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Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review,
we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in
the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects
of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples
of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of
cancer cells.

Introduction to RNA processing
The life of an RNA, from transcription to degradation, is filled
with co- and posttranscriptional processing events. The highly
regulated processes of transcription, splicing, capping, polyad-
enylation, and finally, translation and posttranslational pro-
cessing have been studied for decades (reviewed in Hwang et al.
[2024]; Biswas et al. [2021]; Vera et al. [2016]). More recently,
the tools and resources have been developed to understand how
these processes are altered in malignancy (reviewed in Bradley
and Anczuków [2023]; Wheat and Steidl [2021]; Stanley and
Abdel-Wahab [2022]; Dvinge et al. [2016]).

Initial expressed sequence tag libraries found an elevated
frequency of stop codons in cancer-specific alternatively spliced
transcripts (Chen et al., 2011). Further work has shown that
tumors harbor 30% more alternative splicing events than nor-
mal tissues (Kahles et al., 2018). With the expansion of genomic
and transcriptomic sequencing, many patients, particularly
those with hematologic malignancies, have been found to have
mutations in the core RNA processing machinery as well as al-
terations in downstream RNA processing (reviewed in Chen
et al. [2021]; Stanley and Abdel-Wahab [2022]; Bradley and
Anczuków [2023]). These alterations lead to effects on gene
expression and resulting protein translation with a myriad of
cellular consequences. Finally, systematic studies sequencing
matched cancer and normal tissues (such as Genotype-Tissue
Expression [GTEx] [GTEx Consortium, 2020; Battle et al.,
2017] and The Cancer Genome Atlas [TCGA] [Kahles et al.,
2018]) have found that tumor cells have an average of 30%
more alternative splicing events than normal counterpart tis-
sues (Kahles et al., 2018). Additionally, single nucleotide variants
present within tumor cells have the potential to abolish or create

splice sites (Supek et al., 2014; Jung et al., 2015) that impact
splicing of an mRNA encoded from that gene in cis.

Here, we review some of the most well-studied examples
of RNA processing alterations in cancer, focusing on the role
of splicing factor mutations and splicing alterations in he-
matologic malignancies and other cancer types. We conclude
with prior and ongoing attempts to therapeutically target
these pathways and where future opportunities may be
present.’

RNA splicing
Cotranscriptional regulation of RNA processing begins with
59 capping of mRNA and recruitment of the spliceosome to
define exons from introns (Fig. 1 A). The spliceosome is re-
cruited to RNA as nascent RNA is transcribed in the nucleus.
Splicing is regulated by a combination of RNA polymerase
kinetics (Roberts et al., 1998; Eperon et al., 1988; Braberg
et al., 2013) as well as characteristic sequence nucleotide
motifs embedded in the RNA (Rogers and Wall, 1980; Shapiro
and Senapathy, 1987; Senapathy et al., 1990) to perform two
ligation reactions. The core sequence motifs in RNA de-
marcate the borders of the intron (known as 59 and -39 splice
sites), the branchpoint nucleotide (which is most commonly
an adenosine), and the polypyrimidine tract.

The spliceosome consists of RNA binding proteins (RBPs) and
small nuclear RNAs that together form a small nuclear ribonu-
cleoprotein complex (snRNP) (reviewed in Matera and Wang
[2014]; Wilkinson et al. [2020]; Will and Lührmann [2011]).
Over 95% of human genes undergo splicing, and most of these
events are catalyzed by the major spliceosome (also known as
the U2 spliceosome). A small fraction of the remainder of
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splicing events (<1% of human introns) are orchestrated by the
minor spliceosome (also referred to as the U12 spliceosome)
(reviewed in Patel and Steitz [2003]; Turunen et al. [2013]).
These complexes carry out splicing through the recruitment of
different snRNPs to different sequence motifs on an RNA
molecule.

For the major spliceosome, early spliceosome assembly ini-
tiates as the U1 snRNP initially binds the 59 splice site (most
commonly a GT dinucleotide), SF1 binds the branchpoint se-
quence, U2AF1 binds the 39 splice site (generally an AG dinu-
cleotide), and U2AF2 binds to the adjacent polypyrimidine tract.
Displacement of SF1 by the U2 snRNP allows for the SF3B1
component of U2 snRNP to recognize the branchpoint nucleotide
(reviewed inWilkinson et al. [2020]; Will and Lührmann [2011];
Matera and Wang [2014]).

The minor spliceosome is comprised of U11, U12, U4 atac, U6
atac, and ZRSR2, the latter of which is an X-chromosome en-
coded protein involved in 39 splice site recognition for ∼1% of

introns in the genome (reviewed in Patel and Steitz [2003];
Turunen et al. [2013]).

Following initial spliceosome assembly, the catalytic core of
the spliceosome occurs through recruitment of the U4/U5/
U6 tri-snRNP followed by lariat formation and cleavage. Once
intron/exon boundaries are defined, the intron is removed via
covalent nucleophilic attack of the 59 end of the intron to the
branchpoint nucleotide. The final product of splicing includes an
excised lariat structure where the 59 end is covalently linked to
the 39 branchpoint. A second covalent linkage ligates the 59 end
and 39 end of RNA together and releases the lariat from the RNA
where it is linearized by the debranching enzyme DBR1 and
degraded.

