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ABSTRACT The human gut microbiome is crucial in health and disease. Longitudinal 
studies are becoming increasingly important compared to traditional cross-sectional 
approaches, as precision medicine and individualized interventions are coming to 
the forefront. Investigating the temporal dynamics of the microbiome is essential for 
comprehending its function and impact on health. This knowledge has implications for 
targeted therapeutic strategies, such as personalized diets or probiotic therapy. In this 
study, we focused on developing and implementing methods specifically designed for 
analyzing gut microbiome time series. Our statistical framework provides researchers 
with tools to examine the temporal behavior of the gut microbiome. Key features of 
our framework include statistical tests for time series properties, predictive modeling, 
classification of bacterial species based on stability and noise, and clustering analyses to 
identify groups of bacteria with similar temporal patterns. We analyzed dense ampli­
con sequencing time series from four generally healthy subjects. Using our developed 
statistical framework, we analyzed both the overall community dynamics and the 
behavior of individual bacterial species. We showed six longitudinal regimes within the 
gut microbiome and discussed their features. Additionally, we explored whether specific 
bacterial clusters undergo similar fluctuations, suggesting potential functional relation­
ships and interactions within the microbiome. Our development of specialized methods 
for analyzing human gut microbiome time series significantly enhances the understand­
ing of its dynamic nature and implications for human health. The guidelines and tools 
provided by our framework support scientists in studying the complex dynamics of the 
gut microbiome, fostering further research and advancements in microbiome analysis. 
The gut microbiome is integral to human health, influencing various diseases. Longitudi­
nal studies offer deeper insights into its temporal dynamics compared to cross-sectional 
approaches. In this study, we developed a statistical framework for analyzing the time 
series of the human gut microbiome. This framework provides robust tools for examining 
microbial community dynamics over time. It includes statistical tests for time series 
properties, predictive modeling, classification of bacterial species based on stability and 
noise, and clustering analyses. Our approach significantly enhances the methodologies 
available to researchers, promoting further exploration and innovation in microbiome 
analysis.

IMPORTANCE This project developed innovative methods to analyze gut microbiome 
time series data, offering fresh insights into its dynamic nature. Unlike many studies 
that focus on static snapshots, we found that the healthy gut microbiome is predictably 
stable over time, with only a small subset of bacteria showing significant changes. By 
identifying groups of bacteria with diverse temporal behaviors and clusters that change 
together, we pave the way for more effective probiotic therapies and dietary interven­
tions, addressing the overlooked dynamic aspects of gut microbiome changes.
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T he gut microbiome plays a crucial role in human health and disease. The majority of 
microbiome studies have relied on cross-sectional data, providing only snapshots of 

its composition at a specific time point (1–3). In recent years, there has been a growing 
recognition of the importance of longitudinal studies, which enable us to explore the 
dynamics of the gut microbiome over time (4–10).

To truly understand how a healthy microbiome functions over time, it is essential 
to study its long-term behavior, including the fluctuation patterns of different bacterial 
species and the formation of bacterial clusters with similar temporal trends. Such an 
understanding is pivotal for deciphering the microbiome’s influence on health and for 
devising personalized therapeutic interventions. For instance, insights into the healthy 
microbiome’s temporal dynamics can inform the development of personalized diets, 
probiotic therapies, and fecal microbiota transplantations, tailoring these interventions 
to individual needs (11–16).

Focusing on the healthy microbiome’s behavior over time allows us to establish a 
baseline of normal microbial fluctuations and interactions. This baseline is instrumen­
tal in identifying deviations associated with disease states, enabling early intervention 
strategies to restore microbial balance. Moreover, by pinpointing key bacterial species 
that contribute to a healthy microbiome, we can guide the use of probiotics and other 
therapies to support microbial health and prevent disease (17). A deeper understanding 
of the gut microbiome’s temporal dynamics is not just about tracking changes but 
also about leveraging this knowledge to improve health outcomes through precise, 
personalized interventions. This approach marks a significant shift toward proactive 
health management, emphasizing the prevention and treatment of conditions linked to 
the microbiome.

Here, by adopting a rigorous statistical approach, we aim to shed light on the 
temporal changes in the gut microbiome and unravel its intricate behavior over time. 
In this study, we investigate the temporal dynamics of the gut microbiome, examining 
how its composition evolves as a community and how individual bacterial species 
behave over time. We also explore whether specific clusters of bacteria exhibit similar 
fluctuations, which could provide insights into potential functional relationships and 
interactions within the microbiome.

In contrast to the prevailing use of observational approaches in many previous 
studies (7, 18), our research distinguishes itself by employing statistical methods to 
analyze human gut microbiome time series data. This distinction is significant as 
statistical analysis allows for a more rigorous examination of microbial dynamics, 
enabling the identification of patterns, trends, and associations that may have been 
overlooked. By applying statistical tests, we not only confirm the consistency of our 
results with prior findings but also provide a systematic and reproducible framework 
that quantifies the behaviors of individual bacterial species. This quantitative approach 
adds depth and reliability to our understanding of the gut microbiome and opens up 
new avenues for personalized medicine and targeted interventions. The framework is 
freely available to the community and can be accessed as a GitHub repository at https://
github.com/Tomasz-Lab/dynamo.

RESULTS

In the first part,  we describe the behavior of the microbiome over time as a whole. 
We examine whether it exhibits white noise behavior and is stationary and seasonal, 
and whether we can predict its change over time. We also demonstrate how the 
taxonomy changes over time. The second part focuses on the analysis of individ­
ual amplicon sequence variants (ASVs) that constitute the microbiome and their 
behavior over time. We present a methodology through which we describe each ASV 
using a longitudinal feature vector. Furthermore, we demonstrate the existence of 
groups of ASVs that exhibit similar behaviors over time. Finally, in the third part,  we 
present the results of graph analysis,  which show groups of bacteria that fluctuate 
together over time.
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Whole community analysis

Since our objective was to analyze long and dense time series to accurately capture 
the dynamics of the gut microbiome, our in-depth analysis required data sets that 
met specific criteria. As a result, our literature survey led us to select a relatively small 
number of data sets. Specifically, we used two publicly available 16S rRNA marker gene 
sequencing data sets that contain data on the human gut microbiome from four adult 
individuals with no reported diseases (Table 1). To maintain consistent nomenclature, 
we refer to each individual using the names originally assigned in the original studies: 
male and female subjects for the first data set, and donor A and donor B for the second 
data set. We acknowledge that a sample size of four subjects is relatively small. However, 
these data sets are the only ones available that meet our specific criteria for this in-depth 
analysis.

