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The hnRNP A2B1 is important for the replication of SFTSV and 
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ABSTRACT The heterogeneous nuclear ribonucleoprotein (hnRNP A2B1) is a key 
component of the hnRNP complex involving RNA modulation in eukaryotic cells and it 
has also been reported to be involved in the replication of the hepatitis E virus, influenza 
A virus, and hepatitis B virus. However, it is not clear whether the role of the hnRNP 
A2B1 in viral replication is conserved among RNA viruses and what is the mechanism 
of hnRNP A2B1 in RNA virus replication. In this study, we first used severe fever with 
thrombocytopenia syndrome virus (SFTSV), a tick-borne RNA virus that causes a severe 
viral hemorrhagic fever as well as other RNA viruses including VSV-GFP, SeV, EV71, and 
ZIKV to demonstrate that knockout hnRNPA2B1 gene inhibited viral RNA replication and 
overexpression of hnRNP A2B1 could restore the RNA levels of all tested RNA viruses. 
These results suggest that hnRNPA2B1 upregulation of viral replication is conserved 
among RNA viruses. Next, we demonstrated that hnRNP A2B1 was translocated from the 
nucleus to the cytoplasm under RNA virus infection including SFTSV, VSV-GFP, SeV, EV71, 
and ZIKV, suggesting translocation of hnRNP A2B1 from the nucleus to the cytoplasm 
is crucial for RNA virus replication. We then used SFTSV as a model to demonstrate 
the mechanism of hnRNP A2B1 in the promotion of RNA virus replication. We found 
that overexpression of SFTSV nucleoprotein can also cause hnRNP A2B1 translocation 
from the nucleus to the cytoplasm and that the SFTSV NP interacted with the RNA 
recognition motif 1 domain of hnRNP A2B1. We further demonstrated that the hnRNP 
A2B1 interacted with the 5′ UTR of SFTSV RNA. In conclusion, we revealed that the 
hnRNP A2B1 upregulation of viral RNA replication is conserved among RNA viruses; the 
mechanism of hnRNP A2B1 in promotion of SFTSV viral RNA replication is that SFTSV 
NP interacted with the hnRNPA2B1 to retain it in the cytoplasm where the hnRNP A2B1 
interacted with the 5′ UTR of SFTSV RNA to promote the viral RNA replication.

IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is a 
tick-borne RNA virus with a high mortality rate of up to 30%. In this study, we first 
used SFTSV as a model to demonstrate that the role of hnRNPA2B1 in viral replication is 
conserved in SFTSV. Then we used other RNA viruses, including VSV-GFP, SeV, EV71, and 
ZIKV, to repeat the experiment and demonstrated the same results as SFTSV in all tested 
RNA viruses. By knocking out the hnRNPA2B1 gene, SFTSV RNA replication was inhibited, 
and overexpression of hnRNPA2B1 restored RNA levels of SFTSV and other tested RNA 
viruses. We revealed a novel mechanism where the SFTSV nucleoprotein interacts with 
hnRNPA2B1, retaining it in the cytoplasm. This interaction promotes viral RNA replication 
by binding to the 5′ UTR of SFTSV RNA. The findings suggest that targeting hnRNPA2B1 
could be a potential strategy for developing broad-spectrum antiviral therapies, given 
its conserved role across different RNA viruses. This research provides significant insights 
into the replication mechanisms of RNA viruses and highlights potential targets for 
antiviral interventions.
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S evere fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne bunyavi
rus that causes a severe hemorrhagic fever termed severe fever with thrombocyto

penia syndrome (SFTS). SFTS is an emerging infectious disease that was first reported 
in China in 2011 and then in East Asia and Southeast Asian countries (1–4). The major 
clinical manifestations of SFTS include fevers, encephalitis, meningitis and multiple organ 
failure, thrombocytopenia, and leukopenia with a high case fatality of up to 30% (1). 
Despite the clinical significance, specific therapeutics against SFTSV are unavailable due 
to the lack of knowledge on host immunity, especially the cellular factor that contributes 
to SFTSV replication. As the host-vector range expands, there is an increased risk of 
transmission and the number of countries reporting infections is increasing.

The SFTSV is an RNA virus and its genome consists of three negative-strand RNA 
segments (5). The L segment encoding viral RNA-dependent RNA polymerase (RdRp) 
is a key player in virus transcription and genome replication, with a size of 6,368 
nucleotides, which contains multiple domains and functions. During the processes of 
genome replication and transcription, L protein synthesizes three distinct RNA species: 
antigenomic complementary RNA (cRNA), genomic viral RNA (vRNA), and capped, mostly 
non-polyadenylated viral mRNA. Genome replication is believed to be initiated de 
novo by the L protein, while viral transcription is dependent on short, capped RNA 
primers derived from cellular RNAs by a mechanism called cap-snatching (6–8). M 
segment encodes glycoprotein precursors, and S segment encodes nucleoprotein (NP) 
and nonstructural proteins (NSs). NP is essential for the transcription and replication 
of viral life cycles and genomes, while NSs play an essential role in SFTSV propagation 
and can form viroplasm-like structures (VLSs) in infected and transfected cells (9–11). 
Typically, the SFTSV life cycle is divided into four steps, namely internalization, repli
cation, assembly, and exocytosis (12). Briefly, following the interaction between viral 
glycoproteins and cell factor, SFTSV is transported into the cytoplasm via endosomes. 
The acidic environment in late endosomes induces a conformational change in SFTSV 
glycoproteins and then triggers the release of genomic RNA into the cytoplasm for 
replication. The SFTSV genome is encapsulated by NP and RdRp to form an RNP 
complex. Assembled bunyavirus RNPs are incorporated into Golgi or ERGIC-originated 
phagophores by interacting with glycoprotein and then released into the extracellular 
space via autophagic secretory vesicles (8, 13, 14).

