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Protein and transcriptional biomarker profiling may inform 
treatment strategies in lower respiratory tract infections by 
indicating bacterial–viral differentiation
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ABSTRACT Lower respiratory tract infections (LRTIs) remain a significant global cause 
of infectious disease-related mortality. Accurate discrimination between acute bacterial 
and viral LRTIs is crucial for optimal patient care, prevention of unnecessary antibiotic 
prescriptions, and resource allocation. Plasma samples from LRTI patients with bacte
rial (n = 36), viral (n = 27; excluding SARS-CoV-2), SARS-CoV-2 (n = 22), and mixed 
bacterial–viral (n = 38) etiology were analyzed for protein profiling. Whole-blood RNA 
samples from a subset of patients (bacterial, n = 8; viral, n = 8; and SARS-CoV-2, n = 
8) were analyzed for transcriptional profiling. Lasso regression modeling identified a 
seven-protein signature (CRP, IL4, IL9, IP10, MIP1α, MIP1β, and TNFα) that discriminated 
between patients with bacterial (n = 36) vs viral (n = 27) infections with an area under the 
curve (AUC) of 0.98. When comparing patients with bacterial and mixed bacterial–viral 
infections (antibiotics clinically justified; n = 74) vs patients with viral and SARS-CoV-2 
infections (antibiotics clinically not justified; n = 49), a 10-protein signature (CRP, bFGF, 
eotaxin, IFNγ, IL1β, IL7, IP10, MIP1α, MIP1β, and TNFα) with an AUC of 0.94 was identi
fied. The transcriptional profiling analysis identified 232 differentially expressed genes 
distinguishing bacterial (n = 8) from viral and SARS-CoV-2 (n = 16) etiology. Protein–pro
tein interaction enrichment analysis identified 20 genes that could be useful in the 
differentiation between bacterial and viral infections. Finally, we examined the perform
ance of selected published gene signatures for bacterial–viral differentiation in our gene 
set, yielding promising results. Further validation of both protein and gene signatures in 
diverse clinical settings is warranted to establish their potential to guide the treatment of 
acute LRTIs.

IMPORTANCE Accurate differentiation between bacterial and viral lower respiratory 
tract infections (LRTIs) is vital for effective patient care and resource allocation. This study 
investigated specific protein signatures and gene expression patterns in plasma and 
blood samples from LRTI patients that distinguished bacterial and viral infections. The 
identified signatures can inform the design of point-of-care tests that can aid healthcare 
providers in making informed decisions about antibiotic prescriptions in order to reduce 
unnecessary use, thereby contributing to reduced side effects and antibiotic resistance. 
Furthermore, the potential for faster and more accurate diagnoses for improved patient 
management in acute LRTIs is compelling.

KEYWORDS acute respiratory infections, bacterial vs viral diagnosis, host-based 
biomarkers, biosignatures, antibiotic treatment

L ower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide, 
with rates increasing with aging populations in many developed countries (1, 2). 
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Global efforts to reduce the burden of LRTIs depend on information about associated 
pathogens (1), as timely and appropriate use of antibiotic therapy is essential to 
improve outcomes, reduce hospital admissions, and contribute to antibiotic stewardship 
by minimizing un-targeted broad-spectrum antibiotics (3).

Early detection of respiratory pathogens has been linked to shorter hospital 
stays, improved antimicrobial stewardship, and better cohort assignation for prevent
ing nosocomial infections and outbreaks (4–8). Recent developments in molecular 
diagnostic methods, like nucleic acid amplification tests (NAATs), have improved the 
ability to identify viruses in respiratory samples, suggesting that viruses are causative 
agents in a significant proportion of adult community-acquired pneumonia (CAP) 
cases (9). Nevertheless, 30%–64% of LRTI patients do not get an appropriate microbial 
diagnosis (10–19). This may lead to antibiotic overuse in the case of viral etiology and 
improper use when empirical treatments are too broad or inactive against the causative 
bacteria.

Molecular diagnostics applied to assess host immune responses (20) have emerged 
as a promising supplement to pathogen-based diagnostics in discriminating viral from 
bacterial LRTIs (21, 22). Such diagnostics might supplement traditional measurements 
of C-reactive protein (CRP), leucocyte counts, and procalcitonin (PCT) in decisions 
of antibiotic initiation and/or withdrawal (23, 24) and may also provide guidance to 
adjunctive host-directed therapies as demonstrated in patients with COVID-19 (25). After 
the emergence of SARS-CoV-2, several studies have tried to distinguish between the host 
response in COVID-19 and the host response in RTIs of other microbial causes (24, 26–
28). This is important to direct the development of specific anti-inflammatory or antiviral 
treatment strategies. From an antibiotic stewardship perspective, however, it may also be 
useful to exploit similarities in the host response to SARS-CoV-2 and other viral etiologies 
in order to identify a common viral comparator to bacterial infections.