The human gut microbiome is individual but stable over time

Initially, we assessed the temporal dynamics of the human gut microbiome. Principal 
coordinate analysis (PCoA) analysis revealed distinct clusters for each subject’s micro­
biome, indicating host specificity and dynamic changes over time (Fig. 1A and C; Fig. 
S1). PCoA plots reveal that each individual’s microbial composition is distinct over time, 
as illustrated in Fig. 1A. Despite the samples being collected across numerous days, 
their compositions remain remarkably consistent within each individual. However, we 
observed that time points associated with specific events exhibit deviations from the 
rest of the data for each subject. For instance, in the female subject (Fig. S1A), the first 
50 time points, which displayed lower alpha diversity compared to subsequent samples, 
were distinctly separated in the PCoA ordination space. Similarly, in donor A (Fig. 1F), 
time points corresponding to travel events showed a clear divergence from the rest of 
the time series. Time points following an episode of food poisoning in donor B also 
demonstrated a notable separation from other samples (Fig. S1B). The male subject’s 
data, however, represented an exception. Not only does the time series vary over time, 
but there is also a significant division among time points that cannot be attributed solely 
to temporal factors. However, our understanding of this phenomenon is limited by the 
absence of comprehensive metadata. To explore the collective dynamics, we computed 
alpha diversity indices [Shannon’s diversity index and Faith’s phylogenetic diversity (PD) 
index] and plotted their fluctuation in time. To assess the temporal dynamics of alpha 
diversity, a linear regression analysis was conducted, relating alpha diversity indices with 
time. Despite pronounced fluctuations, the results suggest that alpha diversity tends to 
oscillate around consistent mean values. Additionally, the model’s coefficient for the time 
variable was close to zero, indicating no significant trend over time and implying relative 
stability in microbial diversity (Fig. 1B; Fig. S2). For donor A, linear regression analysis 
demonstrated a trend toward baseline following perturbations (yellow box in the right 
panel of Fig. 1E) despite day-to-day variations.

Analyzing longitudinal human gut microbiome data from four individuals, we found 
that while each person has a unique microbiome composition, there are common 

TABLE 1 Data set summarya

Study Subject ID Time points ASVb Additional information

Moving pictures of the human 
microbiome (7)

Male 443 1,253 Subjects were undergoing antibiotic treatment prior to 
sampling.Female 185 551

Host lifestyle affects human
microbiota on daily timescales (8).

Donor A 365 1,524 Subject was traveling in days 70–122, which caused a 
change in gut microbiome composition.

Donor B 252 1,569 Subject suffered from food poisoning between days 150 
and 159.

aIn this study, we analyzed two dense and extensive 16S gut microbiome time series from four relatively healthy subjects. We detailed the subjects’ sex, the number of time 
points at which each subject was sampled, and the number of unique ASVs in each subject’s gut microbiome. Additionally, we provided information on specific factors 
related to the data set that may influence gut microbiome behavior, such as travel or food poisoning incidents.
bASV, amplicon sequence variant.
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FIG 1 Analysis of general behavior of gut microbiome in time. (A) The scatterplot of the two first coordinates of principal coordinate analysis (PCA) on Aitchinson 

distance. (B) Lineplot of male subject in Shannon’s diversity index over time. The red line represents the trend in Shannon’s diversity index over time, determined 

by fitting a linear regression model of alpha diversity against time. (C) Scatterplot of the two first coordinates of male subject PCoA on Aitchinson distance matrix. 

(D) Rolling mean of male subject taxonomy composition on family level in time (window = 14 days). (E) Lineplot of donor A in Shannon’s diversity index over 

time. The red line represents the trend in Shannon’s diversity index over time, determined by fitting a linear regression model of alpha diversity against time. 

The yellow box showcases days 70–122 when the subject was traveling. (F) Scatterplot of the two first coordinates of donor A PCoA on the Aitchinson distance 

matrix. (G) Rolling mean of donor A subject taxonomy composition on family level in time (window = 14 days).
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dominant bacterial taxa (Fig. 1D; Fig. S1). We observed a shared trend where certain 
bacterial taxa consistently maintained high abundance throughout the duration of 
the longitudinal data, while others showed lower abundance and temporal variability, 
appearing intermittently over time (18, 19). Specifically, Ruminococcaceae, Lachnospira­
cea, Bacteroidaceae, Oscillospiraceae 88309, and Acidaminococcaceae families dominate 
in all four subjects. These bacterial families are commonly found in the human gut 
microbiome and have a shared ability to ferment dietary fibers and produce short-chain 
fatty acids. They contribute to gut health by providing energy to gut cells and exhibiting 
metabolic versatility (20–23).

Predictability of human gut microbiome

In targeted microbiome therapy, the goal is to anticipate the response of the gut 
microbiome community following the administration of therapy (24). To this end, we 
aimed to investigate whether the gut microbiome exhibits properties of a predictable 
time series or if it behaves as a white noise process.

Given the high-dimensional nature of gut microbiome data, the first objective of this 
study was to investigate the behavior of the human gut microbiome as a unified entity. 
To achieve this, we employed alpha diversity as a means of biologically reducing the 
dimensionality of the data to a univariate parameter. Here, we computed two diversity 

FIG 2 Shannon’s diversity index behavior in time. (A) (Left) Autocorrelation coefficient plots (the blue area indicates the significance level, representing 

confidence intervals for the autocorrelation coefficient); (middle) spectrograms showing most dominant seasonalities of the human gut microbiome; (right) 

reconstruction of alpha diversity using five dominant seasonalities plotted against raw alpha diversity change in time. (B) Prediction of alpha diversity change in 

time using a dynamic AutoRegressive Integrated Moving Average with eXogenous variable (ARIMAX) model with fast Fourier transform seasonalities. The gray 

area represents the training time point used to train the model, and the yellow area represents the test set. The orange area represents travel and food poisoning, 

respectively. (C) Plot showing the relationship between a number of used seasonalities to reconstruct alpha diversity and the seasonal reconstruction score.
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indices, namely, the Shannon’s diversity index and Faith’s phylogenetic diversity index, 
to quantitatively assess the diversity and evolutionary relationships among the microbial 
taxa present in the human gut (Fig. S2). Finally, we tested each time series for characteris­
tics such as the similarity to the white noise process, stationarity, and the presence of 
seasonality in the data (Fig. 2).