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins with 
a conserved structure involved in gene transcription, post-transcriptional modification, 
and maturation of precursor mRNAs (15). The hnRNP protein family consists of 20 
proteins, hnRNPs can modulate virus replication by directly interacting with viral RNA 
or protein components or indirectly via regulating host gene expression (16).

The hnRNP A2B1 is a key component of the hnRNP complex in mammalian cells, 
known for controlling RNA splicing (17). It also mediates cellular signal transduction and 
is expressed in various cells, including lung, liver, breast, pancreatic, and glioma (18). 
It regulates pathopoiesis through multiple mechanisms and is involved in the immune 
response and inflammation progression, particularly during viral infection (19). The roles 
of hnRNPA2B1 in virus infection are complex, as it exerts pro-inflammatory, anti-inflam-
matory, or pathopoiesis effects through interactions with multiple DNAs, RNAs, and 
proteins. The hnRNP A2B1 partnership is affected by its expression, localization, and 
post-translational modifications (17, 20). As a result, it has become the therapeutic 
target of many viral infectious diseases. The latest knowledge about the biological 
roles of hnRNPA2B1 in viral infections is essential for understanding the intersection 
between viral RNA or protein and hnRNP A2B1 (21). Recent studies suggest that hnRNP 
A2B1 has a wide range of post-translational modifications regulating its activity and 
responding to cellular stress processes through changes in subcellular localization (17). 
However, no detailed mechanism has been determined for hnRNP A2B1 mediating 
multiple RNA functions through binding to specific sequences in vivo (22). The latest 
research determined the crystal structures of the tandem RRM domain of hnRNP A2B1 
in complexes with various RNA substrates, elucidating the specific recognition of ARG 
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and UAG motifs by the RNA recognition motif 1 (RRM1) and RRM2 domains (23). HnRNP 
A2B1 is a crucial protein in innate immunity, particularly during viral infection (24, 25). 
A previous study suggests that hnRNP A2B1 promotes the replication of RNA viruses, 
such as influenza A virus ribonucleoprotein (vRNP), which can interact and colocalize 
with nuclear protein (NP), knockdown of hnRNP A2B1 decreases viral RNA synthesis, 
suggesting it may act as a positive regulator of influenza A viral RNP activity (17). In 2019, 
hnRNP A2B1 was identified as a novel nuclear DNA sensor, which recognizes viral DNA to 
initiate the activation of IFN signaling and inhibits DNA virus HSV-1 replication (26).

However, no interaction or functional study has been reported with cellular hnRNP 
A2B1 for SFTSV replication. Previous studies have demonstrated hnRNPs could interact 
with the virus proteins of influenza A virus, enterovirus 71, hepatitis C virus (HCV), and 
hepatitis E virus for replication (17, 27–29). Since SFTSV is also a member of a RNA virus 
and SFTSV NP protein is an RNA-binding protein, we hypothesized that SFTSV NP protein 
might also be able to interact with hnRNP A2B1 during SFTSV infection. Therefore, we 
determine whether hnRNP A2B1 plays a key role in the life cycle of SFTSV in this study.

RESULTS

HnRNP A2B1 is upregulated and translocated under SFTSV infection

In our study, to identify whether hnRNP A2B1 was involved in the infection of RNA 
virus SFTSV, the protein and mRNA levels of hnRNP A2B1 were analyzed in SFTSV-infec
ted human macrophage cell line, THP-1. The results indicated that the expression and 
transcription of hnRNP A2B1 were significantly increased under SFTSV infection in a 
time and dose-dependent manner (Fig. 1). We then detected the subcellular distribution 
of hnRNP A2B1 under SFTSV infection with confocal microscopy. Interestingly, hnRNP 
A2B1 was mainly distributed in the nucleus in a steady state, while it was located in 
the cytoplasm in SFTSV-infected mouse embryonic fibroblast (MEF) and THP-1 cells 
(Fig. 1E). To further confirm the translocation of hnRNP A2B1, nuclear and cytoplasmic 
distributions of hnRNP A2B1 proteins were analyzed in SFTSV-infected cells with Western 
blot. Consistent with confocal microscopy results, immunoblotting data showed that 
the hnRNP A2B1 gradually accumulated in the cytoplasm and almost disappeared in 
the nucleus at 48 h after SFTSV infection (Fig. 1F). These results indicated that hnRNP 
A2B1 is upregulated with SFTSV infection and it is translocated from the nucleus to the 
cytoplasm, suggesting hnRNP A2B1 is involved in the SFTSV infection.

HnRNP A2B1 upregulates SFTSV replication

To determine the impact of hnRNP A2B1 on SFTSV replication, we examined the protein 
and mRNA levels of SFTSV NP in SFTSV-infected THP-1 and mouse bone marrow-derived 
macrophages (BMDM) cells. First, we constructed hnRNP A2B1 knockout THP-1 and MEF 
cells using the CRISPER/Cas 9 system (Fig. 2A). Immunoblotting and RT-qPCR results 
showed that the protein and mRNA levels of NP were impaired remarkably in A2B1-/- 

THP-1 and BMDM cells (Fig. 2B and C). To investigate the effect of hnRNP A2B1 on SFTSV 
replication, the growth curves of SFTSV in WT and A2B1-/- MEF cells were measured 
after virus infection. In addition, the viral titers of SFTSV in cell culture supernatant were 
analyzed with immunofluorescence. We found that SFTSV titers in cell culture superna
tant of A2B1-/- MEF cells were much lower than that in WT cells at different time points 
after virus infection (Fig. 2D). Furthermore, overexpression of hnRNP A2B1 could increase 
the protein and mRNA levels of NP in MEF cells during SFTSV infection (Fig. 2E and F), 
and SFTSV replication could be restored partly in A2B1-/- MEF cells under hnRNP A2B1 
overexpression status (Fig. 2F and G). These results suggest that hnRNP A2B1 upregulates 
SFTSV replication.