In addition to core sequence motifs in RNA, additional layers
of splicing regulation can be added by modulating RNA poly-
merase kinetics (as reviewed in Naftelberg et al. [2015]; Saldi
et al. [2016]), recruitment of trans-acting RBPs, and utilization of
cis-acting RNA sequences outside of the core splicing elements.

Figure 1. Normal RNA splicing, 59-end capping, and 39-end cleavage and polyadenylation. (A) Transcription and RNA processing begin with assembly of
the pre-initiation complex on gene promoters, followed by recruitment of RNA polymerase II, and 59 pausing. RNA transcription (blue bar), 59 capping, and
splicing occur cotranscriptionally on nascent RNA. These processes are facilitated by the recruitment of protein cofactors that facilitate capping, exon junction
complex formation, and splicing (green dots). 39-end maturation and polyadenylation then occur and release the RNA, allowing it to be exported into the
cytoplasm. Splicing dysregulation, cellular stress, and the presence of mutant splicing factors can lead to the formation of tripartite DNA/RNA structures
(R-loops) and downstream genomic instability. Different patterns of RNA splicing can occur (left: gold and green lines) and consequently lead to changes in the
downstream RNA (right column). These changes can include the inclusion of novel sequences (gold bars) within the transcript of interest (blue bars). Once the
mature alternatively spliced RNA is exported from the nucleus, it undergoes translation in the cytoplasm. Consequences of translation can lead to (left)
translation of protein and eventual possible presentation on cell surface MHCmolecules (blue and gold circles). Alternatively, the presence of a premature stop
codon (red stop sign) can cause recruitment of the RNA degradation machinery (orange pac-man) and RNA downregulation through nonsense-mediated decay.
(B) Binding of splicing factors to the RNA and regulation through cis and trans elements. Enhancers (green box, green arrow) and silencers (red box, red arrow)
of splicing can be present in the intron (ISE, ISS) or exon (ESE, ESS). These sequences can be recognized by RNA binding proteins such as hnRNP (purple circle)
or SRSF2 (blue circle) and promote (green arrow) or repress (red arrow) alternative splicing patterns.
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Auxiliary sequences include splicing enhancers or silencers re-
ferred to as exonic or intronic splicing enhancers (ESE and ISE,
respectively) or silencers (ESS or ISS) (Fig. 1 B). These se-
quences are bound by cognate RBPs with the heterogeneous
nuclear ribonucleoprotein (hnRNP) family generally function-
ing as splicing silencers and serine/arginine-rich (SR) proteins
functioning as splicing enhancers.

Processing of the RNA also includes the addition of the 59
methyl-7-guanosine cap that protects the RNA from 59 to 39
exonucleases, assists with nuclear export of RNA, and functions
to recruit translation initiation factors (Fig. 1 A). Cotran-
scriptional capping is performed by three enzymes—an RNA
triphosphatase, RNA guanylyltransferase, and guanine-N7
methyltransferase (reviewed in Ramanathan et al. [2016];
Richter and Sonenberg [2005]).

Finally, once an RNA completes transcription, the transcript
undergoes endonucleolytic cleavage followed by the addition of
a 39 poly(A) tail (Fig. 1 A). Alternative polyadenylation (APA)
sites often have the canonical “AAUAA” polyadenylation se-
quence (PAS) but can utilize variants of this sequence with
differing efficiencies. APA occurs in ∼70% of human genes and
can lead to different 39 termini from the same gene of interest.
Like alternative splicing, APA exhibits tissue-specific regulation
and is regulated by both cis-acting sequence elements and trans-
acting RBPs. Most PAS sequences are in the 39 UTR; however,
intronic PAS sites occur and the process of intronic polyade-
nylation (IPA) can lead to truncated and nonfunctional RNAs
(reviewed in Mitschka and Mayr [2022]).

Changes in alternative splicing can dramatically affect
downstream gene expression through reading frame shifts or
encoding alternative amino acids. Shifts in the reading frame
will most often lead to the presence of a premature termination
codon (PTC) and target the transcript for nonsense-mediated
decay (NMD) (reviewed in Lareau et al. [2007]).

Cancer-associated mutations in RNA processing machinery
High-throughput sequencing across cancer samples with
matched normal controls at a large scale has been instrumental
in discovering novel cancer driver mutations. Systematic
analysis of the TCGA found putative driver mutations in 119
splicing factor genes (Seiler et al., 2018a). Mutations in the RNA
processing machinery are highly prevalent in myeloid malig-
nancies including acute myeloid leukemia (AML), chronic
myelomonocytic leukemia (CMML), and myelodysplastic syn-
dromes (MDS) (reviewed in Chen et al. [2021]; Stanley and
Abdel-Wahab [2022]; Obeng et al. [2019]). Studies also found
similarly high levels of mutational enrichment in chronic lym-
phocytic leukemia (CLL) as well as uveal melanoma and several
other solid tumors (reviewed in Bradley and Anczuków [2023]).

