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Aims Several algorithms can differentiate inferior axis premature ventricular contractions (PVCs) originating from the right side 
and left side on 12-lead electrocardiograms (ECGs). However, it is unclear whether distinguishing the origin should rely sole-
ly on PVC or incorporate sinus rhythm (SR). We compared the dual-rhythm model (incorporating both SR and PVC) to the 
PVC model (using PVC alone) and quantified the contribution of each ECG lead in predicting the PVC origin for each cardiac 
rotation.

Methods 
and results

This multicentre study enrolled 593 patients from 11 centres—493 from Japan and Germany, and 100 from Belgium, which 
were used as the external validation data set. Using a hybrid approach combining a Resnet50-based convolutional neural 
network and a transformer model, we developed two variants—the PVC and dual-rhythm models—to predict PVC origin. 
In the external validation data set, the dual-rhythm model outperformed the PVC model in accuracy (0.84 vs. 0.74, respect-
ively; P < 0.01), precision (0.73 vs. 0.55, respectively; P < 0.01), specificity (0.87 vs. 0.68, respectively; P < 0.01), area under 
the receiver operating characteristic curve (0.91 vs. 0.86, respectively; P = 0.03), and F1-score (0.77 vs. 0.68, respectively; 
P = 0.03). The contributions to PVC origin prediction were 77.3% for PVC and 22.7% for the SR. However, in patients 
with counterclockwise rotation, SR had a greater contribution in predicting the origin of right-sided PVC.
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Conclusion Our deep learning–based model, incorporating both PVC and SR morphologies, resulted in a higher prediction accuracy for 
PVC origin, considering SR is particularly important for predicting right-sided origin in patients with counterclockwise 
rotation.
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What’s new?

• It is unclear how much cardiac rotation affects the 12-lead electro-
cardiograms (ECGs) of premature ventricular contraction (PVC) 
from the right or left ventricle.

• This multicentre study, utilizing a hybrid approach combining a 
Resnet50-based convolutional neural network and a transformer 
model, aims to predict the PVC origin.

• It compared the dual-rhythm model [incorporating both PVC and 
sinus rhythm (SR) to the PVC model (using PVC alone)] and 

quantified the contribution of each ECG lead in predicting the PVC 
origin for each cardiac rotation.

• The dual-rhythm model demonstrates higher accuracy in origin pre-
diction than the PVC model.

• The contributions to PVC origin prediction were 77.3% for PVC and 
22.7% for the SR.

• From the evaluation of the contribution of each ECG lead, consider-
ing cardiac rotation is particularly important for predicting right ven-
tricle origin in patients with counterclockwise rotation.
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Introduction
Inferior axis idiopathic premature ventricular contractions (PVCs), ori-
ginating from various sites including the right or left ventricular outflow 
tracts (RVOTs/LVOTs), aortic cusp, pulmonary artery, mitral annulus, 
papillary muscle, and corresponding epicardium, are the most common 
ventricular arrhythmias.1 However, predicting their origin using a 12-lead 
electrocardiogram (ECG) remains challenging. Catheter ablation is an 
effective treatment for patients with symptoms or worsened cardiac 
function owing to frequent PVCs.2–4 Identifying the anatomical origin 
of PVCs before catheter ablation is crucial for determining ablation 
strategies, reducing procedural time, and preventing complications.5

Several algorithms have been proposed to differentiate between the 
right-sided and left-sided origins of arrhythmias using 12-lead ECGs.6–18

However, due to the close and complex anatomy of the outflow tracts 
and the influence of cardiac rotation, these algorithms have limita-
tions.19 In some algorithms, the ECG during sinus rhythm (SR) is utilized 
to predict the origin by considering cardiac rotation; however, its ef-
fectiveness is debatable.11,12,17

The global interest in artificial intelligence (AI)’s role in cardiology 
continues to grow, as highlighted by recent reviews that emphasize 
its potential in ECG analysis.20–22 Several studies have reported the 
AI-based models that can simultaneously evaluate data from multiple 
leads to predict PVC origin, offering a more efficient and accurate diag-
nostic approach.23–27 However, these models do not consider cardiac 
rotation, suggesting potential avenues for improvement.

