patient Register), thus minimising 
selection bias. Further information on the cohort compositions 
and ICD classifications of the included GWASs can be found in 
online supplemental table 1. Replication datasets came from the 
FinnGen database including self- reported cases from the ninth 
wave in the Finnish cohort.12 However, no comparable dataset 
for bipolar disorders could found in the FinnGen database. In 
addition, as the GWAS meta- analysis for depression already 
included the FinnGen cohort, the corresponding replication 
dataset was not included in our analyses. Dataset characteristics 
of the psychiatric phenotypes used can be found in table 1.

Instrument selection
With the view on the relevance assumption, single nucleotide 
polymorphisms (SNPs) associated with a specific metabolite 
were selected as instruments for the analyses based on the strict 
genome- wide significance threshold of p=5×10−8. Dependent 
SNPs in LD (linkage disequilibrium) in a window of 10 000 kb 
were pruned using a clumping threshold of r2=0.001 within the 
PLINK clumping procedure. Regarding numerical behaviour, 
only metabolites associated with more than three genetic variants 
were considered as exposures. Palindromic SNPs with interme-
diate allele frequencies were removed as part of the multivariable 
harmonisation process. Steiger filtering was applied including 
the MR- Steiger directionality test for all individual SNPs in each 
exposure- outcome association to investigate the correct causal 
direction by statistically comparing the explained variances of 
the SNP- exposure and SNP- outcome associations. As a result, 
138 SNPs associated with a total of 21 metabolites were selected 
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as instruments for the MVMR analyses (online supplemental 
tables 2 and 3).

Statistical analyses
Multivariable MR
Genetic correlations between metabolites were taken directly 
from the original study10 and were used for calculating both 
the conditional F- statistics and conditional Q- statistics to quan-
tify the instrument strength and instrument validity (due to the 
exclusion restriction assumption), respectively.

To account for pleiotropic pathways of the non- strictly inde-
pendent exposures, all 21 metabolites were mutually adjusted, 
by using them simultaneously in the MVMR. The robust 
inverse- variance weighted (IVW) multiplicative random effects 
model was used as the principal regression method, which has 
the highest statistical power in case of either no pleiotropy or 
balanced pleiotropy (ie, average pleiotropic effect of 0) and 
allow also a small number of invalid instruments.13 To assess the 
plausibility of the non- testable assumptions (independence and 
exclusion restriction), several pleiotropy robust methods were 
performed as a part of sensitivity analyses.

Multivariable MR- Egger with random effects accounts for 
directional pleiotropy if it is uncorrelated with the magnitude 
of the SNP- exposure association (InSIDE assumption).14 If up 
to 50% of genetic instruments are invalid, the weighted median 
approach provides a consistent estimate.13 The multivariable 
Lasso procedure identifies potential outliers using penalisation 
and applies the multivariable IVW method to the set of valid 
genetic instruments.13 Since most of the calculated conditional 
F- statistics were below the widely proposed threshold of 10 
(see the Findings section), indicating SNPs weakly associated 
with a particular metabolite conditional on all other metabo-
lites, we finally performed the recently proposed multivari-
able adjusted debiased IVW (adIVW) model.15 This regression 
method adjusts for many weak instruments and can handle 
exposures with different degrees of instrument strength. 
Furthermore, it provides an own strength parameter λmin as 
the minimum eigenvalue of the sample IV strength matrix. 
Directional pleiotropy and substantial heterogeneity were 
assessed by applying the multivariable MR- Egger intercept test 
and testing the conditional Q- statistics on an α level of 0.05, 
respectively.

Network MR and mediation analysis
To identify potential mediators, between- outcome associations 
related to a particular metabolite were investigated using univari-
able MR. The framework included an iterative version of an IVW 
regression with modified second- order weights to emphasise 
and eliminate outliers. The implementation, that is, instrument 
selection and sensitivity analyses (involving MR- Egger, weighted 
median, weighted mode and MR- RAPS as many weak instru-
ment analysis), was conducted analogously to the multivariable 
case. Evidence for directional pleiotropy and heterogeneity was 
assessed by testing the MR- Egger intercept and Cochran’s and 
Ruecker’s Q- statistics, respectively.

To obtain the final direct effects, psychiatric disorders, which 
were categorised as potential mediators based on α=0.05, were 
used subsequently as additional covariates in a multivariable MR.

Finally, based on the PGC/iPSYCH and FinnGen cohorts, 
pooled meta- analysis estimates were calculated using IVW fixed 
effect models. The inflation of the type I error due to multiple 
testing was considered by the FDR adjustment of reported p 
values in main analyses and Bonferroni adjustment in media-
tion analyses. Estimates represent the direct lifetime effects of 
genetically predicted metabolite levels on a particular psychiatric 
disorder on the log- OR scale.