HnRNP A2B1 upregulation viral replication is conserved among RNA viruses

To explore whether the phenomenon of viral infection-induced translocation of hnRNP 
A2B1 was conserved among RNA viruses. Cells were infected with RNA viruses including 
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Sendai virus (SeV), Vesicular stomatitis virus (VSV-GFP), Enterovirus 71 (EV71), and Zika 
virus (ZIKV), respectively. Immunoblotting data showed that hnRNP A2B1 was transloca
ted from the nucleus to the cytoplasm in all of these RNA viruses (Fig. 3). Wildtype 
THP-1 cells and A2B1-/- THP-1 were used to investigate the role of hnRNP A2B1 during 
the infection of these RNA viruses. At 24 h after VSV-GFP infection, the VSV-GFP can be 
observed in both WT and knockout THP-1 cells under a fluorescence microscope (Fig. 
4A). Virus titers of VSV-GFP were reordered at 8, 12, and 24 h after infection. We found 
that VSV-GFP titers in the cell culture supernatant of A2B1-/- THP-1 cells were much lower 
than that in WT THP-1 cells (Fig. 4B). In addition, we also found that the viral mRNA levels 
of SeV, EV71, and ZIKV were greatly reduced in A2B1-/- THP-1 cells at 12 and 24 h after 
virus infection (Fig. 4C). Furthermore, overexpression of hnRNP A2B1 could increase the 
mRNA levels of VSV-GFP, SeV, EV71, and ZIKV (Fig. 4D). These results suggest that A2B1 
upregulated the replication of the tested RNA viruses.

FIG 1 HnRNP A2B1 is upregulated and translocated under SFTSV infection. (A) THP-1 cells were infected with SFTSV at a multiplicity of infection (MOI) of 10 for 

12, 24, or 48 h. A2B1 protein levels were analyzed with Western blot. (B) THP-1 cells were infected with SFTSV at an MOI of 10 for 12, 24, or 48 h. A2B1 mRNA 

levels were analyzed with RT-qPCR. (C) THP-1 cells were infected with SFTSV at an MOI of 0, 1, 5, or 10 for 48 h. A2B1 protein levels were analyzed with Western 

blot. (D) THP-1 cells were infected with SFTSV at an MOI of 0, 1, 5, or 10 for 48 h. A2B1 mRNA levels were analyzed with RT-qPCR. (E) MEF cells and THP-1 cells 

were infected with SFTSV at an MOI of 10 or 0 (Mock control) for 48 h, SFTSV NP (purple), hnRNP A2B1 (green), and DAPI (blue) were analyzed with confocal 

microscopy. (F) MEF cells were infected with SFTSV at an MOI of 10 for the indicated time points. Nuclear and cytoplasmic proteins were separated. hnRNP A2B1, 

Lamin A, and Rab5 protein levels were analyzed with Western blot. Lamin A and Rab5 were nuclear and cytoplasmic index proteins, respectively. Nuclear and 

cytoplasmic Western blot data were semi-quantified and normalized against Lamin A and Rab5 protein loading control, respectively. Data were obtained from 

three independent experiments (n = 3). **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.

Research Article Microbiology Spectrum

October 2024  Volume 12  Issue 10 10.1128/spectrum.00829-24 4

https://doi.org/10.1128/spectrum.00829-24


SFTSV NP is important for translocation of A2B1

Considering the colocalization between SFTSV NP and hnRNP A2B1 in the cytoplasm 
during SFTSV infection (Fig. 1E), we hypothesized that the nucleocytoplasmic transloca
tion of hnRNP A2B1 could be mediated by SFTSV NP. To verify our hypothesis, MEF cells 
were overexpressed with SFTSV NP. Interestingly, immunoblotting results showed that 
overexpression of SFTSV NP could promote the translocation of hnRNP A2B1 (Fig. 5A). 
Consistently, the confocal microscopy results revealed that exogenous NP was colocal
ized with endogenous hnRNP A2B1 in the MEF cells and exogenous hnRNP A2B1 in 
the cytoplasm in HEK293T cells (Fig. 5B and C). Moreover, CO-IP assays were performed 
to determine the direct relationship between hnRNP A2B1 and NP. We observed that 
NP could be pulled down by endogenous or exogenous hnRNP A2B1 in THP-1 and 
HEK293T cells, respectively (Fig. 5D and E). To further investigate which domain of 
hnRNP A2B1 is important for the interaction with NP, three mutants of hnRNP A2B1 
were generated based on the functional domains of hnRNP A2B1 (Fig. 5F). Confocal 
microscopy data showed that those hnRNP A2B1 mutants were all remained in the 
nucleus when overexpressed in the HEK293T cells. Interestingly, co-expression of SFTSV 
NP and mutants RRM1 or RRM1-2 showed colocalization with NP and mutants in the 
cytoplasm, while the mutant RGG was still kept in the nucleus with NP distributing in 
the cytoplasm (Fig. 5G), suggesting that the RRM1 domain of hnRNP A2B1 was important 
for interaction with SFTSV NP in the cytoplasm. Furthermore, CO-IP results verified that 