In hematologic malignancies, splicing factors are particularly
notable given the overall low tumor mutational burden in these
diseases (Chalmers et al., 2017). Most frequent are mutations in
the 39-end processing machinery, namely mutations in SF3B1
and U2AF1, as well as the splicing enhancer SRSF2 and theminor
spliceosome component ZRSR2 (Fig. 2, A–D). Apart from ZRSR2,
where mutations confer loss of function, mutations affecting
other commonly mutated splicing factors occur as heterozygous

gain-of-function mutations (Yoshida et al., 2011; Madan et al.,
2015). Also unique to ZRSR2 is its presence on the X chromo-
some, and accordingly, there is a male predominance in MDS
patients bearing ZRSR2 mutations (Damm et al., 2012; Yoshida
et al., 2011).

SF3B1 mutations
The most frequently mutated splicing factor in cancer, SF3B1, is
mutated across both solid and hematologic malignancies (Chen
et al., 2021; Bradley and Anczuków, 2023; Kahles et al., 2018)
(Fig. 2 D). SF3B1’s mutational frequency is particularly striking
in MDS patients and in a particular subset where bone marrow
evaluation identifies iron-laden mitochondrial deposits (ringed
sideroblasts). This disease is historically called refractory ane-
mia with ringed sideroblasts (MDS-RS) and over 75% of patients
with MDS-RS have SF3B1 mutations (Papaemmanuil E. et al.,
2011). The most recent classification of myeloid malignancies
further emphasizes the importance of genetic driver mutations
by classifying subsets by MDS by their driver mutation. In the
most updated classifications, SF3B1 mutant MDS has been listed
as its own disease subtype (Malcovati et al., 2020; Khoury et al.,
2022). Additionally, adverse risk CLL also has frequent SF3B1
mutations (Wang et al., 2011). In solid tumors, 15–20% of uveal
melanomas (Harbour et al., 2013; Martin et al., 2013), 5.6% of
breast cancers (Ellis et al., 2012), and 4% of pancreatic ductal
carcinomas harbor mutations in SF3B1 (Biankin et al., 2012).

The enrichment of SF3B1 mutations in MDS-RS has led to
several groups finding that SF3B1 mutations lead to coordinated
mis-splicing of the mitochondrial transporters TMEM14C and
ABCB7, which results in iron sequestration within the mito-
chondria (Dolatshad et al., 2015, 2016; Clough et al., 2022;
Alsafadi et al., 2016; Ochi et al., 2022). Analysis of SF3B1 mutant
samples across TCGA, MDS patient samples, and CLL samples
found commonly dysregulated RNAs (Inoue et al., 2019). The
convergence of SF3B1 mutations on BRD9 mis-splicing and
poison exon inclusion in BRD9 was found to disrupt non-
canonical BAF chromatin remodeling and drive malignancy
(Inoue et al., 2019).

SF3B1 and its U2 snRNP-associated cofactors determine the
correct branchpoint nucleotides to use in splicing. Accordingly,
mutations in SF3B1 or drugs that interact with SF3B1 cause
aberrant branchpoint recognition. The most common cancer-
associated mutations in SF3B1 (K700E, R625*, K666*) are lo-
cated in the protein’s C-terminal HEAT repeats, and recent work
has shown that these amino acids cluster into a pocket where the
cofactor SUGP1 sits (Zhang et al., 2023). Loss of SUGP1, like the
mutation of SF3B1, causes aberrant branch point selection and
cryptic 39-end splicing (Benbarche et al., 2024; Zhang et al.,
2019). The aberrant 39 splice sites promoted by mutations in
SF3B1 are most often 10–30 nucleotides upstream of the ca-
nonical 39 splice site. Mutant SF3B1 requires a different G-patch
containing protein to enforce aberrant RNA splicing known as
GPATCH8. When GPATCH8 is silenced, cryptic splice sites are
reverted in the setting of the SF3B1 mutation (Benbarche et al.,
2024).

While splicing changes are highly context dependent and
vary across cell lines and cancer types, work intersecting human
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and mouse model systems containing SF3B1 mutations have
found two SF3B1 mis-spliced target mRNAs that are highly
conserved: MAP3K7 and PPP2R5A (Liu et al., 2020, 2021). Ab-
errant 39 splice site usage in both targets caused downregulation
of the downstream targets by NMD. MAP3K7 dysregulation af-
fects downstream p65 and p38 MAPK signaling, and this, in
turn, affects NF-κB (Liu et al., 2021) and GATA1 (Lieu et al., 2022)
and leads to defects in erythroid differentiation. PPP2R5A enc-
odes the alpha isoform of the B56 regulatory subunit of the
serine/threonine phosphatase PP2A. SF3B1 mutations cause the
degradation of PPP2R5A via NMD and lead to the upregulation of
phosphorylated residues in a wide range of PP2A substrates in-
cluding p65, AKT,MYC, and BCL2 (Liu et al., 2020). In addition to
the aforementioned targets, several other targets of mutant
SF3B1 have been described recently (Pellagatti and Boultwood,
2021; Zhou et al., 2020).