The present study investigates host biomarker signature(s) in adult LRTI patients with 
the aim of distinguishing patients in need of antibiotic therapy. We performed protein 
profiling to discriminate patients with viral etiology (including SARS-CoV-2) from patients 
with bacterial etiology (including patients with bacterial and viral coinfections). We also 
compared the host transcriptional profile of patients with LRTI caused by SARS-CoV-2, 
other viral etiologies, and bacterial etiology, in order to identify differentially expressed 
genes including those involved in the activation of host immune pathways. Finally, we 
evaluated promising published gene signatures (29–32) that effectively discriminate 
between bacterial and viral etiology in our transcriptional data set.

RESULTS

Baseline characteristics of study participants

A total of 123 LRTI patients were selected and included (Fig. 1). Patients with SARS-CoV-2 
had a comparatively younger median age of 58.5 years and a lower proportion of females 
than patients with other etiologies. Furthermore, 68.2% of the patients with SARS-CoV-2 
etiology received no or negligible amounts of antibiotics (Table 1).

Host biomarker profiling

Protein profiling

Six of the 27 analytes [interleukin (IL)2, IL5, IL15, IL17, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF)] were 
detectable in <40% of the samples and, therefore, excluded from further analyses. 
Pairwise comparisons of protein levels between patients with bacterial, viral (exclud
ing SARS-CoV-2), SARS-CoV-2, and mixed bacterial–viral etiology were performed and 
showed higher concentrations of macrophage inflammatory protein (MIP)1β and lower 
concentrations of tumor necrosis factor (TNF)α in patients with bacterial etiology 
compared to all other groups. Concentrations of basic fibroblast growth factor (bFGF), 
IL4, monocyte chemotactic protein (MCP-1), and MIP1α were higher in patients with 
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bacterial etiology compared to patients with viral and SARS-CoV-2 etiology. Furthermore, 
patients with SARS-CoV-2 had higher concentrations of IP10 compared to patients with 
bacterial and mixed bacterial–viral etiologies. Patients with viral etiology had lower 
concentrations of IL1 receptor antagonist (IL1RA), IL6, and IL8 compared to patients 
with bacterial and mixed bacterial–viral etiologies and lower concentrations of interferon 
(IFN)γ and IL9 compared to patients with bacterial etiology (Fig. 2A). Also, patients with 
either viral or SARS-CoV-2 etiology had reduced concentrations of CRP compared to 
patients with bacterial and mixed bacterial–viral etiology, whereas patients with viral 

FIG 1 Study flowchart. *Discordant findings defined as (1) detection of only viral (including SARS-CoV-2) etiology, but antibiotics administered for ≥120 hours in 

the hospital, or (2) detection of bacteria and/or mixed bacterial–viral etiology, but antibiotics administered for <120 hours (including post-discharge).

TABLE 1 Baseline characteristics of study participantsa

Bacterial etiology
(n = 36)

Viral etiology
(n = 27)

SARS-CoV-2
(n = 22)

Mixed bacterial–viral etiology
(n = 38)

Age in years (median with IQR) 73 (60.5–78) 66 (52–74.5) 58.5 (47–76.8) 68 (52.5–80.0)
Female (%) 17 (47.2) 16 (59.3) 6 (27.3) 25 (65.8)
Patients diagnosed with LRTIs
  Confirmed CAPb (%) 36 (100.0) 5 (18.5) 15 (68.2) 36 (94.7)
  Other respiratory tract infections (%) 0 (0.0) 15 (55.5) 6 (27.3) 2 (5.2)
  Infectious exacerbation of COPD (%) 0 (0.0) 7 (25.9) 1 (4.5) 0 (0.0)
Laboratory findings
  C-reactive protein (mg/L; median with IQR) 141 (69–258.3) 38 (22.5–57.5) 62.5 (27.8–131.5) 180.0 (108–245)
  Procalcitonin (µg/L; median with IQR) 0.2 (0.8–0.44) 0.01 (0.0–0.23) 0.19 (0.0–0.46) 0.28 (0.15–0.74)
Antibiotic usage
  Antibiotics not given or if given ≤8 hours (%) 0 (0.0) 10 (37.0) 15 (68.2) 0 (0.0)
aIQR, interquartile range; COPD, chronic obstructive pulmonary disease.
bClinically confirmed CAP, of which 75 out of 92 were radiologically confirmed cases.
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etiology had reduced concentrations of PCT compared to patients with mixed bacte
rial–viral etiology (Fig. 2B).