FIG 2 HnRNP A2B1 upregulates SFTSV replication. (A) Knockout of hnRNP A2B1 in THP-1 cells and MEF cells was confirmed with Western blot. (B) BMDM cells 

were isolated from A2B1fl/fl and A2B1fl/flLyz2-Cre–/– mice. WT and A2B1-/- THP-1 and BMDM cells were infected with SFTSV at an MOI of 10 for 48 h, and SFTSV NP 

protein levels were analyzed with Western blot. (C) WT and A2B1-/- THP-1 and BMDM cells were infected with SFTSV at an MOI of 10 for 48 h, and SFTSV NP mRNA 

levels were analyzed with RT-qPCR. (D) WT and A2B1-/- MEF cells were infected with SFTSV for the indicated time points. SFTSV titers in cell culture supernatant 

were measured with immunofluorescence assay. (E) MEF cells were transfected with HA-tagged A2B1 for 24 h and then were infected with SFTSV at an MOI of 

10 for 48 h. SFTSV NP protein levels were analyzed with Western blot. (F) WT and A2B1-/- MEF cells were transfected with HA-tagged A2B1 for 24 h, and then 

were infected with SFTSV at an MOI of 10 for 48 h. and SFTSV NP mRNA levels were analyzed with RT-qPCR. (G) WT and A2B1-/- MEF cells were transfected with 

HA-tagged A2B1 for 24 h, A2B1 protein levels were analyzed with Western blot. Data were obtained from three independent experiments (n = 3). **P < 0.01, ***P 

< 0.001, ****P < 0.0001, ns, not significant.
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exogenous NP and hnRNP A2B1 mutants RRM1 and RRM1-2 could be mutually pulled 
down in the HEK293T cells (Fig. 5H). These results suggest that SFTSV NP could mediate 
the retention of hnRNP A2B1 in the cytoplasm via interaction with the RRMs domain of 
A2B1 directly.

HnRNP A2B1 interacts with SFTSV 5’ UTR

We demonstrated that hnRNP A2B1 was utilized for SFTSV, SeV, VSV, EV71, and ZIKV 
replication. To detect which step of the SFTSV, SeV, VSV, EV71, and ZIKV life cycle is 
modulated by hnRNP A2B1, virus binding and internalization assays were performed. Our 
results showed that hnRNP A2B1 showed no effect on the binding and internalization 
of SFTSV, SeV, VSV, EV71, and ZIKV (Fig. 6A and B). Moreover, to detect whether hnRNP 
A2B1 participated in SFTSV replication via binding with viral RNA, cellular RNA was 
immunoprecipitated by hnRNP A2B1 during SFTSV infection. The L, M, and S segments 
of SFTSV RNA were then detected from immunoprecipitated products with PCR, and our 
results verified the interaction between hnRNP A2B1 and three SFTSV RNA segments (Fig. 
6C). The untranslated regions (UTRs) are highly conserved and crucial for the replication, 
transcription, and packaging of the viral genome (30). Hence, the biotin-labeled 5′ and 3′ 
UTR of S segment RNA of SFTSV were synthesized to determine the interaction between 
UTR and hnRNP A2B1. Interestingly, we found that hnRNP A2B1 could interact with 5′ 
UTR but not 3′ UTR (Fig. 6D). These results suggest that the hnRNP A2B1 may enhance 
SFTSV replication by interacting with 5′ UTR of SFTSV RNA segments.

FIG 3 HnRNP A2B1 undergoes nucleocytoplasmic translocation after infection with other RNA viruses. (A–D) THP-1 cells were infected with SeV, VSV, EV71, or 

ZIKV at an MOI of 10 at the indicated time for each virus. Nuclear and cytoplasmic proteins were separated. A2B1, Lamin B1, and Akt protein levels were analyzed 

with Western blot. Lamin B1 and Akt were nuclear and cytoplasmic index proteins, respectively. Nuclear and cytoplasmic Western blot data were semi-quantified 

and normalized against LaminB1 and Akt protein loading control, respectively. (E) THP-1 cells were infected with SeV, VSV, EV71, and ZIKV at an MOI of 10 for 

48 h, 24 h, 12 h, and 24 h. SeV, VSV, EV71, and ZIKV mRNA levels were analyzed with RT-qPCR, respectively.
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DISCUSSION

SFTS, caused by SFTSV, is characterized by fever, thrombocytopenia, and multiple organ 
dysfunction, with a mortality rate of up to 30% (31). However, there are currently 
no specific treatments and the underlying pathogenic mechanism of SFTSV is poorly 
understood (32). Cellular proteins, especially those involved in replication and transla
tion, are used by viruses to multiply within infected cells. A comprehensive understand
ing of virus-host factor interactions is critical to understanding viral pathogenesis. The 
hnRNP protein family is actively involved in the replication and maturation process of the 
virus (33).

It is known that hnRNP A2B1 is the RNA-binding protein that is associated with RNA 
splicing, metabolism, and transport in the nucleus (20). Here, we found that hnRNP 
A2B1 was unregulated in SFTSV-infected cells. hnRNP A2B1 was translocated from the 
nucleus to the cytoplasm during the infection of SFTSV and other RNA viruses, including 
SeV, VSV, EV71, and ZIKV. All these viruses replicate in the cytoplasm, utilizing host 
machinery for RNA synthesis and protein translation. Each virus requires host factors for 
efficient replication, including proteins involved in RNA stability, translation, and immune 
evasion. These viruses form specialized replication complexes that protect viral RNA from 

FIG 4 HnRNP A2B1 upregulation of viral replication is conserved among RNA viruses. (A) WT and A2B1-/- THP-1 cells were infected with VSV-GFP at an MOI of 10 

for 24 h. Green fluorescence was observed with a fluorescence microscope, and cells were observed with an inverted microscope (left). The relative fluorescence 

intensity was calculated using Image J software (light). (B) WT and A2B1-/- THP-1 cells were infected with VSV-GFP virus at an MOI of 10 for the indicated time 

points. VSV-GFP virus titers in cell culture supernatant were measured with TCID50. (C) WT and A2B1-/- THP-1 cells were infected at an MOI of 10 with VSV-GFP, SeV, 