In this study, we assessed the superiority of the dual-rhythm model 
(incorporating both SR and PVC) to the PVC model (using PVC alone) 
and quantified the contribution of individual ECG leads in predicting 
PVC origin for each cardiac rotational position.

Methods
Patient selection and data collection
In this study, we analysed patients who underwent catheter ablation for 
drug-resistant inferior axis PVCs. A total of 593 patients admitted to 11 cen-
tres in Germany, Japan, and Belgium from 2010 to 2022 were enrolled in our 
study. This included an external validation data set of 100 patients from 
Belgium. The pre-operative 12-lead ECG data, including SR and PVC, were 
analysed. Patients with inferior axis PVCs identified by electroanatomic map-
ping and successfully ablated were included, while patients with implantable 
cardiac devices or structural heart disease were excluded. Details of data col-
lection, including the number of samples from each facility, are provided in 
Supplementary material online, Table S1. For our analysis, 290 cases of the 
12-lead ECG data were exported in digital format from standard ECG ma-
chines with a 500 Hz sampling rate and 1.25 μV resolution. The remaining 
303 cases were obtained in non-digital formats, such as PDF files, and were 
manually traced using a pen tablet and Adobe Photoshop (version 24.1, 
Adobe Inc., San Jose, CA, USA) (see Supplementary material online, 
Figure S1). Both digital and manually traced data were standardized to a sam-
pling rate of 500 Hz, converted to mV, and subsequently transformed into ma-
trix data, ensuring uniformity and consistency across all datasets. The study 
was approved by the Kobe University Medical Ethical Committee (ethical ap-
proval number: B210168).

Electrocardiogram analysis
Cardiac rotation was assessed based on the transitional zone (TZ) during 
SR, defined as the position of the precordial leads in which the amplitudes 
of the R-and S-waves were equal. Normal TZ during SR was defined as the 
range from leads V3 to V4, and based on TZ position, patients were classi-
fied into four groups: Group 1 (G1; counterclockwise rotation, CCWR) if 
TZ < V3, Group 2 (G2; normal) if V3 ≤ TZ ≤ V4, Group 3 (G3; clockwise 
rotation, CWR) if V4 < TZ, and Group 4 (G4) if there was right bundle 
branch block (RBBB) or left bundle branch block. The TZ of the PVC 
was also analysed; the average TZ score was calculated using a grading 
system with 0.5-point increments according to the R wave transition site 

(e.g. TZ < V1 = 0.5, V1 = 1, V1–V2 = 1.5, and V2 = 2 points).10 The previ-
ously reported algorithm was utilized as a conventional method to calculate 
the V2 transition ratio based on the R- and S-wave amplitudes in lead V2 
and compared the TZ during SR and PVC.11