Aiming to identify the best discriminatory signature between patients classified with 
bacterial versus viral etiology, we applied the Lasso regression model. First, we compared 
patients with viral (excluding SARS-CoV-2) to bacterial etiology and identified a seven-
protein signature (CRP, IL4, IL9, IP10, MIP1α, MIP1β, and TNFα) with an area under the 
curve (AUC) of 0.98 (95%CI: 0.97–1.00), a sensitivity of 94.4% (95%CI: 89.3%–99.3%), and 
a specificity of 92.6% (95%CI: 75.7%–99.1%; Fig. 3A). Then, we did the same analysis 
with the SARS-CoV-2 patients replacing other viral etiologies (SARS-CoV-2 compared to 
bacterial etiology) and identified a seven-protein signature (CRP, eotaxin, IL4, IL7, IP10, 
MIP1a, and TNFα) with an AUC of 0.97 (95%CI: 0.94–1.00), a sensitivity of 91.7% (95%CI: 
77.5%–98.3%), and a specificity of 81.8% (95%CI: 60.0%–94.8%; Fig. S1A).

Next, the cases with viral or SARS-CoV-2 etiology were merged into one group 
and compared to bacterial etiology. The Lasso regression model found a seven-protein 
signature (CRP, eotaxin, IL4, IP10, MIP1α, MIP1β, and TNFα) with an AUC of 0.97 (95%CI: 
0.95–1.00), a sensitivity of 88.9% (95%CI: 73.9%–96.9%), and a specificity of 89.8% 
(95%CI: 77.8%–96.6%; Fig. 3B). A seven-protein signature with IL9 replacing eotaxin had 
equal performance (CRP, IL9, IL4, IP10, MIP1α, MIP1β, and TNFα) with an AUC of 0.97 
(95%CI: 0.96–1), a sensitivity of 88.9% (95%CI: 73.9%–96.9%), and a specificity of 89.8% 
(95%CI: 77.8%–96.6%; Fig. S1B).

Furthermore, we aimed to identify discriminatory signatures between the more 
clinically relevant groups, namely, those requiring antibiotics versus those who do not. 
Thus, patients with bacterial etiology and those with mixed bacterial–viral etiology were 
merged into one group named “antibiotics justified” (n = 74), whereas patients with 
viral etiology including those with SARS-CoV-2 were merged into one group named 
“antibiotics not justified” (n = 49). The best discrimination was obtained by a 10-protein 
signature identified by the Lasso regression model (CRP, bFGF, eotaxin, IFNγ, IL1β, IL7, 

FIG 2 (A) Scatter plot graph depicting median cytokine/chemokine concentrations (pg mL−1) in plasma samples from LRTI patients with bacterial, mixed 

bacterial–viral, viral, and SARS-CoV-2 etiologies. (B) Scatter plot graph depicting median CRP (mg L−1) and procalcitonin (µg L−1) concentrations from the serum 

samples. The Kruskal–Wallis test with Dunn’s post hoc correction was applied. P-values <0.05 (*), <0.01 (**), <0.001 (***), and <0.0001 (****) were considered to be 

significant.
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IP10, MIP1α, MIP1β, and TNFα) with an AUC of 0.94 (95%CI: 0.90–0.98), a sensitivity of 
91.9% (95%CI: 83.2%–97.0%), and a specificity of 83.7% (95%CI: 70.3%–92.7%; Fig. 3C).

Last, we evaluated the performance of the identified seven-protein signature 
distinguishing bacterial (n = 36) from viral and SARS-CoV-2 (n = 20) infections specifically 
in patients with CAP. The resulting AUC was 0.96 (95%CI: 0.94–1), with a sensitivity 
of 91.7% (95%CI: 77.5%–98.3%) and a specificity of 80.0% (95%CI: 56.3%–94.3%; Fig. 
S2A). Additionally, a comparable evaluation in CAP patients was carried out for the 
10-protein signature that distinguished between “antibiotics justified” (bacterial and 
mixed bacterial–viral infections; n = 72) vs “antibiotics not justified” (viral and SARS-CoV-2 
infections; n = 20). The resulting AUC was 0.90 (95%CI: 0.83–0.96), with a sensitivity 
of 91.7% (95%CI: 82.7%–96.9%) and a specificity of 65.0% (95%CI: 40.8%–84.6%) (Fig. 
S2B). Many misclassified CAP infections were SARS-CoV-2 cases (4 out of a total of 7 
misclassifications in the 7-protein signature evaluation and 7 out of 13 misclassifications 
in the 10-protein signature evaluation).