EV71, or Zika for 12 h and 24 h, respectively. Viral mRNA levels were analyzed with RT-qPCR. (D) MEF cells were transfected with HA-tagged A2B1 for 24 h and 

then were infected at an MOI of 10 with VSV-GFP, SeV, EV71, or ZIKV for 12 h and 24 h, respectively. Viral mRNA levels were analyzed with RT-qPCR. Data were 

obtained from three independent experiments (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant.
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degradation and facilitate efficient replication. They all employ mechanisms to modulate 
host immune responses, including interferon signaling and other antiviral pathways (34, 
35). Although all these are RNA viruses, their replication mechanisms are somewhat 
different. Negative-sense RNA viruses (SFTSV, VSV, and SeV) carry RNA genomes that 
must be transcribed into positive-sense RNA before translation can occur. This involves 

FIG 5 SFTSV NP is important for the translocation of hnRNP A2B1. (A) MEF cells were transfected with Flag-tagged SFTSV NP for 24 h, nuclear and cytoplasmic 

proteins were separated, and hnRNP A2B1, Lamin A, and Rab5 protein levels were analyzed with Western blot. Western blot data were semi-quantified and 

normalized against Lamin A and Rab5 protein loading control, respectively. (B) MEF cells were transfected with Flag-tagged SFTSV NP for 24 h, Flag-tagged 

SFTSV NP (red), A2B1 (green), and DAPI (blue) were analyzed with confocal microscopy. (C) HEK293T cells were transfected with the indicated plasmids for 24 h, 

Flag-tagged SFTSV NP (red), HA-tagged A2B1 (green), and DAPI (blue) were analyzed with confocal microscopy. (D) THP-1 cells were infected with SFTSV at an 

MOI of 10 for 48 h, and interaction between SFTSV NP and A2B1 in THP-1 cells was analyzed with CO-IP. (E) HEK293T cells were transfected with HA-tagged A2B1, 

Flag-tagged SFTSV NP for 24 h, and interaction between Flag-tagged NP and HA-tagged A2B1 was detected with CO-IP. (F) The diagram of hnRNP A2B1 domains 

and the truncated hnRNP A2B1 construction. (G) HEK293T cells were transfected with the indicated plasmids for 24 h, Flag-tagged SFTSV NP (red), HA-tagged 

hnRNP A2B1 domains (green), and DAPI (blue) were analyzed with confocal microscopy. (H) HEK293T cells were transfected with the indicated plasmids for 24 h, 

and interaction between Flag-tagged NP and HA-tagged hnRNP A2B1 domains was detected by CO-IP. Data were obtained from three independent experiments 

(n = 3). ****P < 0.0001.
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RdRp synthesizing mRNA and antigenomes (36). Positive-sense RNA Viruses (EV71 and 
ZIKV) have genomes that can be directly translated by host ribosomes into viral proteins. 
The viral RdRp synthesizes new RNA genomes from the positive-sense template (37). 
SFTSV has a segmented genome, which requires coordinated replication and packaging 
of multiple RNA segments (10). Non-segmented genomes (VSV, SeV, EV71, and ZIKV), 
simplifying the replication and packaging process. EV71 utilizes an internal ribosome 
entry site for initiating translation, independent of the cap structure usually required for 
eukaryotic mRNA translation (38). Cap-dependent translation (ZIKV, VSV, and SeV) relies 
on cap-dependent translation mechanisms (39).

After this RNA virus infection, hnRNP A2B1 can sense and undergo a translocation 
from the nucleus to the cytoplasm. Our results indicated translocation of the hnRNP 
A2B1 that was consistent with the translocation of other members of hnRNPs. The 
hnRNPs usually reside in the nucleus and can undergo the redistribution phenomenon 
under virus infection. It has been reported that hnRNP L is mainly localized in the nucleus 
in mock-infected cells but it is redistributed to the cytoplasm after being infected 
with Foot-and-Mouth Disease Virus (40). After EV71 infects host cells, hnRNP A1 was 
transferred from the nucleus to the cytoplasm (41). It is known that SFTSV replication 
occurs exclusively in the cytoplasm (42). In this study, we used co-immunoprecipitation 

FIG 6 HnRNP A2B1 interacts with the 5′ UTR of SFTSV RNA. (A) WT and A2B1-/- MEF cells were infected with SFTSV, SeV, VSV, EV71, and ZIKV at an MOI of 10 

at 4°C for 1 h, SFTSV NP, SeV, VSV, EV71, and ZIKV mRNA levels were analyzed with RT-qPCR. (B) WT and A2B1-/- MEF cells were infected with SFTSV, SeV, VSV, 

EV71, and ZIKV at an MOI of 10 at 4°C for 1 h, following incubation at 37°C for 2 h, SFTSV NP, SeV, VSV, EV71, and ZIKV mRNA levels were analyzed with RT-qPCR. 

(C) MEF cells were infected with SFTSV at an MOI of 10 for 24 h, and the interaction between S, M, or L segment RNA of SFTSV and hnRNP A2B1 was detected with 

RNA immunoprecipitation (RIP). (D) HEK293T cells were transfected with HA-hnRNP A2B1 plasmids for 24 h, and the interaction between 3′ or 5′ UTR of SFTSV S 

segment RNA and hnRNP A2B1 was detected with RNA pulldown assay. Data were obtained from three independent experiments (n = 3). *P < 0.05, **P < 0.01, 

***P < 0.001, ****P < 0.0001.
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to confirm and validate that the NP of SFTSV interacts with the hnRNP A2B1 in SFTSV-
infected and NP-transfected cells. SFTSV NP can mediate the translocation of the hnRNP 
A2B1, and the RRM1 domain of the hnRNP A2B1 was important for interaction with NP 
and retention of the hnRNP A2B1 in the cytoplasm. Generally, hnRNP family proteins are 
known as nuclear proteins that contain nuclear localization signal (NLS) domains, like 
hnRNP H, hnRNP K, and hnRNP U (43–46), which are critical for the nuclear translocation 
process. Consistently, we found that the RRM1 domain of the hnRNP A2B1 showed 
colocalization with a nucleus, indicating the existence of the NLS domain, while SFTSV 
NP could promote the retention of the hnRNP A2B1 RRM1 domain in the cytoplasm. 
Thus, the hnRNP A2B1 could be retained in the cytoplasm by SFTSV NP via capturing the 
RRM1 domain during SFTSV infection.