Data processing and statistical analyses were conducted in R 
(V.4.3.2). The packages TwoSampleMR (V.0.5.6), Mendelian-
Randomization (V.0.9.0), MVMR (V.0.4),  mr. divw (V.0.1.0) and 
meta (V.7.0.0) were used for MR and meta- analyses. For data 
processing, the packages  data. table (V.1.15.0) and dplyr (V.1.1.4) 
were used. Figures were created with ggplot2 (V.3.5.0).

Reporting follows the STROBE- MR Statement (Strengthening 
the Reporting of Observational Studies in Epidemiology using 
Mendelian Randomization).

Findings
Regarding the MR- Steiger directionality test, all 138 SNPs in all 
models fulfilled the assumption of a valid causal direction. Under 
consideration of the correlation structure between metabolites, 
the conditional F- statistics ranged from 1.8 to 18.0, with a mean 
F- statistic of 4.6 (online supplemental figure 3). The model- 
specific strength parameters λmin ranged between 2.1 and 6.7 
(online supplemental figure 3). In the following, meta- analysis 
estimates (reported on the log- OR scale) represent the lifetime 
effects of different metabolite levels on the risk of psychiatric 
disorders.

Multivariable MR
The strongest positive association in terms of point estimate 
was found for genetically predicted tryptophan levels and the 
genetic liability to schizophrenia (β=1.78; 95% CI 0.85; 2.71; 
PFDR=0.006) (figure 1). However, there was a numerical issue 
that caused the robust IVW estimate for the FinnGen cohort 
not to be calculated (online supplemental figure 4). The esti-
mates in the FinnGen cohort generally had wide CIs compared 
with the estimates in the PGC cohort (online supplemental 
figure 4). Although directional pleiotropy was detected in both 
the main and the replication analyses (online supplemental 
table 4), the pooled MR- Egger estimate confirmed the strong 
association (online supplemental figure 4). The same states for 
meta- estimates of both the MR- Lasso method after removing 11 
outlier- SNPs due to notable heterogeneity in the PGC cohort 
and the adIVW method with regard to the low exposure- 
specific conditional F- statistic as well as outcome- specific λmin of 
about 4 representing the presence of weak instruments (online 

Table 1 Dataset characteristics of psychiatric disorders used as 
outcomes in the two- sample multivariable Mendelian randomisation 
analyses

Outcome
Cases (PGC/
iPSYCH)

Controls (PGC/
iPSYCH)

Cases 
(FinnGen)

Controls 
(FinnGen)

ADHD 38 691 275 986 2340 371 17

Anxiety 7016 10 294 24 662 337 577

Bipolar disorder 41 917 371 549

Anorexia nervosa 16 992 55 525 1897 366 876

Depression 294 322 741 438

PTSD 23 185 151 309 2282 337 577

Schizophrenia 53 386 77 258 6515 364 160

Suicide attempt 6024 44 240 263 377 014

References to original genome- wide association studies provided by the PGC and 
iPSYCH consortia can be found in online supplemental table 7.
ADHD, attention- deficit/hyperactivity disorder; PGC, Psychiatric Genomics 
Consortium; PTSD, post- traumatic stress disorder.
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supplemental figure 5). Therefore, considering different pleiot-
ropy patterns, all robust methods supported the evidence of a 
positive relationship.

A similar situation was observed for the positive association 
between genetically predicted X- 12728 levels and the occur-
rence of depression (β 0.01; 95% CI 0.01; 0.02; PFDR=0.006), 
where despite detected heterogeneity (PQ 0.004), all pooled 
pleiotropy- robust estimates confirmed the relationship (figure 1, 
online supplemental figure 4, online supplemental table 4).

Analogously, the associations of genetically predicted levels 
of hexanoylcarnitine and N- methyl pipecolate with genetic 
susceptibility to bipolar disorder (β=0.33; 95% CI 0.19; 0.47; 
PFDR=4×10−4; F- statistic=5.8; λmin=6.6 and β=−0.11; 95% CI 
−0.15; −0.08; PFDR=2×10−7; F- statistic=17.8, respectively) 
(without detected heterogeneity) were consistently confirmed 
assuming the different pleiotropy scenarios. The remaining asso-
ciations presented in figure 1 were supported by consistent but 
less strong estimates from sensitivity analyses (without indica-
tion of substantial heterogeneity). No further associations could 
be detected (online supplemental figure 5 and 6).

Mediation analyses
With regard to the results from multivariable analyses (shown in 
figure 1), associations between the outcomes bipolar disorder, 
PTSD and anorexia nervosa had to be assessed. Network MR 
revealed bipolar disorder as a potential mediator on a path 
between hexanoylcarnitine and PTSD as well as N- methyl 
pipecolate and anorexia nervosa, respectively, as it was positively 
associated with both outcomes (figure 2, online supplemental 

figure 7). For these associations, all pleiotropy- robust approaches 
led to consistent estimates, without evidence for considerable 
heterogeneity (online supplemental figure 7, online supple-
mental table 5).