Mapping and ablation protocol
The catheter ablation was performed without sedation using electroana-
tomic mapping systems, such as CARTO3 (Biosense Webster, Diamond 
Bar, CA, USA), Ensite (Abbott, St. Paul, MN, USA), and Rhythmia 
(Boston Scientific, Marlborough, MA, USA). Intracardiac echocardiography 
was performed under the direction of the physician. A 6 Fr quadripolar 
catheter was inserted through the femoral vein and placed through the 
atrioventricular valve to map the largest His potential. A standard 10-pole 
diagnostic catheter was positioned in the coronary sinus, and in selected 
cases, a 2 Fr catheter was inserted into the anterior interventricular vein. 
Pace and activation mapping were performed with a 7 Fr, 4 mm-tip non- 
irrigated or a 7.5 Fr, 3.5 mm-tip irrigated ablation catheter in the right 
and left ventricles and coronary sinus to locate the arrhythmia origin. On 
observing few PVCs at the beginning of the electrophysiological study, in-
duction was attempted by burst pacing from the RVOT or RV apex with 
or without isoproterenol infusion and in selected cases with phenylephrine 
bolus. Pace mapping was performed at the maximum output (1.0 ms, 20 V), 
and the output was decreased until the pacing could not capture the myo-
cardium. The ablation site was determined by matching pace mapping (>11/ 
12 leads), the earliest bipolar ventricular electrogram preceding QRS onset, 
with the initial QS morphology for the unipolar ventricular electrogram 
during PVCs. If a suitable ablation site in the right ventricle was not located, 
or the ablation failed to abolish the arrhythmia, further mapping of the left 
ventricle and aortic cusps was performed via a retrograde aortic approach. 
The radiofrequency current was delivered with an ablation catheter, with a 
power setting of 25–40 W and 43°C temperature limit. Contact force 
sensing catheters were used, and the operators targeted a 5–30 g contact 
force. If the PVCs disappeared or the frequency of arrhythmias diminished 
after the first 30 s of ablation, energy was delivered continuously for 60 s. 
Ablation success was defined as the absence of spontaneous or induced 
PVCs 30 min after the last energy delivery, confirmed by continuous cardiac 
telemetry over the subsequent 24 h of inpatient care. The origin of PVCs 
was determined based on the prematurity of QRS onset and response to 
ablation. When these were not in concordance, the response to ablation 
was considered the decisive factor. The group in which the prematurity 
of QRS onset and the response to ablation were concordant was termed 
the concordance group, while the group in which they were not concord-
ant was termed the non-concordance group. Systemic anticoagulation was 
achieved with intravenous heparin only whenever left-sided mapping or ab-
lation was performed, targeting a minimum activated clotting time of 350 s.

Data pre-processing
Data pre-processing involved splitting patient data into three distinct data-
sets: training data set (60%, 295 patients), validation data set (20%, 99 pa-
tients), and test data set (20%, 99 patients). Additionally, an external 
validation data set consisting of 100 patients was included to further assess 
the generalizability of the model. For each ECG, we cropped a single heart-
beat from the PVC and SR morphologies, centring the crop around the 
peak of the QRS morphology with a total duration of 0.8 s. Given a sampling 
rate of 500 Hz, the resulting matrix data for each sample had dimensions of 
(12, 400). When both the SR and PVC data were input into the model, 
the two sets of 12-lead ECGs were combined, resulting in a matrix size 
of (24, 400). Calibration was performed with a baseline set at zero, followed 
by augmentation including the addition of random noise uniformly distrib-
uted up to 0.1 mV, ensuring robustness in our data.

Model development and training
Our model development was centred around a hybrid approach, combining 
a 1D Resnet50 convolutional neural network (CNN) model and a trans-
former model.28,29 The Resnet50 model served as an embedding model 
for each of the 12 leads in the ECG to extract a 256-dimensional feature 
vector representing the distinct features of each lead. Data from each 
lead of the 12-lead ECGs were input into a common Resnet50 model shar-
ing the same weights. These features were then fed into a transformer 
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encoder, with the class token output being further processed through a 
multilayer perceptron to determine the PVC origin. The methodology 
for this part is identical to that of the vision transformer model.30 We de-
veloped two variants of this model: the PVC model using only PVC 12-lead 
ECG data and the dual-rhythm model incorporating both PVC and SR 
12-lead ECGs (totalling 24 leads). The transformer model parameters 
were finely tuned with a batch size of 64 and a learning rate varying 
log-uniformly from 1e−3 to 1e−7 using the Adam optimizer. Training 
and validation data sets were employed for parameter tuning to identify 
the best models. The top five models were selected based on minimal val-
idation losses. These were integrated to construct an ensemble model using 
soft voting for outcome prediction. Finally, the ensemble model was evalu-
ated using a test data set.