Meanwhile, we also observed that the hnRNP A2B1-RGG which lacks an NLS domain 
entered the nucleus. We believe that the RGG (arginine-glycine-glycine) domain in 
hnRNP A2B1 is known for RNA binding and interactions with other proteins. This 
domain might mediate interactions with other nuclear import factors or nucleic acids 
that facilitate its nuclear localization (47). Proteins with RGG motifs can interact with 
import receptors other than importin-α/β (48). For example, transportin-1 can recog
nize glycine-rich sequences and mediate nuclear import (49). RNA-binding proteins, 
including hnRNP A2B1, often utilize their RNA-binding domains to facilitate nuclear 
import (50). The binding of hnRNP A2B1-RGG to specific RNA molecules might influ-
ence its nuclear localization, potentially utilizing RNA transport pathways. While the 
absence of a classical NLS in hnRNP A2B1-RGG poses a challenge for nuclear import, 
several alternative mechanisms can facilitate its entry into the nucleus. These include 
the piggyback mechanism, passive diffusion, alternative nuclear import pathways, and 
post-translational modifications (51). Interactions with other nuclear proteins, RNA, and 
import receptors play crucial roles in this process.

The hnRNP A2B1 itself was found important for SFTSV replication using the hnRNP 
A2B1 knockout and non-knockout cell lines. Although knocking out hnRNP A2B1 can 
have some effects on cellular homeostasis, temporarily inhibiting hnRNP A2B1 during 
critical phases of viral replication might reduce viral load while minimizing disruption 
to cellular RNA processes (52). The reversible inhibition would allow cellular functions 
to resume once the antiviral treatment is discontinued (53). The potentially harnessing 
compensatory mechanisms within the cell could help mitigate the effects of hnRNP A2B1 
inhibition on cellular RNA homeostasis (54). For example, other RNA-binding proteins 
might partially compensate for the loss of hnRNP A2B1 function (55). Inhibiting the role 
of hnRNP A2B1 in viral replication offers a promising strategy for combating RNA virus 
infections. However, due to its essential functions in maintaining cellular RNA homeosta
sis, this approach must be carefully designed to avoid compromising normal cellular 
processes. Selective, temporal, and targeted inhibition, along with an understanding of 
compensatory cellular mechanisms, could help achieve this balance, leading to effective 
antiviral therapies with minimal side effects.

In addition, we found that the hnRNP A2B1 was not involved in the binding and 
internalization process of SFTSV, but interacted with 5′ UTR of SFTSV RNA tightly, 
indicating that the hnRNP A2B1 could promote SFTSV replication via interaction with 
SFTSV RNA. We also found the hnRNP A2B1 could promote RNA replication of other RNA 
viruses including SeV, VSV, EV71, and ZIKV. Actually, the proviral role of the hnRNP A2 
has been reported in response to the infection of the Japanese encephalitis virus (JEV), 
which could interact with JEV proteins (core protein and nonstructural protein 5) and 
RNAs in the cytoplasm and promote the synthesis of JEV RNAs (56). Moreover, the hnRNP 
A2B1 was found to act as a positive regulator in viral RNA synthesis of influenza A virus 
by interaction with the viral NP (17). To some extent, our and others’ previous studies 
indicate that the role of the hnRNP A2B1 could be conserved and important for SFTSV 
or other RNA virus infections (17, 24, 26, 27). We hypothesized that the hnRNP A2B1 was 
recruited and retained by virus-related proteins in the cytoplasm and exploited as the 
virus replication platform for viral RNA replication and mRNA synthesis. Moreover, the 
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hnRNP A2B1 plays different functions in RNA virus infection and DNA virus infection. 
The hnRNP A2B1 was discovered as a novel DNA recognition receptor that inhibits 
DNA virus HSV-1 replication in an IFN-dependent manner (26). In DNA virus infections, 
hnRNP A2B1 primarily operates in the nucleus, whereas in RNA virus infections, its role 
is more prominent in the cytoplasm. For DNA viruses, hnRNP A2B1 is heavily involved 
in splicing and processing of viral mRNAs. By contrast, for RNA viruses, its role leans 
more toward stabilizing viral RNAs and facilitating their translation. Both DNA and RNA 
viruses manipulate hnRNP A2B1 to alter host mRNA splicing and stability, but the specific 
interactions and outcomes can vary significantly depending on the type of virus (17, 24, 
27, 51).