Transcriptional profiling

Twenty-four patients were selected for transcriptomic profiling. Table 2 shows the 
overview of microbial detections in their lower respiratory tract (LRT) samples. Unsu
pervised principal component analysis (PCA) of differentially expressed genes was 
performed with patient groups separated based on etiology: bacterial (n = 8) vs viral 
(n = 8) vs SARS-CoV-2 (n = 8), showing a majority of patients with viral and SARS-CoV-2 
etiology clustered in one group away from patients with bacterial etiology (Fig. 4A). 
When comparing bacterial vs viral etiology, 246 genes (P < 0.05) were differentially 

FIG 3 Receiver operator characteristic (ROC) curves for protein signatures that distinguish (A) patients with bacterial from viral etiology, (B) patients with 

bacterial from viral and SARS-CoV-2 etiology, and (C) patients with bacterial and mixed bacterial–viral etiology (“antibiotics justified”) from patients with viral and 

SARS-CoV-2 etiology (“antibiotics not justified”).

TABLE 2 Microbial detections in samples used for transcriptomic profiling

Group Microbial detection(s)

Bacterial Haemophilus influenzae Mycoplasma pneumoniae H. influenzae/Streptococcus 
pneumoniae

Staphylococcus 
aureus/Escherichia coli/
Klebsiella oxytoca

H. influenzae/Moraxella 
catarrhalis/E. coli

Patients (n=) 3 2 1 1 1
Viral Influenza A virus Human metapneumovirus Influenza A virus/respiratory syncytial virus Coronavirus other than 

SARS-CoV-2
Patients (n=) 3 3 1 1
COVID-19 SARS-CoV-2
Patients (n=) 8
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expressed (Fig. 4B and C), whereas 3,298 genes (P < 0.05) were differentially expressed 
between bacterial and SARS-CoV-2 etiology (Fig. 4B and D). No genes were differentially 
expressed when comparing the viral vs SARS-CoV-2 groups (Fig. 4B). Notably, 232 genes 
were represented in both comparisons (i.e., bacterial vs viral and bacterial vs SARS-CoV-2) 
(Table S1). Of these genes, 126 were down-regulated and 106 were up-regulated in 
patients with bacterial etiology compared to patients with viral and SARS-CoV-2 etiology.

Analysis of the set of 232 differentially expressed genes using the Metascape tool 
provided further insight into the biological processes involved (Fig. 5). Figure 5A shows a 
bar graph of the top 20 highly enriched Gene Ontology (GO) terms across the input gene 
list ranked by their P-values, and Fig. 5B visualizes a subset of the most representative 
terms converted into a network layout where nodes of the same color belong to the 
same cluster. Then, to compile a set of relevant genes for direct comparison among the 
patients with bacterial, viral, and SARS-CoV-2 etiology, Metascape’s Molecular Complex 
Detection (MCODE) algorithm was used to extract protein–protein interaction networks 
(Fig. 5C). Four MCODE networks with a total of 20 differentially expressed genes were 
identified. Finally, these 20 genes were selected for hierarchical clustering and heatmap 
analysis (Fig. 5D).

Validation of the Xu-2, Li-3, Rao-8, and Ravichandran-10 signatures

Due to the limited sample size, we did not perform de novo regression analyses to 
identify possible discriminatory signatures in our transcriptional data set. Instead, we 
explored the performance of promising previously published gene signatures (Table 
3). The Rao-8 and Ravichandran-10 gene signatures yielded excellent discriminatory 
capabilities in distinguishing bacterial (n = 8) from viral and SARS-CoV-2 (n = 16) 
etiologies with AUCs of 0.99 (0.99–1.00) and corresponding sensitivity and specificity 

FIG 4 (A) PCA mapping of all expressed genes in the whole blood from LRTI patients with bacterial, viral, and SARS-CoV-2 etiologies. (B) The Venn diagram 

shows the distribution of differentially expressed genes (DEGs) identified between three comparisons [bacterial vs viral (pink circle), bacterial vs SARS-CoV-2 

(purple circle), and viral vs SARS-CoV-2 (green circle)]. (C and D) Volcano plot comparing LRTI patients with (C) bacterial (n = 8) vs viral (n = 8) etiology and (D) 

bacterial (n = 8) vs. SARS-CoV-2 (n = 8) etiology. The fold change indicates the mean expression level for each gene. Each dot represents one gene. Gray dots 

represent no significant DEGs between patients with bacterial etiology and patients with viral etiology; the green dots represent down-regulated genes, and the 

red dots represent up-regulated genes.
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of 100.0%, whereas the Xu-2 and Li-3 signatures demonstrated less robust discriminatory 
power as depicted in Table 3.