Decision rationale visualization
Visualizing the decision rationale in our models was a two-phase process. In 
the first phase, we extracted the attention layers from the transformer- 
based model that inputs both pre- and post-ECG, identifying which of 
the 24 leads the model focused on. In the second phase, we employed 
the GradCAM method in the Resnet50 model to obtain an activation 
map from the final gradient of the CNN layer.31 This map was then com-
bined with the weights of each lead identified in the first phase to produce 
a comprehensive heat map.

Statistical analysis
We used precision, recall, specificity, F1-score, area under the curve-receiver 
operating curve (AUC-ROC), and precision recall-AUC (PR-AUC) as me-
trics to evaluate the performance of our models. The bootstrap method 
was applied for statistical testing, calculating 95% confidence intervals (CIs) 
and P-values through two-sided tests to compare the metrics of the different 
models. The software framework for this study was built in Python 3.8, with 
PyTorch 1.8 serving as the deep learning (DL) library. The scikit-learn pack-
age in Python was used to calculate the various metrics. The trends among 
groups were analysed using the Jonckheere–Terpstra test.

Results
Patient characteristics and procedural 
data
In this multicentre study, we collected and analysed 12-lead ECG data 
for SR and PVC from 593 patients across 11 facilities in Japan, Germany, 

and Belgium. Of these, 493 patients were retrospectively collected 
from Japan and Germany, serving as an algorithm development data 
set, while the remaining 100 patients were prospectively collected 
from Belgium, serving as an external validation data set. Of the cases, 
406 (68.5%) were right-sided PVC and 187 (31.5%) were left-sided 
PVC. Details of the PVC origins are presented in Table 1. Out of the 
entire data set, 303 cases were derived from PDF files, while 290 cases 
were acquired digitally.

Comparison of origin prediction by the 
dual-rhythm and premature ventricular 
contraction models
In the algorithm development data set, the dual-rhythm model was su-
perior to the PVC model in accuracy (0.87 vs. 0.78, respectively; P <  
0.01), precision (0.92 vs. 0.59, respectively; P < 0.01), specificity (0.98 
vs. 0.76, respectively; P < 0.01), AUC-ROC (0.92 vs. 0.88, respectively; 
P = 0.02), and F1-score (0.75 vs. 0.68, respectively; P = 0.03) (Table 2). 
In the external validation data set, the dual-rhythm model also outper-
formed the PVC model, showing higher accuracy (0.84 vs. 0.74, re-
spectively; P < 0.01), precision (0.73 vs. 0.55, respectively; P < 0.01), 
specificity (0.87 vs. 0.68, respectively; P < 0.01), AUC-ROC (0.91 vs. 
0.86, respectively; P = 0.03), and F1-score (0.77 vs. 0.68, respectively; 
P = 0.03) (Table 2). Figure 1 illustrates the ROC curves for the algorithm 
development data set and external validation data set.

Comparison of origin prediction by the 
deep learning model and conventional 
method
To evaluate the performance of our dual-rhythm model, we com-
pared it with a conventional method that manually measures the R- 
and S-wave amplitudes. The dual-rhythm model and the conventional 
method were compared in terms of accuracy (0.87 vs. 0.85, respect-
ively; P = 0.88), precision (0.73 vs. 0.83, respectively; P = 0.28), recall 
(0.80 vs. 0.65, respectively; P = 0.25), and F1-score (0.77 vs. 0.73, re-
spectively; P = 0.67). Notably, the conventional method tended to 
have higher accuracy for right-sided origin compared to left-sided ori-
gin (0.94 vs. 0.65, respectively) (see Supplementary material online, 
Table S2).
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Table 1 Distribution of premature ventricular contraction origins in patients