Adding bipolar disorder as an additional parameter to the 
multivariable models and combining the effect estimates in 
subsequent meta- analyses resulted in a slightly decreased nega-
tive direct effect for N- methyl pipecolate and anorexia nervosa 
(β=−0.10; 95% CI −0.16; −0.03; PBonferroni=0.014) and an even 
stronger negative association between hexanoylcarnitine and 
PTSD (β=−0.45; 95% CI −0.67; −0.24; PBonferroni=1×10−4) 
(figure 3). No substantial heterogeneity could be observed in any 
of the multivariable models (online supplemental table 6).

DISCUSSION
The present stepwise two- sample MR study identified six circu-
lating blood metabolites associated with psychiatric disorders. 
We found evidence for an association between genetically 
predicted tryptophan levels and schizophrenia, and for an asso-
ciation between butyrylcarnitine as well as hexanoylcarnitine 
and PTSD. Hexanoylcarnitine and N- methyl pipecolate were 
related to bipolar disorder; N- methyl pipecolate was also asso-
ciated with anorexia. Furthermore, we identified a relationship 
between O- methyl- ascorbate with ADHD, and between the 
unknown metabolite X- 12728 and depression.

The essential amino acid tryptophan plays an important role in 
protein biosynthesis in humans.16 Tryptophan cannot be synthe-
sised endogenously by the human body and must therefore be 
obtained from external sources. Around 90% of the tryptophan 

Figure 1 Effect estimates and 95% CIs on the log- OR scale derived from meta- analyses based on multivariable Mendelian randomisation analyses 
considering 21 mutually adjusted metabolites in two cohorts. Only notable associations between genetically predicted metabolite levels and the 
genetic liability to psychiatric disorders are shown. P values were FDR (false discovery rate) adjusted. ADHD, attention- deficit/hyperactivity disorder; 
PTSD, post- traumatic stress disorder.
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circulates bound to albumin in the blood, while the remaining 
10% is present in free form in the plasma.16 Only tryptophan 
in its free form is available for tissue uptake and can cross the 
blood- brain barrier. Once in the central nervous system, trypto-
phan acts as a precursor for several metabolic pathways, such as 
the synthesis of the neurotransmitter serotonin.16 However, the 
majority of free tryptophan is degraded along the kynurenine 
pathway, producing a number of metabolites that are involved 
in various metabolic functions in the body. Tryptophan is the 
biochemical precursor of nicotinamide adenine dinucleotide, 
which acts as a hydrogen cache for mitochondria and thus 
represents an important cofactor in cellular energy metabolism.17

Studies have shown that imbalances in tryptophan metabolism 
lead to neurodegenerative diseases18 and there is evidence that 
plasma tryptophan and its degradation products play a role in 
the development of schizophrenia.19 Prior research found that 
dysregulation of neuroprotective kynurenic acid in the central 
nervous system is associated with schizophrenia.20 In contrast 
with the recently published MR studies,9 21 the present study 
found a positive association between the genetically predicted 
blood metabolite tryptophan and schizophrenia, confirming 
previous results of a systematic review that tryptophan metab-
olism plays an important role in neuropsychiatric disorders, 
among other things.16

We identified an inverse relationship between the metabolites 
butyrylcarnitine and hexanoylcarnitine and PTSD. Both metab-
olites belong to the acylcarnitines, which are the product of the 
conjugation of carnitine with acyl- coenzyme A, which enables 
the transport of fatty acids across mitochondrial membranes. 
Medium- and long- chain fatty acids are mainly involved in cell 
metabolism, but the role of medium- chain fatty acids in gluco-
neogenesis and lipogenesis or in mitochondrial function and 
metabolism is still unclear.22 Disturbances in fatty acid oxidation 
can lead to mitochondrial dysfunction and consequently have 
an impact on the energy supply to the brain.23 It is therefore 
possible that acylcarnitines are involved in metabolic regulatory 
pathways that affect cognitive status and promote neurolog-
ical disorders. PTSD animal models resulted in mitochondrial 
dysfunction, which includes dysregulation of β-oxidation of 
fatty acids in addition to dysregulation of a number of other 
metabolic pathways.24

For bipolar disorders, we also identified a positive relationship 
with blood hexanoylcarnitine. Furthermore, N- methyl pipeco-
late, which belongs to the xenobiotic pathway and the bacterial/
fungal subpathway,25 was inversely associated with the disease. 
In addition, N- methyl pipecolate was also inversely related to 
anorexia. So far, N- methyl pipecolate has not been previously 
examined very extensively. One very recent metabolome- wide 

Figure 2 Graphical summary of study findings from network and multivariable Mendelian randomisation analyses. Blue arrows denote positive 
associations and red arrows denote negative associations. ADHD, attention- deficit/hyperactivity disorder; PTSD, post- traumatic stress disorder.