We investigated whether the human gut microbiome exhibits white noise behavior 
by analyzing the Shannon diversity index and Faith phylogenetic diversity index of 
each subject’s gut microbiome time series. White noise is a stationary process with 
consistent statistical properties like mean and variance over time. In white noise, all 
random variables are independent of each other. This implies that there is no predicta­
ble structure or pattern in the sequence of noise values. If alpha diversity displayed 
white noise behavior, this would imply its variations are random and hard to forecast, 
making subsequent analysis somewhat redundant. To assess whether alpha diversity 
aligns with white noise, we investigated autocorrelation, which would imply depend­
ency on preceding values. Furthermore, we evaluated the spectrum flatness score to 
determine the uniformity of the power across frequencies, a characteristic of white noise, 
providing insight into the diversity’s randomness across different scales. We investigated 
the presence of unit roots in time series to assess their independence from historical 
data. A time series is considered stationary if its statistical properties remain constant 
over time. Conversely, a time series with a unit root is non-stationary, indicating that 
its mean and variance can vary over time. Our study began by examining autocorre­
lation using the Ljung–Box test, which assesses the dependency of alpha diversity 
values on preceding ones. This analysis, alongside spectral flatness scores that indicate 
uniformity of power across frequencies typical of white noise, provided insights into 
the randomness of diversity across different scales. We further explored the presence 
of unit roots in time series to determine their stationarity—a characteristic indicating 
whether statistical properties remain constant over time using augmented Dickey–Fuller 
(ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. The ADF test determines if 
a process is stationary, while the KPSS test assesses whether a time series is stationary 
around a trend. The ADF test confirmed that both Shannon’s and Faith’s phylogenetic 
indices are stationary across all subjects. The KPSS test showed that the alpha diversities 
of donor A and donor B are trend stationary. For male and female subjects, the test 
indicated that these series are trend stationary and might require detrending to become 
stationary. The Ljung–Box test was run on 70 lags, and we found that the presence of 
autocorrelation was statistically significant for all 70 lags. The spectral flatness score was 
calculated for the first 150 days of each time series, aligning with the duration of the 
shortest time series (150 days) for consistency. The analysis was performed on detrended 
data. The low flatness scores indicate that all alpha diversities across all subjects do not 
resemble white noise. According to the definition, a series approaching a flatness score 
of 1 would exhibit characteristics of white noise. Our findings confirmed that the gut 
microbiome exhibits both autocorrelations, suggesting a dependence on its previous 
states. Unit root tests supported the stationary nature of the human microbiome, 
indicating relatively stable composition over time (Fig. 2A, left panels; Fig. S3; Table 2). 
Volatility clustering analysis identified regions of increased variance (Fig. S4). However, 
the lack of metadata limited the understanding of the underlying factors driving this 
variability. The observed characteristics, including stationarity, autocorrelation presence, 
and absence of white noise behavior, indicate the predictability of the gut microbio­
me’s future behavior on a general level. However, for a comprehensive understanding, 
relevant metadata are necessary to address local perturbations. Through the analysis of 
the autocorrelation function (ACF) and the partial autocorrelation function, we identified 
the presence of seasonal components—repetitive fluctuations of alpha diversity over 
time that are not related to specific times of the year—in longitudinal human micro­
biome data. Our investigation of these repetitive patterns aimed to determine whether a 
cyclic fluctuation exists within the gut microbiome community.
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We hypothesize that this fluctuation may be driven by the production of metabolites 
by one group of bacteria, followed by the subsequent growth of another group. Using 
fast Fourier transform (FFT) analysis further, we detected multiple dominant seasonal 
patterns unique to each subject (Fig. 2A, middle panels; Fig. S3C and D). Additionally, low 
power density spectra indicated the presence of noise and short artificial seasonalities. 
To assess the reliability of the detected seasonality, we introduced a measure called the 
seasonal reconstruction score. This score quantifies the Spearman correlation between 
the raw signal and the signal reconstructed using N Fourier seasonalities. To validate 
these patterns, we performed inverse fast Fourier transform (IFFT) and calculated the 
seasonal reconstruction score, finding that at least five seasonalities were required for 
optimal reconstruction (Fig. 2A, right panels; Fig. S3C and D).

Finally, we aimed to validate the predictability of the human gut microbiome using a 
dynamic ARIMAX model. The model incorporated dominant seasonal patterns identified 
through FFT analysis, as standard seasonal autoregressive integrated moving average 
(SARIMA) models were deemed insufficient. A SARIMA model is a statistical method used 
to forecast seasonal time series data by incorporating both non-seasonal and seasonal 
terms, specifically designed to model a single type of seasonality in the data. ARIMAX 
models were trained on the initial 80 days of data for each subject (70 for donor A, 
where food poisoning started at day 71), and the parameters were optimized through 
grid search cross-validation (male p: 3, d: 0, q: 10, N: 3; female p: 2, d: 0, q: 7, N: 6; donor 
A p: 3, d: 0, q: 1, N: 6; donor B p: 4, d: 0, q: 7, N: 6). The model provided a good fit to 
the training data and satisfactory performance on the test set (Fig. 2B; Fig. S5). However, 
there were certain regions in the time series where the model was unable to accurately 
predict fluctuations, as seen in donor A between days 71 and 122, where a drop in 
alpha diversity occurred due to subject traveling, and in donor B after day 150, during a 
period of diarrhea (Fig. S5). Nonetheless, our primary aim was to test the self-explanatory 
nature of the human gut microbiome and evaluate the ability of the model to predict 
fluctuations in the absence of metadata.

Individual features analysis

To gain a comprehensive understanding of the behavior of individual bacteria within 
the human gut microbiome, we generated longitudinal feature vectors for each taxon 
(represented by ASVs) that captured their characteristics over time. Each feature vector 
was of length 12 (Table 3). The vectors included general time series characteristics, that 
is, white noise behavior, stationarity, presence of a seasonal component, and impact 
on the variability of the overall time series. We simplified the quantification of bacterial 
behavior by defining two artificial characteristics: noise and seasonal behavior, based 
on fixed thresholds. Bacteria exhibiting random behavior with no autocorrelation and a 
flatness score above 0.4 were classified as “noise” (Fig. S6). We used fast Fourier transform 
analysis to identify dominant seasonal patterns for each taxon. Bacteria were classified 
as seasonal if their seasonal reconstruction score for five Fourier modes was at least 0.5 
(Table 3; see Materials and Methods).

TABLE 2 Statistical tests showing alpha diversity behavior in time

Subject Alpha diversity KPSS test P value ADF test P value Ljung–Box test P value Flatness score

Male Shannon’s diversity index 0.1 0.00a <0.05a 0.04
Faith’s PD 0.049a 0.00a <0.05a 0.05

Female Shannon’s diversity index 0.1 0.00a <0.05a 0.02
Faith’s PD 0.092 0.00a <0.05a 0.023

Donor A Shannon’s diversity index 0.1 0.00a <0.05a 0.04
Faith’s PD 0.1 0.00a <0.05a 0.14

Donor B Shannon’s diversity index 0.1 0.00a <0.05a 0.03
Faith’s PD 0.1 0.00a <0.05a 0.02

aIndicates a P value below the significance level of 0.05.
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First, we sought to identify unique longitudinal signatures in each subject’s gut 
microbiome by individually analyzing selected longitudinal characteritics (Table 3). 
The analysis of bacterial abundance in all four subjects revealed distinct patterns. A 
significant proportion of bacteria were classified as rare or predominantly absent, while 
a smaller fraction was consistently present in the gut microbiome. Surprisingly, almost 
half of each individual’s microbiome was classified as noise, likely resulting from technical 
factors and metabolic conditions (25) (Fig. S6 to S8). A considerable portion of ASVs in 
each subject displayed stationary behavior (Fig. S9). The analysis of seasonality in the 
human gut microbiome revealed that only a small fraction of bacteria exhibited seasonal 
behavior, indicating a high variability in their patterns (Fig. S10 to S13). Interestingly, 
shorter seasonalities were predominantly characterized as noise, while longer seasonali­
ties showed higher seasonal reconstruction scores (Fig. S11). Furthermore, we observe 
that the seasonal patterns identified in specific bacteria align with the overall seasonality 
of the gut microbiome composition, as determined through alpha diversity analysis. 
This consistency underscores the presence of significant seasonal traits in the gut 
microbiome, suggesting that the observed global seasonality arises from the cumulative 
seasonal fluctuations of various bacteria (Fig. S12 and S13).

Longitudinal regimes of the human gut microbiome

After creating a longitudinal characteristics vector for each ASV, we aimed to identify 
groups of taxa exhibiting similar patterns of behavior in the human gut microbiome. For 
this purpose, we generated a Spearman correlation matrix from feature vector variables 
to determine correlated characteristics (Fig. 3).

After analyzing the correlation matrix of longitudinal characteristics, we categorized 
bacteria into six groups based on their specific longitudinal behavior: (i) prevalent and 
stable, (ii) prevalent but unstable, (iii) temporal and stable, (iv) temporal but unstable, (v) 
rare, and (vi) white noise (see Table 4).