DISCUSSION

While a wide variety of viral and bacterial pathogens can cause LRTIs (33), it is often 
not possible to distinguish with certainty between bacterial and viral pathogenesis 
based on signs and symptoms alone. Even though modern NAATs like PCR possess 
excellent sensitivity for the identification of respiratory viruses from naso- and orophar
yngeal swabs, a bacterial coinfection may still be present in the LRT. The precision of 
microbiological diagnostics is hampered by the difficulty in obtaining representative 
and good-quality LRT samples, especially from severely ill patients, which likely leads 
to inappropriate antibiotic use due to the fear of missing a bacterial diagnosis (34). 
Furthermore, most of the bacteria that may be involved in LRTIs are also potential 
colonizers of the upper airways, and bacterial detection is, therefore, not necessarily 
clinically relevant.

In this study, we have utilized biobanked plasma samples to examine selected 
protein biomarkers, with the aim to identify protein signatures that may contribute 
to the precise discrimination between patients with a viral or bacterial LRTI, as an 

FIG 5 (A) Bar graph of the top 20 enriched terms among the 232 genes represented in comparison of both bacterial vs viral and bacterial vs SARS-CoV-2 

etiologies, colored by P-values. (B) Network plot of the top 20 enriched terms visualized using Cytoscape (http://www.cytoscape.org). Each term is represented by 

a circle node, where its size is proportional to the number of input genes falling under that term, and its color represents its cluster identity. (C) Protein–protein 

interaction networks identified using the MCODE algorithm. Enrichment analysis was applied to each MCODE network to explore their biological relationships, 

where the top 3 best P-value terms (if any) are presented: MCODE1 (consists of seven genes): (1) R-HSA-444257—RSK activation (P < 0.00001); (2) R-HSA-442742

—CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling (P < 0.00001); (3) R-HSA-437239—recycling pathway of L1 (P < 

0.00001); MCODE2 (consists of six genes): (1) R-HSA-909733—interferon alpha/beta signaling (P < 0.00001); (2) R-HSA-913531—interferon signaling (P < 

0.00001); (3) GO:0045824—negative regulation of innate immune response (P < 0.00001); MCODE3 (consists of four genes): (1) GO:0051056—regulation of small 

GTPase-mediated signal transduction (P < 0.00001); (2) GO:0050808—synapse organization (P < 0.00001); (3) GO:0120031—plasma membrane-bounded cell 

projection assembly (P = 0.00001); MCODE4 (consists of three genes): no enriched terms reported. (D) Heatmap generated for the 20 differentially expressed 

genes identified across all four MCODE networks, with columns representing samples and rows representing genes.
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attempt to contribute to the optimization of treatment strategies. We identified protein 
signatures that could differentiate patients requiring antibiotics (i.e., bacterial and mixed 
bacterial–viral etiology) from patients not requiring antibiotics (i.e., viral + SARS-CoV-2 
etiology) with promising performances. Notably, five proteins (CRP, IP10, MIPα, MIP1β, 
and TNFα) were represented in the identified 7- and 10-protein signatures.

Commercial protein biosignature tests for bacterial–viral differentiation are availa
ble (35), but their diagnostic accuracy across a broad range of pathogens is not yet 
determined (36). The FebriDx test targets CRP and Myxovirus resistance protein A, where 
the latter is a marker of interferon-induced antiviral host response, and has been found 
to have a high accuracy in terms of indicating the presence of a viral infection in 
hospitalized adults with SARS-CoV-2 (37). The lack of a specific bacterial marker does, 
however, imply that its approach can fall through in the case of a bacterial coinfection. 
Thus, in a hospital setting with NAAT capacity for a broad range of viral pathogens, 
its use may be less relevant. The MeMed test includes three markers, whereof two 
are viral-induced markers: interferon-gamma inducible protein-10 (IP-10; also known as 
CXCL10) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in addition 
to CRP. However, while TRAIL levels are reduced in bacterial infections, this may also be 
the case in some severe viral infections, again implying a shortcoming in terms of ruling 
out a bacterial coinfection. Interestingly, the MeMed combination score has recently 
also been validated as a tool to predict outcomes in COVID-19 patients, exploiting this 
phenomenon (38). There are, to our knowledge, no reports on the performance of the 
MeMed test in cohorts that have included SARS-CoV-2 patients.