Sublocations Algorithm development data set 
n = 493

External validation data set 
n = 100

P-value

Right-sided origin Posterior RVOT 263 (53.3%) 41 (41.0%) 0.032

Anterior RVOT 56 (11.4%) 25 (25.0%) <0.001

Para-Hisian region 18 (3.7%) 3 (3.0%) 0.980

Left-sided origin LCC 28 (5.7%) 7 (7.0%) 0.781

RCC 19 (3.9%) 3 (3.0%) 0.903
RCC-LCC commissure 21 (4.3%) 5 (5.0%) 0.951

LV summit 51 (10.3%) 6 (6.0%) 0.247

Aortomitral continuity 10 (2.0%) 4 (4.0%) 0.411
Anterolateral mitral valve 8 (1.6%) 4 (4.0%) 0.250

Left anterior fascicle 15 (3.0%) 1 (1.0%) 0.417

Anterolateral papillary muscle 4 (0.8%) 1 (1.0%) 1.000

The premature ventricular contraction origins were determined based on the prematurity of QRS onset and response to ablation from the endocardium. Values are n (%). The P-values 
indicate the significance of differences in sublocation proportions between the data sets, based on a χ2 test. LCC, left coronary cusp; LV, left ventricle; LVOT, left ventricular outflow tract; 
RCC, right coronary cusp; RVOT, right ventricular outflow tract.
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Attention on 12-lead morphology for 
origin prediction by the deep learning 
model
Figure 2 shows a typical case of attention to a 12-lead ECG for origin 
prediction in the DL model. The PVC was eliminated through radio-
frequency application to the RVOT septum. The transition zone of 
the SR was lead V4 (TZ score = 4). The PVC morphology of lead 

V3 and SR morphology of lead V5 contributed to the origin predic-
tion. Figure 3 presents graphs showing the contribution of each 
ECG lead to the prediction of right-sided and left-sided origins. In 
all the cases, the contributions to origin prediction were 77.3% for 
PVC and 22.7% for SR. Specifically, for the right-sided origin, the at-
tention distribution was 74.2% for PVC and 25.8% for SR, whereas 
for the left-sided origin, it was 82.6% for PVC and 17.4% for SR. 
Leads V1–3 made significant diagnostic contributions for predicting 
right-sided origins in PVC, and leads II, III, aVF, and V2–5 for left-sided 
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Table 2 Metrics for the premature ventricular contraction PVC and dual-rhythm models with differences on the algorithm development data 
set and external validation data set

Accuracy  
(95% CI)

Precision  
(95% CI)

Recall  
(95% CI)

specificity  
(95% CI)

AUC_ROC  
(95% CI)

F1-scorea  

(95% CI)

Algorithm development data set

PVC model 0.78 (0.74–0.80) 0.59 (0.52–0.67) 0.79 (0.72–0.79) 0.76 (0.71–0.81) 0.88 (0.85–0.92) 0.68 (0.62–0.74)

Dual-rhythm model 0.87 (0.84–0.90) 0.92 (0.91–1.00) 0.63 (0.55–0.72) 0.98 (0.98–1.00) 0.92 (0.89–0.94) 0.75 (0.69–0.81)

Differences 0.10 (0.07–0.15) 0.34 (0.28–0.42) −0.17 (−0.22 to −0.12) 0.23 (0.18–0.28) 0.04 (0.01–0.06) 0.07 (0.01–0.14)

P-value < 0.01 < 0.01 < 0.01 < 0.01 0.02 0.03

External validation data set

PVC model 0.74 (0.70–0.79) 0.55 (0.47–0.63) 0.87 (0.81–0.95) 0.68 (0.62–0.75) 0.86 (0.82–0.90) 0.68 (0.60–0.74)

Dual-rhythm model 0.84 (0.81–0.89) 0.73 (0.65–0.83) 0.80 (0.74–0.90) 0.87 (0.82–0.92) 0.91 (0.88–0.95) 0.77 (0.70–0.83)

Differences 0.11 (0.06–0.16) 0.18 (0.11–0.27) −0.05 (−0.16 to −0.04) 0.19 (0.12–0.26) 0.03 (0.01–0.09) 0.09 (0.02–0.17)

P-value < 0.01 < 0.01 0.03 <0.01 0.03 0.03

AUC-ROC, area under the curve for the receiver operating characteristic; CI, confidence interval; PVC, premature ventricular contraction. 
aF1 score was calculated as follows: F1-score = 2 × Precision × Recall/(Precision + Recall).
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origins. During SR, the lateral precordial leads, particularly leads V4– 
6, contributed to the diagnosis.