Figure 3 Direct effect estimates and 95% CIs on the log- OR scale derived from meta- analyses based on multivariable Mendelian randomisation 
analyses considering the mediation effect of bipolar disorder on the relationship of the metabolites hexanoylcarnitine and N- methyl pipecolate on 
post- traumatic stress disorder (PTSD) and anorexia nervosa, respectively. P values were Bonferroni- adjusted.
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MR study reported risk effects of plasma N- methyl pipecolate 
on anxious personality.25 Prior systematic reviews and MR 
studies investigating the association between metabolites and 
bipolar disorders did not identify carnitines or N- methyl pipeco-
late as related to the disease.6 8 9 21 To date, there are no studies 
that have investigated a link between N- methyl pipecolate and 
anorexia. Therefore, studies of this metabolite or its pathway 
with regard to bipolar disorder, anorexia and other psychiatric 
disorders are warranted.

The metabolite O- methyl ascorbate was positively associated 
with ADHD in our analysis. O- methyl ascorbate occurs naturally 
as a metabolite of ascorbic acid and has relatively low cytotox-
icity. At the same time, it has strong antioxidant stress response 
capabilities.26 So far, there are no investigations, which reported 
an association between O- methyl ascorbate—possibly a proxy 
for vitamin C levels—and ADHD. Interestingly, there are studies 
that investigated the role of vitamin C in ADHD and hypothe-
sised that vitamin C deficiency in the brain goes along with an 
impaired brain development in infants.27 Changes in oxidative 
metabolism are considered an important factor in the develop-
ment of ADHD.28 Ascorbic acid is an important redox modu-
lator in the brain and thus protect neurons against oxidative 
lesions.29 Furthermore, it serves as a cofactor in the regulation 
of neurotransmitters.

Some prior studies examined the association between serum 
metabolites and major depression. Using an untargeted whole- 
metabolome approach, a recent study from a large Dutch clinical 
cohort found that a wide range of metabolites was dysregulated 
in depression indicating altered lipid metabolism with downreg-
ulation of long- chain fatty acids and upregulation of lysophos-
pholipids.30 Two prior MR studies on this issue also identified 
some genetically predicted metabolites from the carnitine metab-
olism and fatty acid metabolism related to major depression.9 21 
However, the unknown metabolite X- 12728, which was related 
to major depression in the present investigation, was so far not 
identified as related to major depression.

Strengths and limitations
In this study, we focused on robust and unbiased effect esti-
mates in the context of multiple resources, weak instruments, 
horizontal pleiotropy and psychiatric mediation mechanisms. 
Compared with most previous MR studies on this topic, we used 
a stringent threshold of 5×10−8 instead of the frequently used 
relaxed threshold of 1×10−5, which may violate the relevance 
assumption and introduce weak instrument bias. Multivariable 
models, which were mutually adjusted for all assessed and partly 
dependent metabolites, prevented bias regarding horizontal plei-
otropy. A network MR revealed associations between psychi-
atric disorders and in this way potential mediation mechanisms, 
which were considered in further multivariable MR analyses. 
Finally, we combined the results based on two unrelated Euro-
pean cohorts (PGC/iPSYCH and FinnGen) in a meta- analysis to 
strengthen the evidence.

Some main limitations are to be named. Despite the strict 
threshold of 5×10−8 within the instrument selection process, 
the conditional F- statistics for several genetic instruments 
were below 10, indicating a potentially weak instrument bias. 
However, the results of the recently proposed adIVW method, 
which is robust to weak instruments and large heterogeneity 
in instrument strength, consistently supported the findings. In 
addition, blood metabolites (influenced by several factors) are 
just a snapshot of a subject’s condition at the time of examina-
tion. In our analyses, we assumed that the estimates are not 

distorted on average. Furthermore, we estimated lifetime effects 
and could therefore not consider possible fluctuations at specific 
periods of life. The GWASs for psychiatric disorders based on 
meta- analyses that often combine registry data and observational 
studies, so that a selection bias cannot be completely ruled out.

Clinical implications
In this study, we were able to identify some new blood metabo-
lites that seems to be causally related to certain psychiatric disor-
ders. However, it is unclear whether these metabolites directly 
influence disease risk. Rather, the identified metabolites could 
serve as indicators of the activity of certain biological metabolic 
pathways that are causally linked to the disease in question. 
Further studies are needed to investigate whether the identified 
associations are effects of the metabolites itself or the biochem-
ical pathway regulating the metabolite.
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