In this study, SARS-CoV-2 patients were included, and both were investigated 
separately and as a merged category with other viral etiologies to explore possible 
different hallmarks in the host response comparisons to bacterial LRTIs. Of note, the 
protein signature identified without SARS-CoV-2 patients provided excellent discrimina
tory power in accurately classifying bacterial and viral etiologies, while the signature 
identified with SARS-CoV-2 patients included was found to be somewhat inferior. This 
may be due to a lack of control for confounding variables, e.g., different disease 
severities, but may also be due to limitations in the analytes available for protein 
profiling, which were pre-defined. To account for disease severity, we evaluated our 
protein signatures’ ability to distinguish between bacterial and viral infections among 
our CAP cases. The results showed similar effective performance in terms of the AUC 
when comparing the combined viral groups (other viruses + SARS-CoV-2) against the 
bacterial group, both individually and combined with mixed bacterial–viral infections 
(“antibiotics justified”). However, the specificity of the signatures, which relates to 
accurately classifying a viral infection, was lower. Notably, many misclassifications were 

TABLE 3 Validation of the four selected gene signatures: discriminating patients with bacterial (n = 8) from viral and SARS-CoV-2 (n = 16) etiologies

Study Sensitivity in % (95%CI) Specificity in % (95%CI) AUC (95%CI) Accuracy in %

Xu et al.
   2-gene signature
   IFI44L, PI3

75.0 (34.9–96.8) 93.8 (69.8–99.8) 0.91 (0.78–0.1.00) 87.5

Li et al.
   3-gene signature
   HERC6, IGF1R, NAGK

87.5 (47.4–99.7) 93.8 (69.8–99.8) 0.97 (0.91–0.1.00) 91.7

Rao et al.
   8-gene signature
   EPI3, FCER1A, HESX1, ICAM1, IFI27, 

JUP, SMARCD3, SUCLG2

100.0 (63.1–100.0) 100.0 (79.4–100.0) 0.99 (0.99–1.00) 100.0

Ravichandran et al.
   10-gene signature
   DNMT1, EPSTI1, GYG1, HK3, IFI27, 

IFI44, ISG15, MMP9, MX1, PRF1

100.0 (63.1–100.0) 100.0 (79.4–100.0) 0.99 (0.99–1.00) 100.0
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SARS-CoV-2 patients. Regrettably, due to the small number of CAP cases with other viral 
infections, we were unable to investigate this further.

To investigate host response in the different microbiological categories in more 
depth, we performed transcriptomic profiling on a selected subcohort. Surprisingly, no 
genes were differentially expressed when comparing the viral vs SARS-CoV-2 groups 
by transcriptional profiling. Although we used the Metascape tool to select 20 differen-
tially expressed genes for heatmap analysis, we acknowledge that the transcriptomic 
analysis was conducted in a limited sample size. Thus, we chose to evaluate previously 
published gene signatures that were identified from larger data sets. The assessment of 
the previously published gene signatures (Xu-2, Li-3, Rao-8, and Ravichandran-10 gene 
signatures) reveals promising findings in microbial differentiation in our study cohort, 
which includes SARS-CoV-2 patients. Nevertheless, additional validation is necessary 
through larger-scale studies.

The present study has some limitations: (i) A major obstacle in discovering host 
response biomarkers, whether single-analyte or multi-biomarker classifiers, is the lack 
of a universally accepted gold standard to determine the causative agent of a respira
tory tract infection. (ii) For the transcriptomic biomarker analysis, a limited number of 
samples were used for an exploratory study, which included only the bacterial, viral, 
and SARS-CoV-2 categories and not samples from patients with mixed bacterial–viral 
etiology. However, the presence of multiple pathogens could have led to overlapping 
gene expression profiles, making it difficult to attribute specific changes to a particular 
microorganism. (iii) Another limitation is the lack of appropriate controls, for exam
ple, the inclusion of samples from patients with non-infectious causes of respiratory 
symptoms. This implies that our current signatures cannot be used to assist in the 
diagnosis of infection per se without further validation and rather must be interpreted in 
a clinical context. (iv) A small percentage of confirmed CAP cases in the viral category is 
also a limitation. Nevertheless, as many as 68% of the latter patients received antibiot
ics for more than 8 hours after admission. This highlights the challenge of accurately 
diagnosing the anatomical site of infection in LRTIs and underscores the need for 
improved methods to determine which patients require antibiotics, regardless of the 
infection site. (v) The cytokine/chemokine panel was pre-defined. (vi) There is a lack of 
external data sets to validate the performance of the identified protein signatures.

The strength of the present study lies in the meticulous collection of good-quality LRT 
samples and comprehensive microbiological and clinical characterization of the selected 
patient categories, as well as the inclusion of samples from patients with SARS-CoV-2. 
The results imply a promising potential for both protein and gene-based host response 
signatures to inform future therapeutic strategies that aim to prevent the untargeted use 
of antibiotics by contributing to more precise discrimination between viral and bacterial 
etiology in LRTIs, including CAP. Nonetheless, further development and validation in 
diverse clinical settings are warranted to establish the best discriminatory potential 
as bacterial versus viral infection host response-based classifiers, including a particular 
focus on the host response in COVID-19 patients.