Difference in attention for each cardiac 
rotation
In the classification based on cardiac rotation during SR, the algorithm 
development data set included 38 (7.7%) patients in G1, 385 (78.1%) in 
G2, 59 (12.0%) in G3, and 11 (2.2%) in G4. The external validation data 
set included 11% of patients in G1, 78% in G2, 9% in G3, and 2% in G4. 
Notably, all G4 patients exhibited an RBBB pattern. The TZ scores for 
the SR and PVC in each group are presented in Table 3. The overall PVC 
TZ score in the algorithm development data set was 3.7 ± 0.8 for right- 
sided origin and 1.9 ± 1.1 for left-sided origin. In the external validation 
data set, the scores were 3.8 ± 0.7 for right-sided origin and 1.8 ± 1.0 
for left-sided origin. For both the right-sided and left-sided origins, 
G1 showed an early TZ reflecting an anterior shift, while G3 showed 
a late TZ reflecting a posterior shift. The contribution of each ECG 
leads to origin prediction for each cardiac rotation is shown in 
Figure 4. Particularly, high attention to SR was observed in the right- 
sided origins in G1. Conversely, in G4, there was negligible focus on 
SR. In G1, the contribution rate of SR to the prediction of right-sided 
origins was 41.1%, and that of left-sided origins was 20.7%, marking 
the highest SR contribution rates to PVC origin predictions among 
the four groups (see Supplementary material online, Table S3).

Comparison of origin prediction based on 
the concordance and discrepancy between 
the prematurity of QRS onset and 
response to ablation
In the external validation data set, 7% of cases showed a discrepancy 
between the prematurity of QRS onset and the response to ablation. 

The AUC_ROC for the concordance group was 0.93, while for the non- 
concordance group, the AUC_ROC was 0.50 (see Supplementary 
material online, Figure S2).

Discussion
In this study, we utilized a DL model to evaluate whether the accuracy 
of predicting the origins of inferior axis idiopathic PVCs could be en-
hanced by incorporating SR. Furthermore, we conducted external val-
idation to affirm the robustness and generalizability of the dual-rhythm 
model for predicting PVC origins. To the best of our knowledge, this is 
the first AI-based study to incorporate SR data into the prediction of 
PVC origin. The main findings of our study are as follows: The 
dual-rhythm model, which incorporated both the PVC and SR, was sig-
nificantly superior to the PVC model. The contributions to the predic-
tion were 77.3% from PVC data and 22.7% from SR data. In patients 
with CCWR, SR had the highest contribution rate to predicting the ori-
gin of right-sided PVC.

Dual-rhythm model for predicting origins 
from sinus rhythm and premature 
ventricular contraction data
The RVOT and LVOT are closely positioned and characterized by 
complex anatomical structures, along with a distinct possibility of 
being influenced by cardiac rotation.19 In this study, we visualized 
the contribution of the DL model to origin prediction using an atten-
tion map and calculated its proportion within a 12-lead ECG. 
Attention was lower in the limb leads and higher in precordial leads. 
This indicates a focus on cardiac rotation rather than on the electrical 
axis during SR. As such, considering the individual-specific cardiac ro-
tation of the SR in our inferences about PVC origins, we believe that 
our model outperforms traditional models that only use PVC 
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PVC SR