SRSF2 mutations
SRSF2 is mutated in 50% of patients with CMML, 10–14% of
patients with AML, and 20–30% of patients with MDS (Yoshida
et al., 2011), where these mutations confer an increased risk of
transformation from MDS to AML (Papaemmanuil et al., 2013).

Mutations in SRSF2 are centered at its proline 95 residue and
alter RNA binding specificity favoring CCNG binding over GGNG
nucleotides (Fig. 2 B). This change in RNA binding specificity
promotes the inclusion of a C-rich poison exon in EZH2 that
causes EZH2 mRNA transcript to undergo NMD (Kim et al.,
2015). Consistent with this functional intersection, SRSF2 and

EZH2 mutations are mutually exclusive in MDS patients (Kim
et al., 2015). EZH2 encodes a histonemethyltransferase, which is
crucial for silencing of stem cell renewal genes, and this splicing-
mediated downregulation of EZH2 alters hematopoiesis in a
manner that promotes MDS (Sashida et al., 2014, 2016). Other
aberrantly spliced targets of SRSF2 include transcription factors
such as IKAROS and BCOR (the latter of which is frequently
mutated in hematologic malignancies), the apoptosis regulator
CASP8, and the tyrosine kinase FYN (Kim et al., 2015; Zhang
et al., 2015).

U2AF1 mutations
U2AF1 mutations occur mostly in myeloid malignancies where
they are associated with high-risk MDS (Graubert et al., 2011;
Haferlach et al., 2014; Papaemmanuil et al., 2013) and adverse-
risk AML. U2AF1 mutations are also present in solid tumors (in
particular non-small cell lung cancer [Imielinski et al., 2012])
and are most often located within one of its two zinc finger
domains (S34 and Q157 [Yoshida et al., 2011; Graubert et al.,
2011]) and affect cassette exon usage via their effects on the 39
splice site recognition (Ilagan et al., 2015) (Fig. 2 C). Prior work
has found that altered splicing by mutant U2AF1 can affect DNA
damage response (through alterations in ATR and FANCA), ep-
igenetic regulation (through alterations in H2AFY, ASXL1,
BCOR, DNMT3B), apoptosis through CASP8 splicing, and innate
immune signaling (through altered IRAK4 and Myd88) (Ilagan
et al., 2015; Smith et al., 2019). U2AF2 is the dimeric partner
of U2AF1. U2AF2 mutations are less common than U2AF1

Figure 2. RNA splicing factors frequently altered by somatic cancer-associated mutations. (A) ZRSR2 contains multiple zinc finger domains (orange
boxes) as well as an RRM domain (pink box) that are responsible for its interactions with RNA. The C-terminal RS domain facilitates its interactions with other
splicing factors. Mutations in ZRSR2 have been described throughout the coding sequence; however, R189 (red letters) is a commonly affected
residue. (B) SRSF2 contains an RNA recognition motif responsible for interactions with RNA substrates and an RS domain that facilitates its in-
teractions with other splicing factors. Mutations in SRSF2 are located between these two domains at proline 95 (red letters). (C) U2AF1 contains
multiple zinc finger domains (orange boxes) as well as an RRM domain (pink box) responsible for its interactions with RNA. The C-terminal RS
domain facilitates its interactions with other splicing factors. Mutations in U2AF1 occur in each of its zinc finger domains (red letters). (D) SF3B1
contains an N terminal U2AF1 homology region (blue box) as well as multiple HEAT repeats (grey boxes) that facilitate binding to the branchpoint RNA as
well as other protein–protein interactions. Zoomed in region containing common mutations in SF3B1 occur within HEAT repeats 3–5 (red letters). Legend
(top right) highlights some of the common motifs that are found within the RNA-binding proteins that are discussed in this review.
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mutations and often occur within the first two RNA recog-
nition motifs (G176 and L187) (Haferlach et al., 2014).

In addition to the canonical function in splicing, non-
canonical functions of U2AF1 and U2AF2 include a possible role
in translation where the U2AF1/2 heterodimer has been pro-
posed to function as a regulator of cytoplasmic mRNA transla-
tion (Palangat and Larson, 2012; Akef et al., 2020).

ZRSR2 mutations
ZRSR2 loss-of-function mutations result in minor intron re-
tention (Inoue et al., 2021; Madan et al., 2015), which most
commonly results in NMD of the transcript. CRISPR knockout
screens of minor intron-containing genes in mouse and human
hematopoietic cell lines found that loss of the minor intron-
containing gene LZTR1 conferred cytokine independence in all
tested lines. LZTR1 encodes an adaptor for a ubiquitin-ligase that
degrades the RAS-GTP protein RIT1, and interestingly, muta-
tions within the LZTR1 minor intron or activating mutations in
RIT1 have been described in the Rasopathy Noonan syndrome as
well as myeloid leukemias (Inoue et al., 2021).