The “prevalent and stable” group consists of bacteria that are consistently present 
in over 90% of the time series and statistical tests confirmed their stationarity. These 
bacteria show high abundance and are not classified as noise, suggesting their stable 
presence in the human gut microbiome despite environmental changes. Bacteria 
classified as “prevalent but unstable” are also present in over 90% of the time series 
but do not demonstrate stationarity. Due to their high abundance and non-white noise 
behavior, these bacteria have a significant impact on time series variance (Fig. S14). The 
“temporal and stable” group comprises bacteria that are present in more than 20% but 
less than 90% of the time series, exhibit stationarity, and are not classified as noise. 
Bacteria in the “temporal but unstable” group share the same prevalence patterns as 
the temporal and stable group but lack stationarity, indicating fluctuating behavior over 
time. All groups, except for the prevalent and stable group, are classified as a part of 
the volatile gut microbiome. We hypothesize that these bacteria have more complex 
metabolic requirements and are more responsive to environmental changes such as 
diet and medications (19, 26, 27). Additionally, we identified two distinct groups: “rare” 
bacteria and “white noise” bacteria. Rare bacteria are present in less than 20% of the 

TABLE 3 Characteristics of gut microbiome time series used to construct a feature vector

General time series characteristics Mean abundance standard deviation prevalence 
trend

White noise behavior Presence of autocorrelation flatness score
Stationarity ADF test

KPSS test
Presence of seasonal component Dominant seasonality

Seasonal reconstruction score
Impact on data variability First component feature loading

Second component feature loading
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time series but do not exhibit white noise behavior. We see from further analyses that 
those bacteria appear in case of specific events such as food poisoning in donor’s 
B time series. On the other hand, white noise bacteria are characterized by low abun­
dance and occurrence. We hypothesize that the white noise bacteria observed in gut 
microbiome time series data can originate from multiple sources. First, technical noise 
may be introduced due to variability across sequencing batches, which can lead to the 
erroneous appearance of some bacteria. This could result from errors in the sequencing 

FIG 3 Correlation of longitudinal characteristics of the human gut microbiome. The Spearman correlation matrix represents the relationships between different 

longitudinal behaviors of the human gut microbiome. The size of the dots indicates the magnitude of the correlation coefficient, whereas the color denotes 

whether the correlation is positive (red) or negative (blue).

TABLE 4 Criteria used to define longitudinal regimes of the gut microbiome based on results of statistical 
tests

Regime White noise Prevalence Stationarity

Flatness 
score

Ljung–Box test P 
value

ADF P value KPSS P 
value

White noise ≥0.4 >0.05 <0.1 <0.05 >0.05
Rare <0.4 <0.05 <0.1 >0.05 <0.05
Stable prevalent <0.4 <0.05 >0.9 <0.05 >0.05
Unstable prevalent <0.4 <0.05 >0.9 >0.05 <0.05
Stable temporal <0.4 <0.05 (0.1–0.9) <0.05 >0.05
Unstable temporal < 0.4 <0.05 (0.1– 0.9) >0.05 <0.05
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equipment, during the DNA isolation process, or from sample contamination. Second, we 
propose that biological noise could contribute to the observed fluctuations. This might 
encompass bacteria exhibiting highly stochastic behaviors that defy prediction. Such 
unpredictability could stem from metabolic interactions with other bacteria, which are 
not discernible through 16S rRNA gene sequencing data, or it could be related to the 
presence of certain opportunistic pathogens in the gut or highly dependent on external 
factors (such as diet) that we are missing in our data set. Upon thorough analysis of 
the correlation matrix, it becomes evident that regimes identified through our statistical 
analyses exhibit distinct characteristics. Features characterized by high prevalence and 
mean are associated with greater autocorrelation values and a lower flatness score and 
exert a more substantial influence on the variance of the entire data set, as indicated 
by higher principal component analysis (PCA) loadings. Conversely, features of lower 
prevalence demonstrate a minimal impact on time series variance, indicated by lower 
PCA loadings, exhibit a higher flatness score, and display a lack of autocorrelation.

Next, we performed an analysis to determine the prevalence of each longitudinal 
regime in every subject. We observed that in all four subjects, bacteria categorized as 
rare or white noise accounted for over 50% of all rarefied ASVs (Fig. 4A) or even 70%–90% 
when raw counts are considered (Table S1). The next, most abundant group were the 
“temporal” bacteria (both “stable” and “unstable”). Moreover, every subject contained 
a small portion of prevalent and stable bacteria (Fig. 4A). Finally, for all subjects, we 
analyzed the temporal fluctuations of each longitudinal group over time. Interestingly, 
although the stable bacteria group representatives were less numerous, they constituted 
the majority of the time series in terms of abundance. This was followed by a smaller 
fraction of temporal bacteria (stable and unstable) exhibiting higher volatility. Addition­
ally, rare bacteria appeared for short periods of time, and bacteria defined as white noise, 
despite being the most numerous group, were nearly undetectable when taking into 
account their abundance (Fig. 4B).

Analysis of bacterial clusters

In order to shed more light on bacterial redundancy (i.e., how many bacteria behave 
similarly) and their relationships, we performed cluster analysis. First, for each subject, 
we computed proportionality (which is a recommended method for correlation analysis 
of compositional data (28). The proportionality matrix ρ (of shape N × N, where N is the 
number of all species in the data set) has been transformed to a pseudosimilarity matrix 
as |ρ|, meaning that any two species that correlate or anti-correlate have a similarity of 1 
and 0 if they do not (this reflects the fact that they may be some dependency between 
them and should be placed close to each other in the graph). Next, we generated 
NetworkX graphs using spring layout (see details in Materials and Methods). Results are 
presented in Fig. 5.

We identified three distinct regions in the network: a large cluster in the center of 
the graph that consists of stochastic and very rare taxa that did not pass the rarefaction 
step (visible only when both noisy and signal species are considered; see Fig. S15A), 
medium-size connected components, and a distant cloud of bacteria comprising mostly 
singletons, i.e., species that do not (anti)co-occur with the others. Figure 5A shows 
denoised bacteria (i.e., species after rarefaction that do not behave as white noise) 
colored by the longitudinal regime for ρthr = 0.6, i.e., |ρ| ≥0.6 (see Fig. S15L and M 
for other thresholds). Clearly, rare and prevalent bacteria cluster out separately and 
constitute the largest part of the microbiome (in terms of number of species), but 
we can also notice close connections between practically all regimes (see, e.g., large 
connected component #1 for male and donor B). We present more examples (colored 
by abundance, occurrence, taxonomy, PC loading, seasonality, stationarity, and more) 
and discussion in the supplement. In Fig. 5B and C, we show time evolution of bacteria 
in different components (cloud, largest connected components, the rest) stratified by 
the longitudinal regime for male and donor B subjects, respectively (see also Fig. S16A 
and B for other subjects). First, majority of clouds and largest connected components 
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(except, e.g., the cloud for donor B and connected components for female subject) 
are dominated (in terms of total counts) by stable species and contain all regimes 
apart from noisy features that, when included, form a large cluster in the center (Fig. 
S15A). However, the difference between the cloud and connected components is not 
obvious and is subject dependent (threshold put on |ρ| also matters but does not change 
qualitatively the results; see Fig. S16C and D). Second, temporal and unstable species 
have a large effect on microbiome dynamics, again, irrespective on the data set. In Fig. 
5D, we present the PC1 + PC2 loading (the meaningfulness of a given region) of the 
cloud, the largest connected components, and the rest as a function of ρthr. Clearly, 
the connected components tend to be more important for explaining the microbiome 

FIG 4 Longitudinal characteristics of the human gut microbiome. (A) Barplots showing the number of bacteria exhibiting specific regimes in each subject. 