The effect of the hnRNPs as proviral or antiviral factors varies in different viruses 
(33). The hnRNPs play a crucial role in regulating viral replication in three ways. First, 
they bind directly with viral genomes to influence viral propagation. Previous studies 
have shown that hnRNP K interacts with HCV RNA to suppress HCV particle production 
(28), while hnRNP C interacts with the early 3′-untranslated region of human papilloma
virus type 16 (HPV16) and activates HPV16 late mRNA splicing, contributing to HPV16’s 
pathogenicity (57). hnRNP A1 binds to the 5′ and 3′ ends of murine norovirus 1 and SARS 
Coronavirus viral RNA to help RNA circularization (58), while hnRNP Q interacts with the 
3′ end of the transmissible gastroenteritis coronavirus genome to play a positive role 
in viral replication (59). Second, hnRNPs interact with viral-encoded proteins to regulate 
viral replication. hnRNP H interacts with the dengue virus non-structural one protein 
and helps the virus multiply (60). A previous study identified hnRNP H1 as interacting 
with HCV core protein to modulate HCV or cellular functions during HCV infection 
(61). Lastly, hnRNPs bind with both the viral genome and the viral-encoded protein to 
function. Previous studies have shown that hnRNP K and hnRNP A2B1 are virus-suppor
tive factors interacting with hepatitis E virus RNA at promoter regions (29), while hnRNP 
K interacts with nonstructural proteins of Sindbis virus, enterovirus 71, hepatitis B virus, 
and viral subgenomic mRNA to facilitate viral replication (62–64). However, the specific 
influence of hnRNP A2B1 in the process of SFTSV infection has not been investigated, our 
identification of the mechanism of interaction of the hnRNP A2B1 with SFTSV NP will be 
important in understanding SFTSV infection.

The previous studies demonstrated that the hnRNP A2B1 played a role in some RNA 
viruses, with unknown mechanisms (17, 27, 33). In this study, we demonstrated that 
hnRNP A2B1 can upregulate the replication of all RNA viruses tested including SFTSV, 
VSV-GFP, SeV, EV71, and ZIKV. These results suggest that hnRNP A2B1 upregulation of 
viral replication is most likely conserved among RNA viruses. We demonstrated that 
hnRNP A2B1 was translocated from the nucleus to the cytoplasm under RNA virus 
infections, suggesting translocation of hnRNP A2B1 from the nucleus to the cytoplasm 
is crucial for RNA virus replications. We then used SFTSV as a model to demonstrate the 
mechanism of hnRNP A2B1 in the promotion of RNA virus replication. We found that 
overexpression of SFTSV NP can also cause hnRNP A2B1 translocation from the nucleus 
to the cytoplasm and that the SFTSV NP interacted with the RRM1 domain of A2B1. 
We further demonstrated that the hnRNP A2B1 interacted with the 5′ UTR of SFTSV 
RNA. In conclusion, we revealed that the hnRNP A2B1 upregulate viral RNA replication 
is conserved among RNA viruses; the mechanism of hnRNP A2B1 in promotion of SFTSV 
viral RNA replication is that SFTSV NP interacted with the hnRNP A2B1 to retain it in the 
cytoplasm where the hnRNP A2B1 interacted with the 5′ UTR of SFTSV RNA to promote 
the viral RNA replication. Our findings suggest that hnRNP A2B1 has the potential to be 
used as a drug target for anti-RNA virus therapy.
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MATERIALS AND METHODS

Cells and viruses

Vero, MEF, and HEK293T cells were cultured in DMEM medium (Gibco, Beijing, China) 
containing 10% fetal bovine serum (FBS; Gibco, Auckland, New Zealand) and 1% 
streptomycin-penicillin (p/s) at 37°C with 5% CO2. THP-1 cells were maintained in RPMI 
1640 medium (Gibco, Beijing, China) supplemented with 10% FBS (Gibco, Auckland, New 
Zealand), and induced with Phorbol 12-myristate 13-acetate (PMA, 100 ng/mL) for 48 h 
to promote cell differentiation. After treatment for 24 h, THP-1 cells were replaced with a 
new medium without PMA.

BMDM cells were isolated from mouse (6–10 weeks of age) hint legs, using RPMI 
1640 medium to flush marrow from femurs into a 10 cm dish. Then add 10 ng/mL 
M-CSF (Macrophage Colony Stimulating Factor), which is an essential regulator of 
monocyte/macrophage proliferation to differentiation and survival.

SFTSV (strain JS2011-013-1) was cultivated in Vero cells at an MOI of 0.01, the culture 
medium was changed to DMEM containing 2% FBS after infection for 2 h and collected 
cellular supernatant 6 to 7 days post-infection, freezing and thawing twice for cell 
disruption totally, stored at −80°C.

CRISPR/Cas 9 system

A2B1-/- THP-1 and MEF cell lines were generated using the CRISPR/Cas9 system, and the 
gene-specific single-guide RNA (sgRNA) sequence was designed by the online CRISPR 
Design Tools (). The sgRNA sequences were as follows: 5′-CACCGGTTCCTCAAACTTTCTTC
TG-3′ for human A2B1, and 5′-CACCGGGAATGGGGCCTTGCAGCCA-3′ for mouse A2B1. 
In brief, after LentiCRISPRv2-A2B1 or LentiCRISPRv2-Ctrl, pMD2.G, and psPAX2 were 
packaged together with polyetherimide and co-transfected into HEK293T for 48–60 h. 
The supernatant was collected for precipitation with PEG8000, and the resuspended 
lysate was mixed with THP-1 cells previously containing 5 g/mL polybrene. The selected 
clonal cells were identified by gene sequencing and Western blot.

Antibodies

Primary antibodies specific for A2B1 and β-actin were obtained from Santa Cruz 
Biotechnology (Dallas, TX). Primary antibodies specific for Lamin A, Rab5, LaminB1, Akt, 
and IgG were obtained from Cell Signaling Technology (Beverly, MA). Primary antibodies 
specific for Flag-tag and HA-tag were obtained from Abbkine (Wuhan, China). Anti-DNA 
antibody was obtained from Merck Millipore (Darmstadt, Germany). Antibodies specific 
to SFTSV NP were maintained in our laboratory.