Splicing and RAS signaling: KRAS splice variants and RAS-RAF
splicing in cancer
Analyses integrating RNA splicing and binding profiles of mu-
tant RNA splicing factors have attempted to find common
pathways dysregulated by the gain-of-function mutations pre-
sent in splicing factor mutant malignancies. Wheeler et al.
identified aberrant RNA splicing events in induced pluripotent
stem cell models created from patients with U2AF1 S34F or
SRSF2 P95H mutations and further narrowed down this list
using the binding profiles of the mutant proteins. From this
analysis, a hyperactive isoform of the stimulator G protein alpha
subunit (Gas-L) was found to activate ERK/MAPK signaling
(Wheeler et al., 2022).

Beyond mutations in genes encoding RNA splicing machin-
ery, there are numerous examples of mutations affecting RNA
splicing in cis within genes with very well-established roles in
cancer and, in particular, within the RAS/RAF/MAPK pathway.
Here, we highlight key examples of such phenomenon by de-
scribing annotated splice variants and unannotated splicing al-
terations in genes encoding RAS and RAF proteins. For example,
the gene encoding KRAS results in two alternatively spliced
isoforms (KRAS4A and KRAS4B) that vary in the composition of
exon 4, which encodes the C terminal membrane targeting re-
gion (Kochen Rossi et al., 2023; Nuevo-Tapioles and Philips,
2022). These isoforms regulate the membrane association of
KRAS with different surfaces within the cell. While KRAS4B has
been highly studied as the dominant isoform, more evidence has
shown that KRAS4A may play an important role in malignancy
by directly binding hexokinase 1 and localizing to the mito-
chondrial outer membrane (Amendola et al., 2019).

Mutations in KRAS (G12C, G12D, Q61K, and A146T) as well as
the BRAF V600E mutation all drive resistance to the EGFR in-
hibitor Osimertinib (reviewed in Leonetti et al. [2019]). Inter-
estingly, KRAS Q61K mutations were recently shown to
introduce a cryptic splice donor site leading to aberrant splicing
of exon 3 and a premature stop codon. Recently discovered

concurrent G60 silent mutations eliminate the splice donor site,
rescuing protein function, and lead to persistent ERK1/2 activa-
tion. Additionally, the region around Q61 is enriched in ESE
motifs, and antisense oligonucleotides (ASOs) potentially can
also silence the splice donor site and allow full-length KRAS
Q61K protein formation. In preclinical models, ASOs targeting
the ESE induced PTC formation and decreased KRAS Q61K ac-
tivity as well as similar mutations in NRAS and HRAS mutant
cancers (Kobayashi et al., 2022b).

The RAF kinase BRAF acts downstream of RAS, and when
dimerized and activated, promotes cell survival. Oncogenic
mutations in BRAF activateMAPK signaling and BRAF inhibitors
prevent dimerization and activation of BRAF. In patients that
have progressive disease in the presence of a BRAF inhibitor,
resistant cells exhibit alternative splicing of BRAF into a 61-kDa
protein lacking the exons that encode the RAS-binding domain
(Poulikakos et al., 2011). This leads to enhanced dimerization,
representing an important mechanism by which cancers can
subvert oncogene inhibition. Follow-up work found that exon
skipping occurs through a mutation 51 nt upstream of the 39
splice site of intron 8, and splicing modulators that bind to SF3B1
(discussed below) were able to counteract the formation of this
drug-resistant isoform (Salton et al., 2015). Most recently, there
are also reports that deletions in genomic DNA can give rise to
the aberrant drug-resistant BRAFV600E isoform (Aya et al.,
2024).

At the transcript level, several other well-characterized ex-
amples of altered splicing occur inmalignant cells and have been
reviewed elsewhere (reviewed in Rahman et al. [2020]; Bradley
and Anczuków [2023]).

Common pathways in splicing altered cancers: R-loops and
transcriptional elongation
Mutations of the aforementioned splicing factors are mutually
exclusive with one another, and the mechanism as to how these
disparate pathways lead to a common disease outcome is still
being evaluated. One unifying theory suggests that these mu-
tations affect the rate of transcriptional pause release and
therefore lead to the formation of aberrant tripartite nucleic acid
structures in the nucleus known as R-loops (Chen et al., 2018)
(Fig. 1 A). Initial observations found that transcription defects
caused impaired assembly of late-stage spliceosome compo-
nents. Both R-loop formation and defective assembly can lead to
the observed transcriptional elongation defects that have also
been seen with spliceosomal mutations (Boddu et al., 2024).
Increased presence of R-loops can lead to replication stress and
activation of downstream ATR signaling (Chen et al., 2018)
which prevents cell cycle progression in hematopoietic
progenitors.