Right-sided origin

Left-sided origin

I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Figure 3 The contribution of each ECG lead to the prediction of the right-sided and left-sided origins in all cases. X-axis represents the ECG leads for 
PVC and SR, and y-axis represents their percentage contribution. ECG, electrocardiogram; PVC, premature ventricular contraction; SR, sinus rhythm.
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morphologies. In this study, we assessed cardiac rotation using the 
TZ on a 12-lead ECG. Although imaging modalities such as computed 
tomography (CT) or magnetic resonance imaging may offer precise 
evaluations of cardiac rotation, concerns about radiation exposure 
and the potential side effects of contrast agents make these options 
less desirable in all cases. A previous study that evaluated the relation-
ship between cardiac rotation on CT and the TZ on ECG found a 
concordance rate of 80.4%.32 This study identified the presence of 
structural heart diseases, such as dilated cardiomyopathy and hyper-
trophic cardiomyopathy, as the primary cause of the discrepancies 
observed. Since our study excluded patients with structural heart 
disease, we anticipate a higher concordance rate. Therefore, in this 
study, we utilized ECG-based cardiac rotation, which is more easily 
obtainable. Betensky et al. reported an algorithm combining the 
morphologies of PVC and SR, using the V2 transition ratio calculated 
from the proportion of R- and S-waves in lead V2, can accurately 
differentiate between right- and left-sided PVC origins. In our data 
set, we also found this method to be effective, although the accuracy 
slightly decreased for predicting left-sided PVCs.11 Our study ex-
pands on this approach by evaluating all 12 leads during SR using a 
DL model. We found that the contribution of the precordial leads 
was higher than that of the limb leads, further enhancing the accuracy 
of PVC origin prediction. This suggests that a more comprehensive 
analysis of precordial leads, and not just lead V2, is crucial for accur-
ately localizing PVC origins.

Impact of sinus rhythm on the prediction 
of premature ventricular contraction 
origins for each cardiac rotation
In this study, we evaluated the changes in the TZ of PVCs for each car-
diac rotation and the distribution of attention leads in the dual-rhythm 

model. In CWR hearts, the TZ for both right-sided and left-sided PVCs 
moved clockwise, whereas in CCWR hearts, it moved counterclock-
wise. According to the distribution of attention in the dual-rhythm 
model, SR had the most significant impact on predicting right-sided 
PVCs in CCWR cases. For the diagnosis of right-sided PVCs, cardiac ro-
tation towards CWR results in a posterior shift, leading to a later TZ, 
making the diagnosis easier with only PVC morphology. However, in 
CCWR hearts, the TZ for right-sided PVCs shifts anteriorly, resulting 
in an early TZ. This anterior shift can make the PVC morphologies re-
semble those of left-sided PVCs, potentially leading to a misdiagnosis. In 
the diagnosis of left-sided PVCs, even in the CWR cases, the PVC re-
mains in an early TZ. This might be because the LVOT is located 
more centrally in the heart than the RVOT, making it less affected by 
cardiac rotation.33 Our study also found that in patients with RBBB, 
the SR contributed minimally to origin prediction. This is likely because 
the RBBB is an issue with the conduction system and does not reflect 
cardiac rotation.

The predictive accuracy of premature 
ventricular contraction origins in the 
non-concordance group
In this study, the origin of PVCs was determined based on the prema-
turity of QRS onset and the response to ablation. When these were not 
in concordance, the response to ablation was considered the decisive 
factor. In the majority of idiopathic PVCs, ablation is carried out on sites 
identified using activation and/or pace mapping. However, discrepan-
cies between the results of these methods and the site of successful ab-
lation can complicate the development of an effective ablation strategy. 
This finding indicates a potential involvement of preferential pathway 
within the deep myocardium.34–36 In this study, preferential pathway 
was suspected in 7% of cases where there was a mismatch between 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Transition zone scores for SR and PVC in each cardiac rotation group based on the origin of right-sided or left-sided PVCs