(B) The fluctuation in counts over time for each longitudinal regime using a stacked barplot. Panels represent male, female, donor A, and donor B regime 

fluctuations in time. The x-axis represents time points in days, and the y-axis represents relative abundance of particular regimes.
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FIG 5 Cluster analysis performed with NetworkX. (A) Network (one panel per subject) of bacterial species (nodes) where connections (edges) represent 

proportionality equal or stronger than ρthr = 0.6 (equivalent to |ρ| ≥0.6). Colors correspond to longitudinal regimes defined in the Individual Features Analysis 

section (“none” represents bacteria that did not pass rarefaction). The red circle in each panel separates the inner part from the “cloud.” (B) change in total counts

(Continued on next page)
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variability with increasing ρthr. However, even more importantly, the size of this effect is 
subject independent.

The |ρ| threshold for our analyses was selected for its ability to optimally distinguish 
between different regimes; however, this threshold may differ for other researchers 
employing our pipeline in various studies. We encourage researchers to experiment with 
different |ρ| values and explore varying properties of bacterial clusters to determine the 
most appropriate parameters for their specific needs.

DISCUSSION

In this study, we leveraged four long and dense time series of the gut microbiome in 
generally healthy individuals to elucidate its temporal dynamics. Our findings confirm 
subject-specific microbial signatures (29–32). Through our analysis of alpha diversity 
trends in the gut microbiome over time, we demonstrate that the gut microbiome 
behaves as a unified, non-stochastic entity. It exhibits stationarity and predictability 
based on its previous states, evidenced by the presence of autocorrelation and the 
efficacy of our predictive model in forecasting its trends. Additionally, our analyses reveal 
that at the taxonomic level, each individual’s gut microbiome is primarily composed of 
a few dominant groups of bacteria, with occasional temporal blooms of rare bacteria. 
Despite the small number of analyses of healthy gut microbiome behavior in time, our 
results are consistent with previous findings that the gut microbiome is host unique and 
that its composition is stable over time (6, 8, 19, 33–35).

Our study demonstrates the presence of an underlying seasonal pattern in the human 
gut microbiome. Through the application of the FFT, we identify the existence of multiple 
dominant seasonalities within the gut microbiome. Moreover, we establish that by 
utilizing the seasonal component, it becomes possible to predict changes in the human 
gut microbiome over time with satisfactory performance. The gut microbiome is known 
to be strongly influenced by external factors, including diet (36). Previous research on the 
seasonality of the gut microbiome has largely focused on specific data sets from isolated 
religious groups or indigenous hunter-gatherer communities, whose dietary habits are 
closely linked to seasonal changes in weather (37–40). We hypothesize that the observed 
seasonal patterns in the gut microbiome may arise from intricate metabolic interactions 
among bacteria, which depend on various energy sources derived from the diet and/or 
their interactions with the external environment. The fluctuations in nutrient availability 
and dietary composition across seasons could potentially influence the growth and 
activity of specific bacterial groups, leading to the emergence of distinct seasonal 
behaviors. Further investigations into the metabolic pathways and interactions within 
the gut microbiome are warranted to elucidate the underlying mechanisms contribu­
ting to these observed seasonal patterns (18). However, without pertinent metadata, 
annotations of specific bacterial functions (e.g., derived from shotgun metagenomics 
experiments), or more ubiquitous longitudinal study designs, discerning the precise 
origins of these seasonal fluctuations remains challenging.

Next, to define how particular bacteria behave in time, we described each bacteria 
with a longitudinal characteristic vector (Table 3). We create a correlation matrix of 
longitudinal features to derive groups of features that exhibit a similar behavior. Finally, 
we define three large groups of bacterial behavior in time: (i) the stable microbiome, (ii) 
the temporal microbiome, and (iii) noise. We show that the data from the human gut 
microbiome is, in terms of relative abundance, mostly noise that, we hypothesize, might 
derive from technical factors. Then, we show that in all four subjects, there exists a small 

Fig 5 (Continued)

after rarefaction over time for male subjects stratified by regime (color) and group of bacteria (panels), i.e., cloud, largest connected components (indicated by 

numbers in the graphs), and the rest. (C) The same as in panel B but for donor B. In panels B and C, we excluded components comprising only rare species. Rcloud 

represents a diameter that separates the inner part from the cloud. (D) PC1 + PC2 loading against ρthr for bacteria located in the cloud and largest connected 

components.
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fraction of bacteria that, despite being few, are highly abundant and are present in more 
than 90% of the time in the human gut microbiome. Finally, we show that there exists 
a group of volatile bacteria that, we hypothesize, react more vividly to environmental 
changes. Our findings align with previous research by Gibbons et al., indicating that 
the human gut microbiome comprises both predictable autoregressive bacteria and a 
significant portion of stochastic non-autoregressive bacteria (4, 18). Additionally, our 
results suggest that diet and other metadata may play a crucial role in gut microbiome 
dynamics.

Graph analysis (performed with NetworkX) revealed that we can additionally group 
bacteria in a generally healthy human gut microbiome based on their co-occurrence 
relationships: noisy bacteria (the largest part in terms of a total number of species) that 
cluster out together, abundant bacteria (largest part in terms of a total number of counts) 
that presumably drive microbiome dynamics, and a sizeable part of mostly singletons 
(denoted as “cloud”) that are not (anti)correlated with anything else. The last two regions 
are highly heterogeneous in terms of their longitudinal regime, which may indicate 
complex relationships between bacteria from different regimes. The cloud seems to be 
the most intriguing, especially taxa classified as stable and prevalent that are present 
in it. However, higher-quality data (larger taxonomic resolution) would be needed to 
analyze its dynamics and related functions.

Our study aligns closely with previous research, highlighting the coherence of our 
findings. What distinguishes our approach is the use of rigorous statistical methods, 
machine learning algorithms, econometric analysis, and graphical tools to examine the 
behavior of individual bacteria in the human gut. This allows other scientists to more 
efficiently quantify even large quantities of bacteria and gain new insights into the 
composition of the human gut microbiome community while analyzing dense time 
series of human gut microbiome. We believe that our study facilitates scientists in 
understanding the behavior of bacteria in the human gut and aids in the development 
of predictive models. Traditionally, researchers have employed a methodology wherein 
they analyze the top 10% of the most frequently observed bacterial taxa to gain 
a comprehensive understanding of the microbiome dynamics over time (4, 18, 41). 
However, our findings demonstrate that while this approach is indeed valuable and the 
removal of rare bacteria serves as an effective means of reducing dimensionality and 
noise, it is imperative to acknowledge the presence of bacteria that exhibit temporal 
patterns, emerging periodically in response to specific conditions within the host’s 
gastrointestinal tract.

Our research underscores the value of employing dense time series analyses in gut 
microbiome studies and the design of sampling strategies. The demonstrated signifi-
cance of temporal bacteria suggests that relying solely on single-time-point samples 
may miss critical taxa, potentially skewing the accuracy of subsequent classification or 
regression models. We recommend incorporating more frequent temporal series analysis 
to capture the dynamic nature of the microbiome, offering a clearer resolution of its 
temporal behaviors. This approach not only enhances the detection of meaningful 
bacterial activity but also provides a robust framework for more precise and informa­
tive conclusions in microbiome research. Thus, we advocate for a methodological shift 
toward dense time series in microbiome studies to fully leverage the insights such data 
can provide.