Nonsense-mediated RNA decay
In approximately one-third of alternatively spliced transcripts,
splicing can change RNA stability through the recruitment of
different RBPs or through the incorporation of frameshift mu-
tation resulting in the formation of PTCs (Lewis et al., 2003).
PTCs are recognized by the NMD machinery and lead to RNA
degradation of the alternatively spliced transcript. In addition to
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regulating the production of other proteins, splicing factors such
as SRSF2 can utilize alternative splicing to autoregulate their
protein levels through alternative inclusion of PTC-containing
poison exons (Sureau et al., 2001).

Splicing and the immune system: Neoantigen formation and
chimeric antigen receptor T cell (CAR T) resistance
Both frameshift as well as in-frame mutations from splicing
changes can lead to novel, unannotated peptides that become
presented on the cell surface (either directly or bound to MHC
class I or II). These immunogenic peptide sequences occur
during the translation of alternative splicing events and when
splice junctions border transposable elements (Merlotti et al.,
2023; Burbage et al., 2023). Given the increased levels of alter-
native splicing in cancer, tumor-specific neoantigens that are
derived from unannotated transcripts have the potential to give
rise to peptides presented on MHC I molecules (Smart et al.,
2018).

Cancer immunoediting is the process by which tumors and
the immune system undergo dynamic changes and these
changes can allow for escape from immune therapies such as
CAR T cell therapy as well as antibody therapies (Dunn et al.,
2002; Mittal et al., 2014). The anti-CD20 antibody rituximab is
an integral part of treatment for lymphoma. The MS3A1 gene
encoding CD20 produces four variant isoforms. In follicular
lymphoma relapses following anti-CD20 antibody treatments,
downregulation of CD20 was associated with CD20 splicing
changes and ASOs modulating these isoforms in vitro can in-
crease anti-CD20 antibody-mediated cytotoxicity, making this a
possible therapeutic intervention for relapses that occur after
anti-CD20–based immunotherapy (Ang et al., 2023).

CAR T cell therapies have become a mainstay for treating
lymphoid malignancies. CAR T cells utilize an engineered ex-
tracellular antigen recognition domain that recognizes tumor-
specific antigens paired with an intracellular signal transduction
domain to promote T cell activation, expansion, and killing of
antigen-positive cells. The first FDA-approved CAR T cells were
directed against the B cell antigen CD19. Post-anti-CD19 CAR T
relapse mechanisms utilize a broad array of mechanisms that
impede the presentation of the normal CD19 epitope to the cell
surface. A significant portion of cancers occurring at relapse
from CAR T cell therapy are target antigen-negative. Similar
CD19 negative relapses are also seen with the CD19xCD3 bispe-
cific antibody blinatumomab. While it was originally thought
that the majority of CD19 negative relapses occur by frameshift
mutations with the gene encoding CD19 (Orlando et al., 2018),
others have suggested that these mutations are subclonal and do
not result in total loss of antigen at the surface (Sotillo et al.,
2015). Mechanisms of resistance include skipping of exon 2,
which causes ER sequestration and lack of expression at the cell
surface, and skipping of exons 5 and 6, which encode the
transmembrane domain and lead to intracellular trafficking
defects (Sotillo et al., 2015). Aberrant splicing of the B cell im-
munotherapy target CD22 occurs via exon 2 skipping and can
lead to exclusion of the start codon and loss of exon 5 and 6,
resulting in loss of the CAR T immunoepitope (Zheng et al.,
2022). Further splicing-dependent mechanisms of resistance

are likely to be discovered as CAR T therapies continue to in-
crease in use.

APA and IPA
Cleavage and polyadenylation (CPA) of RNA is accomplished
through recruitment of the multiprotein CPA machinery to
change the 39 end of an RNA transcript (Fig. 1 A). CPA specificity
factor (CPSF) recognizes polyadenylation sites via the canonical
AAUAAA sequence motif embedded in pre-mRNA. Additional
sequence elements including UGUA and downstream U-rich or
G+U-rich sequences are recognized by cleavage factor I (CFI) and
cleavage stimulation factor (CSTF).

APA causes alternative 39 UTR formation. When cleavage and
polyadenylation occur within an intron, also referred to as IPA,
this causes NMD or truncation of the protein and can also lead to
an alternative 39UTR.While APA can change transcript stability,
both APA and IPA can lead to decreased protein translation.
Some prominent examples of APA dysregulation in tumors in-
clude global 39 UTR shortening (Mayr and Bartel, 2009;
Sandberg et al., 2008; Xia et al., 2014). One factor, NUDT21/
CPSF5, has been shown to be downregulated in malignancy and
confer poor prognosis. Downregulation of NUDT21/CPSF5 has
been shown to result in 39UTR shortening for nearly 1,500 genes
(Sun et al., 2017; Chu et al., 2019; Xing et al., 2021).

Premature CPA can occur in malignancies through mutation
of CPA factors, changes in transcription elongation (Dubbury
et al., 2018; Krajewska et al., 2019), or alterations in splicing
factors. Several reviews have covered transcript-specific alter-
ations in cleavage and poly-adenylation that occur in malig-
nancy (reviewed in Obeng et al. [2019]; Mitschka and Mayr
[2022]).