Number (%) Sinus rhythm PVC

Right-sided origin Left-sided origin Right-sided origin Left-sided origin

Algorithm development dataset

ALL 493 3.4 ± 0.7 3.4 ± 0.8 3.7 ± 0.8 1.9 ± 1.1

G1a 38 (7.7%) 1.8 ± 0.2 1.8 ± 0.3 3.0 ± 0.5 1.5 ± 0.7

G2b 385 (78.1%) 3.3 ± 0.5 3.4 ± 0.5 3.7 ± 0.7 2.0 ± 1.1

G3c 59 (12.0%) 4.6 ± 0.3 4.6 ± 0.2 4.2 ± 0.8 2.2 ± 1.3

G4d 11 (2.2%) 0.5 ± 0.0 0.5 ± 0.0 3.8 ± 0.8 1.6 ± 0.8

P-value for trend <0.001 <0.001 <0.001 0.047

External validation data set

ALL 100 3.4 ± 0.9 3.3 ± 0.9 3.8 ± 0.7 1.8 ± 1.0

G1a 11 (11.0%) 1.8 ± 0.4 1.8 ± 0.4 2.8 ± 0.4 1.2 ± 0.4

G2b 78 (78.0%) 3.4 ± 0.5 3.5 ± 0.5 3.6 ± 0.5 1.8 ± 1.0

G3c 9 (9.0%) 4.7 ± 0.3 4.5 ± 0.0 3.9 ± 0.7 2.0 ± 1.1

G4d 2 (2.0%) 1.0 ± 0.0 N.A. 3.0 ± 1.4 N.A.

P-value for trend <0.001 <0.001 <0.001 0.066

The P-values for trends among groups G1, G2, and G3 were analysed using the Jonckheere–Terpstra test. 
G, group; N.A., not applicable; PVC, premature ventricular contraction; TZ, transition zone. 
aPatients with TZ < V3. 
bPatients with V3 ≤ TZ ≤ V4. 
cPatients with V4 < TZ. 
dPatients with bundle branch block.
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the prematurity of QRS onset and the response to ablation. When 
comparing the concordance and non-concordance groups, the non- 
concordance group tended to have a lower AUC. This observation sug-
gests that the DL model may be predicting the earliest activation site 
rather than the optimal site for successful ablation.

Origin prediction model involving 
transformers
No previous models have incorporated transformers with attention 
mechanisms to predict PVC origins. In general, origin prediction in 
DL relies on CNNs, which struggle with long-range relationships. In 
our study, using transformers with attention mechanisms enabled a 
better capture of the relationships across the 24 leads of SR and 
PVC, resulting in an improved prediction model.

Recently, CNN-based models using only sinus rhythm ECGs have 
been proposed for detecting the presence of PVCs. While these mod-
els have shown promise, replacing CNNs with transformers could po-
tentially enhance performance by better capturing long-range 
dependencies in the ECG data.37

Limitations
In this study, we classified the origins of PVCs into only two classes. The 
origins of the right-sided or left-sided were determined by the 
difference in the prematurity of the intracardiac electrograms in elec-
troanatomic mapping and response to ablation. In reality, the origins 

may be deeper and influenced by preferential pathways. We excluded 
the patients with implantable cardiac devices or structural heart dis-
ease, and our patient cohort did not include those with left bundle 
branch block. To further enhance the validity and generalizability of 
our dual-rhythm model, additional prospective external validation is 
warranted. Furthermore, the model should be refined to classify PVC 
origins into more than two categories, incorporating more complex 
anatomical structures and conduction pathways.

Conclusions
We developed a DL-based model to predict the origins of PVC by 
incorporating both PVC and SR morphologies. Our findings underscore 
the importance of considering SR for achieving higher prediction 
accuracy, especially for predicting the right-sided origin in patients 
with CCWR.
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Supplementary material is available at Europace online.
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