Despite the valuable insights provided by our study, there are certain limitations 
that should be acknowledged. First, in order to fully understand the dynamics of 
the microbiome, including seasonality, predictability, and change points, we require 
additional metadata beyond what was available for the studies we analyzed. This 
includes factors such as environmental conditions, dietary habits, or health status, and 
also collecting data following accepted metadata standards (42–44). Second, we aim 
to build on our findings and predict the entire gut microbiome community using all 
identified bacteria. Our results indicate that most bacteria exhibit characteristics of 
a stationary process, suggesting that it should be feasible to forecast their temporal 
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composition. By advancing this model, we hope to identify the key bacterial drivers that 
influence changes in the microbiome over time. Finally, to comprehensively annotate 
the functions of the microbiome, shotgun sequencing data are necessary. While our 
study focuses on ASVs, it is important to note that sequences and taxonomy alone may 
be less robust and informative compared to functions. This is because multiple taxa 
can potentially contribute to the same functions, and different individuals with distinct 
microbiomes may still exhibit functional similarities (35, 45).

Considering an overwhelming disproportion between cross-sectional and temporal 
studies, here we demonstrate the utility of microbiome time series data and present 
a robust and reproducible statistical framework to study it. We show that the gut 
microbiome changes in a predictable way dictated by individual-specific seasonalities, 
and that gut bacteria follow one of six longitudinal regimes. However, it is important 
to note that, at present, there are no available shotgun metagenomic data sets of the 
healthy gut microbiome, which limits the ability to replicate our analysis. The use of 
developed methods is not limited to 16S data and can be applied regardless of the 
sequencing method used. Thus, we believe that with an influx of further investigations 
incorporating shotgun sequencing data and associated metadata, a more comprehen­
sive understanding of the gut microbiome and its dynamics will emerge. It could be an 
important step in a transition from observational population-based studies to personal­
ized solutions addressing individual’s microbiome composition and its unique dynamics.

MATERIALS AND METHODS

Data preparation

Data sets

For all analyses in this study, we used two publicly available 16S sequencing gut 
microbiome data sets containing data of human gut microbiome from four generally 
healthy adult individuals. Data sets were downloaded from the Qiita repository (https://
qiita.ucsd.edu/). Demultiplexing, trimming, and feature table preparation were done 
using the Qiita framework. Missing time points were interpolated using PCHIP interpola­
tion (see below for details). Interpolated data were rarefied to a 18,000-sequence count 
threshold. Rarefaction was performed using QIIME 2 (see below for details). Notably, 
only samples pertaining to the gut microbiome were included in this particular analysis, 
focusing on the microbial composition specifically within the gut.

Data set #1: moving pictures of the human microbiome

The first data set used in this study comprised longitudinal 16S sequencing data 
obtained from the human microbiota (7) . The data set encompassed two individuals and 
covered four different body sites. The first individual was a generally healthy adult male 
who was sampled at four body sites for a duration of 443 days. The second individual, a 
generally healthy adult woman, was sampled for 185 days.

Data set #2: host lifestyle affects human microbiota on daily timescales

The second data set used in this study comprised longitudinal 16S sequencing 
measurements of the human gut and salivary microbiota dynamics for two generally 
healthy adult males (8). The data cover a duration of one year, with the first individual 
sampled for 365 days and the second individual sampled for 252 days.

Data preprocessing

For all data sets, raw data underwent preprocessing steps using the Qiita pipeline. These 
steps included demultiplexing, trimming the sequences to a standardized length of 
100 nucleotides, and feature table preparation utilizing the Deblur algorithm. Following 
the application of the Deblur algorithm, a denoising procedure designed to eliminate 
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sequencing errors while retaining authentic biological sequences, we acquire a collection 
of unique, error-corrected sequences. Each sequence delineates an ASV, and together, 
these sequences constitute the “representative sequences” of the microbial community. 
The resulting feature tables were then downloaded in Biom format, facilitating subse­
quent downstream analyses. For phylogenetic analysis, representative sequences were 
extracted from the data set in FASTA format.

Interpolation

In all four time series, missing time points were present. These gaps occurred either 
because the subjects did not provide a fecal sample on those days or the provided 
samples were not suitable for sequencing. Each time series had missing time points, 
which are detailed in Fig. S22. Missing time points were interpolated using piecewise 
cubic hermite interpolation (PCHIP). PCHIP interpolation is a method that approximates 
a smooth curve or function between data points. It fits a cubic polynomial between 
adjacent points while ensuring the continuity of the function and its derivative. 
PCHIP is well suited for microbiome data analysis as it maintains abundances above 
zero, preserves monotonicity, and avoids overshooting in cases of non-smooth data. 
Interpolation was performed using SciPy v.1.7.3 Python package with default settings.

Rarefaction

After interpolation, all four time series underwent rarefaction to 180,000 sequences 
per sample to mitigate the influence of sequencing depth on alpha diversity analy­
sis. Rarefaction was executed using the QIIME 2 v.2022.2.1 (https://docs. qiime2.org/
2022.2.1/), a comprehensive software package designed for microbiome data analysis, 
and the rarefaction depth threshold was chosen based on rarefaction curves (Fig. S22).

Whole community analysis

PCoA between subjects

Aitchison distance between time points among individuals was calculated. Aitchinson 
distance was calculated on non-rarefied data after interpolation. The Aitchison dis­
tance is a statistical measure used to quantify compositional differences in relative 
abundance data, accounting for the constrained nature of compositional space (28). 
Relative abundance refers to the proportion or percentage of a particular species or 
taxonomic group within a community, compared to the total number of individuals 
or groups present. It is a measure of how common or rare a species is relative to 
others in the same sample. The Aitchison distance is the Euclidean distance between 
compositions that have been transformed using the centered log-ratio transformation. 
It possesses desirable properties such as scale invariance, perturbation invariance, 
permutation invariance, and subcompositional dominance, which are not present in the 
standard Euclidean distance (46). Aitchinson distance matrix was created from calcula­
ted distances between the time points of each individual. Next, principal coordinate 
analysis (PCoA) was used on the distance matrix to reduce data dimensionality. PCoA is a 
dimensionality reduction technique used to visualize and explore patterns in multivari­
ate data. It converts a distance or dissimilarity matrix into a set of orthogonal axes 
called principal coordinates, where each axis represents a linear combination of the 
original variables. Finally, using seaborn v.0.11.2 and Matplotlib v.3.1.3 Python packages, 
we visualized the first two dimensions of the PCoA results to gain insights into the 
dissimilarities among the time series.

PCoA on individual subject

Aitchison distance between time points within the same individual was calculated. 
Aitchinson distance was calculated on non-rarefied data after interpolation. Next, PCoA 
was used to reduce the dimensionality of data, and the two first components were 
visualized using seaborn v.0.12.1 and Matplotlib v.3.5.3 Python packages.
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Phylogenetic tree preparation

Phylogenetic tree construction was performed using QIIME 2 framework pipeline. The 
pipeline begins by using the mafft program to align representative sequences. Next, the 
pipeline filters the alignment to remove highly variable positions, which can introduce 
noise to the phylogenetic tree. Then, FastTree is used to generate the phylogenetic tree 
from the masked alignment. Finally, midpoint rooting is applied to position the tree’s 
root at the midpoint of the longest tip-to-tip distance in the unrooted tree. For this 
analysis, we use a rooted tree.