Decapping
After 59-to-39 decay of mRNA, Decapping Scavenger (DCPS)
enzyme hydrolyzes m7Gpp to release m7Gp and the mono-
phosphorylated RNA (Fig. 1 A). CRISPR screening in AMLmouse
models found the RNA decapping scavenger DCPS to be an im-
portant vulnerability both in vitro and in vivo (Yamauchi et al.,
2018; Yoshimi and Abdel-Wahab, 2018). Small molecules tar-
geting DCPS have been employed in early trials for spinal
muscular atrophy (SMA) (Gogliotti et al., 2013), and more recent
development of proteolysis targeting chimeras (PROTACs) tar-
geting DCPS (Swartzel et al., 2022) may hold future promise as a
therapeutic in AML.

Targeting RNA processing in hematologic malignancies
Targeting of RNA processing has been pursued for a number of
diseases over the last 15 years. While early success has been seen
with ASOs in neurologic conditions such as SMA (Rigo et al.,
2012; Hua et al., 2010), the field remains in its infancy, and we
highlight a few of the early attempts to modulate RNA pro-
cessing using a variety of therapeutic approaches that have
entered clinical trials below (Fig. 3 and Table 1).

Targeting capping
The 59 end of the RNA is often capped within cells, the cap in-
teracts with the translation factor eIF4E and interactions with
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the ribosome-associated translation factor eIF4G allow for ef-
fective recruitment of RNAs to the ribosome (reviewed in
Richter and Sonenberg [2005]). Cancers overexpress eIF4E and
this increases the fraction of capped transcripts. Additionally,
overexpression of eIF4E by itself can lead to oncogenic trans-
formation (Lazaris-Karatzas et al., 1990). Ribavirin, a guanosine
analog, suppresses eIF4E-mediated oncogenic transformation by
mimicking the RNA cap (Kentsis et al., 2004). A phase I trial
found that combination therapy of ribavirin with cytarabine
was well tolerated in relapsed/refractory AML (Assouline et al.,
2015). Targeting the RNA decapping enzyme DCPS with the
small molecule RG3039 has been pursued clinically now and a

phase 1 clinical trial found that the compound was well tolerated
(Van Meerbeke et al., 2012).

Targeting RNA splicing factors directly
Several natural product-derived small molecules have been
found to bind the SF3b complex and interact with the branch site
binding pocket of SF3B1 (Fig. 3 A) as well as other SF3b com-
ponents such as PHF5A (Kotake et al., 2007). Preclinical data of
these compounds has shown synthetic lethality with splicing
factor mutant leukemia cells in vitro and in vivo (Seiler et al.,
2018b; Lee et al., 2016). The largest clinical data to date with an
SF3b inhibitor was with the orally available SF3B1 targeting

Figure 3. Therapeutic approaches described to date for pharmacologic modulation of RNA splicing. (A) The binding of small molecules (pink circle) to
the HEAT motifs of SF3B1 (yellow pac-man) can prevent recognition of canonical branchpoint sequences and cause preferentially killing of splicing factor
mutant cells in pre-clinical models. (B) Small molecule sulfonamides (pink circle) can recruit the ubiquitination (Ub) machinery (grey) to the splicing factor
RBM39 and promote its degradation via the 20S proteasome (orange and blue barrel). (C) Arginine methylation (grey circles) is a posttranslational modification
(colored circles) that occurs in numerous RNA splicing factors. Inhibition of either type 1 PRMT or PRMT5 enzymes leads to loss of arginine methyl marks
(downward arrow) and consequent preferential cell death of splicing factor mutant cells in preclinical models. (D) Phosphorylation of SR proteins (blue circles)
by CLK, DYRK, or SPRK enzymes can affect their translocation into the nucleus where they function to regulate splicing. Inhibition of CLK or DYRK enzymes
leads to decreased phosphorylation and intron retention within key splicing factors (colored circles) and can synergize with BCL2 inhibition to lead to
preferential cell death of splicing factor mutant cells. (E) Antisense oligonucleotides (black bar) can be used to block splice sites (dashed lines) to favor certain
splicing outcomes (solid lines) leading to preferential alternative splicing patterns (blue and red bars). (F) Small molecules (pink circles) targeting the poly-
adenylation and 39-end processing machinery can prevent the normal transcription termination of an RNA (orange line). This inhibition can lead to tran-
scriptional readthrough (orange and black line) and downstream RNA destabilization and downregulation. (G) Small molecule compounds (depicted in stick
structure) can block (arrows) the interactions between key components of the core splicing machinery containing UHM domains (colored blobs).
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agent, H3B-8800. While this agent was well tolerated, unfor-
tunately, clinical trials in >50 patients with transfusion-
dependent SF3B1 mutant MDS had limited clinical activity
(Steensma et al., 2021).