MATERIALS AND METHODS

Patients and study design

This study is nested within two prospective cohorts of adult patients ≥18 years of 
age presenting to the Emergency Department with a suspicion of CAP. The study was 
conducted at Haukeland University Hospital, a tertiary care referral center in Bergen, 
Norway, during two time periods: 2019/2020 and 2020/2022. The first prospective cohort 
study (a feasibility study) enrolled 104 patients between 2 December 2019 and 17 
February 2020 (pre-COVID-19 cohort) (39). The second prospective cohort enrolled 425 
patients (post-COVID-19) in the context of a randomized controlled trial (NCT04660084) 
(40) between 25 September 2020 and 21 June 2022.
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Study procedures and sample collection

At inclusion, LRT samples (spontaneous sputum, induced sputum, or endotracheal 
aspirates) for microbiological analyses were obtained from all patients for pathogen 
detection by standard microbiological methods and the BioFire FilmArray Pneumonia 
panel plus (FAP plus) (bioMérieux S.A., Marcy-l’Etoile, France), as described elsewhere 
(41). For host biomarker analyses, peripheral blood was collected into PAXgene blood 
collection tubes (PreAnalytiX, Qiagen/BD Company, Hombrechtikon, Switzerland) and 
Vacuette blood collection tubes (Greiner bio-one International, Austria) containing EDTA 
to avoid coagulation. Plasma was isolated from the latter by centrifugation at 2,000 × g 
for 20 min at 4°C and stored at −80°C until the biomarker analyses.

Clinical diagnosis

All patients presented with at least two of the following symptoms or signs: new 
or worsening cough, expectoration of sputum, dyspnea, hemoptysis, pleuritic chest 
pain, radiological evidence of pneumonia, abnormalities on chest auscultation and/or 
percussion, and fever (≥38.0°C). The final clinical diagnosis of RTIs was established 
retrospectively according to pre-defined criteria (39). A diagnosis of CAP required the 
presence of two or more diagnostic indicators as well as in-hospital treatment and/or a 
clinician-documented diagnosis of CAP, confirmed by the assessment of a study doctor. 
In the case of disagreement between the treating physician and the study doctor, 
an additional study investigator would arbitrate. Patients were classified as having an 
infectious exacerbation of chronic obstructive pulmonary disease (COPD) if they had no 
radiological evidence of pneumonia but met two diagnostic criteria and had a history of 
COPD exacerbation. Patients with other infections than the ones specified above, such 
as acute bronchitis, were merged into a third clinical category and classified as other 
respiratory tract infections.

Case classification according to microbiological etiology and clinical 
management

We utilized results from standard microbiological methods and the BioFire FilmArray 
results from the analysis of LRT samples to determine the etiology of the LRTIs in 
individual patients. The actual clinical management defined as a decision to treat versus 
not treat patients with RTIs with antibiotics for a minimum of 120 hours as per national 
guidelines (42) was also considered.

For the identification of protein profiles, the case classifications were as follows: (i) 
Bacterial etiology was defined as the detection of bacteria in LRT samples, no viral 
detections, AND antibiotics administered for ≥120 hours (intravenously and/or oral 
or both, during hospitalization and/or medication prescribed on discharge). (ii) Viral 
etiology was defined as the microbiological detection of respiratory virus other than 
SARS-CoV-2, no bacterial detections, AND antibiotics administered for <120 hours in 
the hospital. (iii) COVID-19 was defined as the detection of SARS-CoV-2 as the only 
virus, no bacterial detections, AND antibiotics administered for <120 hours in the 
hospital. (iv) Mixed bacterial–viral etiology was defined as the microbiological detection 
of virus AND bacteria AND antibiotic given ≥120 hours (intravenously and/or oral or 
both, during hospitalization and/or medication prescribed on discharge). Patients with 
discordant findings [i.e., microbiological detection of only virus (including SARS-CoV-2) 
BUT antibiotics administered for ≥120 hours in the hospital, or microbiological detection 
of bacteria and/or mixed bacterial–viral (including SARS-CoV-2) in LRT samples BUT 
antibiotics administered for <120 hours (including post-discharge)] were excluded from 
this study.

For the identification of transcriptional profiles, the case classifications were defined 
as above; however, patients with mixed bacterial–viral etiology were not included in the 
transcriptional profiling analyses.
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Selected published gene signatures for bacterial–viral discrimination used 
for evaluation

We selected four published gene signatures from the following recent studies for 
evaluation: Li et al. (30) and Ravichandran et al. (29) identified 3-gene (Li-3) and 10-gene 
(Ravichandran-10) signatures, respectively, from cohorts that included COVID-19 patients 
for validation, while Xu et al. (31) and Rao et al. (32) identified 2-gene (Xu-2) and 8-gene 
(Rao-8) signatures that differentiated between bacterial and viral infections in cohorts 
where COVID-19 was not included.