Alpha diversity calculation

For each of the four individuals, we computed Shannon’s diversity index and Faith’s 
diversity index on the rarefied gut microbiome data. Shannon’s diversity index (47) 
measures the richness and evenness of species in a community, focusing on species 

abundance distribution: SD = − i = 1

s pilogpi, where s is the number of ASVs) and pi is 

the proportion of the community represented by ith ASV. Faith’s phylogenetic index (48) 
incorporates phylogenetic relatedness among species, emphasizing the evolutionary 
diversity of the community: PDi =∑j∈T Iij branchlenj(T), where PDi is Faith’s PD for sample 
i; Iij indicates if sample i has any features that descend from node j; and branchlenj(T) 
indicates the length of the branch to node j in the tree T. Faith’s phylogenetic index was 
computed utilizing a rooted tree that was generated following the instructions outlined 
in the Phylogenetic Tree Preparation section. By constructing the rooted tree using the 
specified methodology, Faith’s phylogenetic index could be accurately calculated and 
applied to assess the phylogenetic diversity within the studied data set. Alpha diversity 
indexes were calculated within the QIIME 2 v.2022.2.1 framework.

Volatility

For each subject’s alpha diversity (Shannon’s diversity index and Faith’s phylogenetic 
index), the volatility was defined as the average conditional variance observed through­
out the entire time series. The conditional variance was obtained by fitting a generalized 
auto-regressive conditional heteroskedasticity GARCH(1,1) model to the time series, with 
the model parameters determined through maximum likelihood estimation. A GARCH 
model is characterized by two primary parameters: p for the order of the autoregressive 
component (GARCH terms) and q for the order of the moving average component (ARCH 
terms) that models the conditional variance of the time series. The choice of 1, 1 for the 
GARCH model parameters was based on the observation that higher values did not yield 
improved results. The GARCH model was fitted using the arch v.5.3.1 Python package.

Trend analysis

Trend was calculated using a linear regression model, where time was the explanatory 
variable and alpha diversity index was the response variable. The explanatory variable 
was standardized such that it has 0 mean and variance of 1. We defined the trend of the 
alpha diversity index as a regression coefficient of time. The linear regression model and 
data scaling were calculated using scikit-learn v.1.0.2 Python package.

Taxonomy analysis

Taxonomy was assigned to interpolated and rarefied data. To assign taxonomy we first 
trained a naive Bayes classifier on the GreenGenes2 2022.10 database. Next, we assigned 
taxonomy to each subject’s sequences. Training of the classification as well as taxonomy 
assignment was performed within QIIME two framework. Plotting was performed using 
the seaborn v.0.11.2 python Package. For the sake of clarity in visualization, the plot 
displays only the seven most abundant bacterial families. All other bacterial families have 
been aggregated under the label “other” to simplify the presentation.
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Autocorrelation and partial autocorrelation

For each subject, the autocorrelation coefficient for 70 lags was calculated on alpha 
diversity variables (Shannon’s diversity index and Faith’s phylogenetic index). 95% 
confidence intervals were used to assess the statistical significance of the autocorrelation 
coefficient. The selection of 70 lags in gut microbiome data were somewhat arbitrary, as 
it was primarily chosen to effectively demonstrate the seasonal fluctuations. However, 
the choice of the specific number of lags can be subjective and dependent on individual 
preferences and research objectives.

For each subject, partial autocorrelation coefficient for 70 lags was calculated on 
the alpha diversity variable (Shannon’s diversity index and Faith’s phylogenetic index). 
Ninety-five percent confidence intervals were used to assess the statistical significance 
of the partial autocorrelation coefficient. Both autocorrelation and partial autocorrelation 
coefficients were calculated using statsmodels v.0.13.5 Python package with default 
settings and a significance level of 0.05.

Ljung–Box test

For each subject, the autocorrelation test was run on alpha diversity variables (Shannon’s 
diversity index and Faith’s phylogenetic index). The Ljung–Box test (49) is a statistical 
test used to determine whether a time series is autocorrelated. The lag parameter was 
initially set to 70, offering a solid default value. Nevertheless, users have the freedom to 
customize it based on the length of their time series for optimal results. For each lag, 
we assumed that the autocorrelation is present if the P value is below the significance 
level of 0.05. The Ljung–Box test was performed using the statsmodels v.0.13.5 Python 
package with default settings and a significance level of 0.05.

Unit root tests

In our analysis of the microbiome’s overall stationarity, we conducted two unit root tests, 
namely, the KPSS and ADF, on both alpha diversity measures—the Shannon’s diversity 
index and Faith’s phylogenetic index (50). The KPSS test examines whether a time series 
displays trend or non-stationarity, while the ADF test determines the presence of a unit 
root, indicating non-stationarity.

In the KPSS test, the null hypothesis asserts that the time series is stationary, with 
constant statistical properties over time, while the alternative hypothesis suggests 
non-stationarity, implying variations over time. Conversely, the ADF test’s null hypothesis 
proposes the presence of a unit root in the time series, indicating non-stationarity, while 
the alternative hypothesis suggests stationarity, implying that the statistical properties of 
the time series remain constant over time.

Both tests were performed using the statsmodels v.0.13.5 Python package with 
default settings and a significance level of 0.05.

Spectrum analysis

For each subject, to detect repetitive patterns in alpha diversity (Shannon’s diversity 
index and Faith’s phylogenetic index), we used FFT (51) to detect dominant seasonal­
ities. FFT is an efficient algorithm used to transform a time-domain signal into its 
frequency-domain representation. It allows for the rapid computation of the discrete 
Fourier transform by exploiting symmetries and redundancies in the data. To ensure 
result generalization, we focused on the initial 150 days of each individual’s time series. 
This duration was chosen because it represents the shortest length where no significant 
events, such as a period of diarrhea affecting the microbiome composition in donor B, 
occurred. We opted to remove this noisy period to enhance the accuracy of our analysis. 
First, we removed the trend from the data. To this purpose, linear regression model 
was fitted as described in the Trend section. Then, the obtained trend was subtracted 
from the variable. Next, we ran FFT on detrended data. FFT results were plotted using a 
spectrogram, where we showed on the x-axis the period in units of days, and we showed 
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on the y-axis the period amplitude. All analyses for this part were done using SciPy v.1.7.3 
Python package.

Flatness score

The spectrum flatness score measures the relative balance between the harmonic and 
non-harmonic components in a signal’s frequency spectrum, providing an indication of 
how “flat” or “noisy” the spectrum is. For each subject’s alpha diversity, we calculated 
flatness score to asses its stochasticity. First, we detrended each time series by fitting a 
linear regression model to it and subtracting the predicted trend. Then, we calculated 
flatness score of the detrended time series using the spectrogram analysis. The flatness 
score was calculated using librosa v.0.10.0 Python package with default settings apart 
from the n_fft (FFT window size) parameter that was set to the half of the time series 
length.

FFT reconstruction

Alpha diversity seasonalities for each subject were sorted based on their amplitude. 
Starting from the seasonality with the highest amplitude, we employed the IFFT function 
to reconstruct the alpha diversity by considering only its N dominant seasonalities. 
Subsequently, we calculated the seasonal reconstructions score between the raw alpha 
diversity index and the alpha diversity index reconstructed using only its dominant 
seasonality. This analysis was performed for up to 10 dominant seasonalities. To visualize 
the relationship between the number of seasonalities used for signal reconstruction 
and the seasonal reconstructions score, we plotted the data using the Python seaborn 
package. IFFT was calculated with SciPy v.1.7.3 Python package. Spearman correlation 
coefficient was calculated with statsmodels v.0.13.5 Python package.