Mice and in vivo virus challenge

Animal care and uses were adhered to the Guide for the Care and Use of Laboratory 
Animals of the Chinese Association for Laboratory Animal Science, with the approval of 
the ethics committee of the Medical School, Wuhan University (2019YF2013). The A2B1fl/f 

and conditional A2B1fl/flLyz2-Cre–/– mice on a C57BL/6J background were kindly provided 
by Professor Xue-tao Cao from Nankai University in Tianjin, China. The A2B1 gene was 
identified with PCR. Mice were bred in pathogen-free conditions. Age- and sex-matched 
mice (6–8 weeks old) were challenged with SFTSV with 1 × 108 plaque-forming units 
(PFU) by intraperitoneal injection. For analyzing SFTSV replication, mice were sacrificed 2 
days post-infection.

Western blot analysis

For cell samples, the cell lysate was diluted with RIPA lysis buffer (Beyotime, Shanghai, 
China), briefly ultrasonicated, and stored at −80°C. For tissues, about 0.2 g mouse spleen 
were homogenized in RIPA lysis buffer containing 1% PMSF with an electric homogenizer 
for 3 min, centrifuged at 12,000 g at 4°C for 15 min, briefly ultrasonicated, and stored at 
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−80°C. All the protein samples were heated at 95°C for 10 min and separated by 12% 
SDS-PAGE, transferred to polyvinylidene difluoride membranes (Millipore, Burlington, 
Massachusetts, USA) blocked with 5% non-fat milk Tris-buffered saline and Tween 20 for 
1 h, and incubated with corresponding primary antibodies overnight at 4°C, followed 
by incubation with secondary antibodies for 1 h and washed with phosphate-buffered 
saline with Tween 20. The protein bands were detected using the ChemiDoc touch 
imaging system (Bio-Rad, Hercules, California, USA) and processed using ImageLab 
software.

RNA extraction and RT-qPCR

RNA was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA). For tissues, 0.1 g 
of tissues was homogenized in 1 mL trizol. For cell samples, 2 × 106 cells were lysed 
in 0.5 mL trizol. The lysate was added with 0.5 mL chloroform, shaken thoroughly, 
incubated for 3 min, and centrifuged for 10 min at 12,000 g at 4°C, the supernatants were 
added with 0.5 mL isopropanol, centrifuged with the same condition after incubating for 
10 min. The RNA was washed with 75% ethanol and the total RNA was dried in air.

The cDNA was synthesized using the High Capacity cDNA Reverse Transcription Kit 
(Invitrogen, Carlsbad, CA). RT-qPCR was performed with specific primers listed in Table 
S1. Relative mRNA concentrations were calculated with the 2−ΔΔCt method, normalizing 
with β-actin.

Nuclear and cytoplasmic protein extraction

Cytoplasmic and nuclear proteins were extracted using a nuclear and cytoplasmic 
protein extraction kit (Solarbio, Beijing, China) according to the manufacturer’s 
instructions. The equal amounts of cytoplasmic and nuclear proteins from the cell lysates 
were determined with a Western blot. Lamin A and Lamin B1 were used for internal 
reference in the nucleus, and Rab5 and Akt were used for cytoplasm.

Confocal microscopy

MEF or THP-1 cells were infected with SFTSV (MOI = 10) for 48 h. MEF and HEK293T 
cells were transfected with indicated plasmids for 24 h. The cell samples were fixed in 
4% (wt/vol) paraformaldehyde for 20 min, permeabilized with 0.2% Triton X-100, blocked 
in 5% bovine serum albumin (BSA) for 30 min, incubated with corresponding primary 
antibodies overnight at 4°C, and labeled with fluorescently secondary antibodies for 
1 h. Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI; Beyotime, Shanghai, 
China) for 15 min. The cell samples were observed using a Leica sp8 confocal laser 
microscope with a 63× objective lens. Images were processed using Leica Application 
Suite X software.

Coimmunoprecipitation

To confirm the interaction indicated proteins, cells were infected with SFTSV for 48 h 
or transfected with appropriate plasmids for 24 h for co-immunoprecipitation (CO-IP). 
The cells were lysed with IP cell lysis buffer (Beyotime, China), incubated with specific 
antibody or IgG as a negative control overnight at 4°C. Protein A + G agarose (Beyotime, 
Shanghai, China) was added and gently rotated at 4°C for 3 h. The mixture was then 
centrifuged and washed five times with PBS. The beads were collected and resuspended 
with SDS-PAGE loading buffer, and analyzed with Western blot.

RNA immunoprecipitation (RIP) assay

RNA immunoprecipitation was performed using the RNA Immunoprecipitation Kit 
(BersinBio, Guangzhou, China) according to the manufacturer’s instructions. MEF cells 
(2 × 107) were infected with SFTSV at an MOI of 10 for 24 h, the cell lysate was incubated 
overnight at 4°C with magnetic protein A/G beads conjugated with antibody of hnRNP 
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A2B1 or IgG as negative control, the immunoprecipitated A2B1 and RNA was extracted 
and analyzed with Western blot and PCR, respectively.

RNA pulldown assay

RNA pulldown assay was performed using the RNA pulldown Kit (BersinBio, Guangz
hou, China) according to the manufacturer’s instructions. HEK293T cells (2 × 107) were 
transfected with HA-A2B1 plasmids for 24 h, cytoplasmic proteins were extracted, 
and incubated with biotin-labeled RNA probes to form RNA-protein complexes. The 
streptavidin-labeled magnetic beads were used to separate from the other components 
of the incubation solution. After elution, the proteins that interacted with specific RNA 
were detected with Western blot.

Statistical analysis

All the calculations and graphs were compared and made by Student’s t-test or analysis 
of one-way ANOVA with GraphPad Prism Software, and at least three independent 
experiments were performed in triplicate. All the data indicate accepted the level of 
statistical significance of P < 0.05.
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