The Bio-plex assay

The Bio-plex human cytokines 27-plex panel kit (Bio-Rad Laboratories Inc., Hercules, CA, 
USA) was used according to the manufacturer’s instructions. The panel consists of the 
following biomarkers: IL1β, IL1RA, IL2, IL4, IL5, IL6, IL7, IL8/CXCL8, IL9, IL10, IL12 (p70), 
IL13, IL15, IL17, eotaxin/CXCL11, bFGF, granulocyte-colony stimulating factor, GM-CSF, 
IFNγ, IP-10/CXCL10, MCP-1/CCL2, MIP1α/CCL3, MIP1β/CCL4, platelet-derived growth 
factor-BB, regulated upon activation T cell expressed and secreted/CCL5, TNF, and VEGF. 
Data acquisition was performed on a Luminex100 analyzer (Luminex Corporation, Austin, 
Texas, USA) according to the manufacturer’s instructions. Cytokine/chemokine concen
trations were measured in pg mL−1.

Standard laboratory tests

CRP and PCT were measured in serum samples within 48 hours of hospital admis
sion using immunoturbidimetric and electrochemiluminescence immunoassay methods, 
respectively. The results from these protein biomarkers obtained by routine analyses 
were combined with data from the bio-plex assay in analyses of discriminatory host 
protein profiles between the clinical groups.

Total RNA extraction

Total RNA concentration and purity were measured using a Nanodrop spectrophotom
eter (Thermo Scientific, Wilmington, DE, USA) and ranged between 2.2 and 15.5 µg 
(average 6.7 ± 3.85 µg). In addition, RNA integrity number was evaluated using an 
Agilent 2100 Bioanalyzer.

Clariom S assay

Clariom S Human Assay (Thermo Fisher Scientific) was performed according to 
the manufacturer’s instructions. Sample labeling and hybridization were undertaken 
according to the GeneChip WT PLUS Reagent Kit User Manual (Thermo Fisher Scientific). 
The array was scanned with the GeneChip Scanner 3000 7G (Thermo Fisher Scientific) by 
the GeneChip Command Console AGCC 4.0 User Manual (Thermo Fisher Scientific). The 
transcriptomic data are publicly available from NCBI GEO (www.ncbi.nlm.nih.gov/geo/) 
under super-series accession GSE236318.

Gene expression profiles were measured using Transcriptome Analysis Console (TAC) 
software (version 4.0.2; Applied Biosystems, Foster City, CA, USA). The significantly 
differentially expressed genes between each pairwise comparison were extracted based 
on the following default criteria: fold change, ≥1.0- or ≤−1.0-fold; P < 0.05 {one-way 
analysis of variance; exact P-values [obtained using an exact test using R package 
edgeR (43) within the TAC software]}. In addition, PCA plots, volcano plots, hierarchical 
clustering, and the distribution of the top 30 gene sets were generated using TAC 
software. Metascape is a powerful tool for gene function annotation analysis (44) used 
to analyze batch genes and proteins to understand the cognition of gene or protein 
functions. It combines numerous reliable functional databases, including GO, Kyoto 
Encyclopedia of Genes and Genomes, Wiki pathways, and Uniprot, to analyze data sets 
with multiple genes, and uses Cytoscape to visualize enrichment networks.
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Statistical analysis

Patient characteristics were summarized using the mean and minimum/maximum or 
count and percentage, as appropriate. Pairwise comparisons (Kruskal–Wallis with Dunn’s 
correction test) were performed between the clinical groups of different etiologies: 
bacterial (n = 36), viral (n = 27), SARS-CoV-2 (n = 22), and mixed bacterial–viral etiol
ogy (n = 38). The Lasso regression model was applied to identify the best discrimina
tory biosignature. As described in other studies (45, 46), optimal tuning parameters 
were found using a cross-validation step repeated 100 times to stabilize the results. 
A predicted probability of <0.5 resulted in the classification of bacterial etiology, 
whereas >0.5 resulted in the classification of viral etiology. This model-based classifi-
cation was compared to participants’ actual “true” classification, and the number of 
correctly classified participants could be identified. Specifically, the predictive abilities 
of the signatures (to classify participants correctly) in both training and test sets were 
summarized utilizing receiver operator characteristic (ROC) curves, sensitivity, specificity, 
and AUC. Analyses were conducted using glmnet, pROC packages in R (R Core Team) 
through the graphical user interface RStudio (www.rstudio.com) (47).

A logistic regression was conducted utilizing gene signatures from studies of other 
research groups (29–32) to discriminate between bacterial etiology and viral + SARS-
CoV-2 etiology in our study samples. To validate the precision of the results, a ROC curve 
was constructed using SPSS 28.
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