Seasonal reconstruction score

We defined the seasonal reconstruction score as the Spearman correlation coefficient 
between the raw time series and the time series reconstructed using only its dominant 
seasonality.

Alpha diversity prediction

Dynamic Autoregressive Integrated Moving Average (ARIMA) model with a seasonal 
wave generated using fast Fourier transform was used to forecast the behavior of alpha 
diversity over time. The training data set consisted of the initial 80 days for each subject. 
The selection of ARIMA parameters (p, d, and q) and the determination of the number of 
seasonalities required to create the seasonal wave were performed using a grid search 
approach. To assess the performance of the models, we utilized the mean average 
percentage error (MAPE) and Wasserstein distance to measure the similarity between the 
predicted and true values of alpha diversity. The model with the best performance was 
chosen for predicting the test data set. For each time series, we predicted the remaining 
time points and subsequently computed MAPE and Wasserstein distance between the 
true and predicted values of alpha diversity. To gain insights into the predictability of 
alpha diversity solely based on the alpha diversity index, we conducted cross-validation 
by considering consecutive intervals of 20 days. This enabled us to identify periods that 
were more challenging to predict. By calculating MAPE and Wasserstein distance in this 
manner, we obtained an evaluation of model performance on the test set. To fit the 
ARIMA model, statsmodels v.0.13.5 Python package was used. Wasserstein distance was 
calculated using the SciPy v.1.7.3 Python package. Mean average percentage error was 
calculated using the scikit-learn v.1.0.2 Python package.
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Individual features

For each ASV, we constructed a longitudinal feature vector describing feature behavior 
in time. To investigate ASV, we calculated its mean abundance, volatility, prevalence, 
loading, seasonality, trend, stationarity, and white noise behavior.

Mean abundance and standard deviation

For each ASV, we defined mean abundance as the mean number of reads per day in 
the whole time series, calculated on interpolated and rarefied data. Mean and standard 
deviation were calculated with the NumPy v.1.21.6 Python package.

Prevalence

For each ASV, we defined mean prevalence as the percentage of days where ASV is 
present compared to the whole time series length.

Loading

For each ASV, we defined mean loading as the loading derived from PCoA of data 
for each subject (see PCoA on Individual Subject). For each subject, we first calcula­
ted Aitchinson’s distance between all time points. Next, we used PCoA to reduce the 
dimensionality of data into two components, PC1 and PC2, respectively. Feature loading 
refers to the cumulative contribution or influence of individual variables (features) on 
two resulting coordinate axes.

Seasonality

To evaluate the stationarity of each ASV, we initially conducted unit root tests using 
the KPSS and ADF tests. These tests served to determine whether the ASVs exhibited 
characteristics of stationarity or non-stationarity. When the KPSS test categorized the 
ASV as non-stationary, while the ADF test categorized it as stationary, the ASV under­
went a detrending process to remove any underlying trend. Conversely, if the KPSS 
test deemed the ASV as stationary and the ADF test confirmed stationarity, the ASV 
was differenced by computing the differences between consecutive observations. In 
cases where both tests indicated non-stationarity, differencing was applied to the ASV. 
These procedures aimed to enhance the stationarity of the ASV for further analysis and 
modeling. For each stationary ASV, we found dominant seasonalities using FFT. Using 
five dominant seasonalities, we used IFFT to create ASV fluctuation in time using only 
dominant seasonalities. Next, we computed the seasonal reconstruction score between 
the raw and seasonally reconstructed ASV trajectory. We defined an ASV as seasonal 
if the correlation coefficient for maximally five seasonalities is above 0.5. We decided 
on this threshold based on the seasonality analysis shown in Fig. S7. FFT, IFFT, and 
correlation coefficients were run using the SciPy v.1.7.3 Python package with default 
settings.

Trend

For each ASV, trend was calculated using a linear regression model where time is the 
explanatory variable and ASV fluctuation in time is the response variable. The explana­
tory variable was standardized that it has 0 mean and variance of 1. We defined the trend 
of the ASV as a regression coefficient of time. The linear regression model data scaling 
was calculaled using the scikit-learn v.1.0.2 Python package.

Stationarity

To define if a given ASV is stationary, we used two unit root tests (KPSS and ADF; 
see previous subsection for details).  A time series is defined as stationary if  both 

Research Article Microbiology Spectrum

October 2024  Volume 12  Issue 10 10.1128/spectrum.04109-2320

https://doi.org/10.1128/spectrum.04109-23


tests confirm that it does not contain a unit root. Both tests were performed using 
the statsmodels v.0.13.5 Python package with default settings and a significance 
level of 0.05.

White noise behavior

Our subjective definition of white noise behavior was based on two criteria: the absence 
of autocorrelation and a high flatness score. To assess these criteria, we performed two 
statistical analyses: (i) the Ljung–Box test statistics was computed for each ASV’s 70 lags 
using the SciPy v.1.7.3 Python package with the default settings and significance level 
of 0.05; and (ii) the flatness score was calculated for each ASV separately using the 
librosa v.0.10.0 Python package, also using default settings. To establish a threshold for 
the flatness score indicating random behavior, we plotted the Ljung–Box test P values 
against the flatness score. We determined a flatness score threshold of 0.4. Thus, we 
define a time series as demonstrating white noise behavior if the absence of autocorrela­
tion is validated by the Ljung–Box test, with a P value of >0.05 for all lags, and its flatness 
score exceeds 0.4. For threshold analysis, see Fig. S6.

Correlation matrix

We created a Spearman correlation coefficient matrix between longitudinal features 
using combined data for all ASVs from all four subjects. The Spearman correlation 
coefficient was calculated using the SciPy v.1.7.3 Python package.

Cluster analysis

Graphs in Fig. 5 (and in Fig. S15) have been generated using the NetworkX v.2.8.4 Python 
package (https:// networkx.org/) using spring layout (spring_layout method) with default 
parameters. Input matrix (so-called pseudosimilarity matrix) has been prepared as 
follows: (i) for a given data set, raw counts (after interpolation; for donor B, only the 
first 150 days have been taken into account) were transformed using centered log-
ratio transformation with pseudocount equal to 1 using the skbio.stats.composition.clr 
method (scikit-bio v.0.5.6); (ii) all-vs-all proportionality matrix ρ has been computed as 
(NumPy v.1.23.5) rho(x, y) = 1 − numpy.var(x − y) / (numpy.var(x) + numpy.var(y)); (iii) 
for a given ρthr (a parameter that controls which species co-occur on anti co-occur), the 
pseudosimilarity matrix has been constructed as |ρ| with all entries ≤ ρthr being zero.

In the article, we use ρthr = 0.6, which provides good separability between different 
subgraphs (compare with Fig. S15L and M, corresponding to ρthr = 0.5 and 0.7, where 
relations between bacteria are more blurred). Certain quantitative results depend on 
ρthr, but most of the qualitative conclusions are independent of that parameter (see 
Discussion in the main text for details).

Hierarchical clustering discussed in the supplement (see Fig. S20 and S21) has 
been performed using the scipy.cluster.hierarchy Python package (SciPy v.1.10.0). First, 
linkages were constructed using the linkage method with method=”complete” (other 
values of that argument have been also tested but did not perform that well). Second, 
clusters were created by cutting the linkage trees using the cut_tree method with 
hc_height = 2 (again, higher values performed poorly).
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