Unbiased CRISPR screening targeting RBPs identified the
splicing factor RBM39 as essential for AML maintenance (Wang
et al., 2019). RBM39 degraders, the anti-cancer sulfonamides
indisulam (E7070), E7820, and chloroquinoxaline sulfonamide,
selectively degrade RBM39 by promoting interaction of RBM39
and the adapter protein DCAF15 with the CUL4/Db1 E3 ubiquitin
ligase (Han et al., 2017; Uehara et al., 2017; Du et al., 2019) (Fig. 3
B). Prior clinical trials showed excellent safety profiles and some
antitumor efficacy in solid tumors (Owa et al., 1999; Supuran,
2003; Mita et al., 2011).

Phase 2 trials combining indisulam, idarubicin, and cytara-
bine in relapsed/refractory AML and high-risk MDS showed
efficacy in a heavily pretreated population (Assi et al., 2018).
However, a phase 2 trial of 12 patients evaluating E7820 in
splicing factor mutant AML, MDS, or CMML did not meet its
primary endpoint of >1 patient achieving an objective response
(Bewersdorf et al., 2023a).

Targeting splicing factor posttranslational modifications
Drug screening for selective lethality in SRSF2 mutant leukemic
cell lines found that in addition to direct inhibition of SF3B1 (as
described above), drugs inhibiting symmetric or asymmetric
arginine dimethylation preferentially killed spliceosome mutant
cells (Fong et al., 2019). These drugs target protein arginine
methyltransferases (PRMTs), and activity was seen individually
with PRMT5 targeting as well as type 1 PRMT targeting com-
pounds that target PRMT 1, 3, 4, 6 (Fig. 3 C).While phase 1 clinical

trials have evaluated PRMT inhibitors in advanced solid cancers
and lymphoma (El-Khoueiry et al., 2023; Ferrarotto et al., 2024;
McKean et al., 2021) and suggested acceptable toxicity (Rodon
et al., 2024), further trials are pending for splicing factor mutant
cancers (Monga et al., 2023; Patel et al., 2021).

CDC2-like kinases (CLKs), serine/arginine protein kinases
(SPRKs), and dual-specificity tyrosine-regulated kinases
(DYRKs) are all involved in the phosphorylation of SR-
containing proteins including SRSF2 (Fig. 3 D). SM08502
(cirtuvivint) competes for the ATP binding site of CLK1-4 and
DYRK1-4. This agent exhibits activity across a variety of
splicing factor mutant cell lines and xenograft models as well as
synergy with venetoclax (Wang et al., 2023). Phase 1 clinical
trials have revealed that cirtuvivint is well tolerated with evi-
dence of antitumor activity in prostate cancer (Tolcher et al.,
2021; Scott et al., 2022). A related CLK/DRYK inhibitor CTX-712
showed single-agent activity in both ovarian cancer and MDS/
AML. Intriguingly, in the phase 1 trial of CTX-712, two of five
relapsed/refractory AML patients and one of one MDS patient
achieved complete remission (Yokoyama et al., 2022). Nu-
merous clinical trials of additional CLK/DYRK inhibitors, either
alone or in combination with other therapeutics, are now en-
tering phase 1 trials.

Targeting splicing regulatory sequencing with ASOs
ASOs provide site-specific base pairing, can be utilized to mask
cis-acting splicing regulatory elements, and therefore lead to
downstream alterations in alternative splicing. While major
success was found using ASOs targeting SMN2 transcript to
treat SMA, several approaches were attempted prior to clinical
trials that targeted an hnRNP A1/A2 ISS (Hua et al., 2008, 2010).

Table 1. Summary of therapies targeting RNA splicing described in Fig. 3

Target Agent Phase Patient population References

SF3B1 H3B-8800 1 MDS, AML, CMML Steensma et al. (2021)

RBM39 degrader Indisulam + idarubicin and cytarabine 2 R/R AML, HR-MDS Assi et al. (2018)

E7820 2 R/R splicing factor-mutant AML, MDS, or
CMML

Bewersdorf et al. (2023b)

PRMT inhibitor GSK3326595 monotherapy or + azacitidine 1/2 R/R MDS, CMML, AML evolved from
prior MDS

Watts et al. (2019)

PRT543 1 MDS, MF Patel et al. (2021)

JNJ-64619178 1 Low-risk MDS Haque et al. (2021)

CLK inhibitor CTX-712 1/2 R/R AML, HR-MDS Al-Kali et al. (2023), Shimizu et al.
(2022)

ASO BP1001 monotherapy or + cytarabine 1 AML, MDS, CML-BP Ohanian et al. (2020)

Cenersen (EL625) + cytarabine and idarubicin 2 R/R AML Alvarado et al. (2007)

Cenersen (EL625) + idarubicin with or without
cytarabine

2 R/R AML Cortes et al. (2012)

RNA capping Ribavirin + cytarabine 1 R/R AML Assouline et al. (2015)

RNA
polyadenylation

JTE-607 targeting of CPSF3 N/A Preclinical Ross et al. (2020)

UHM/ULM NSC 194308 N/A Preclinical Chatrikhi et al. (2021)

Abbrevations: BP: blast phase. HR-MDS: high-risk MDS. MF: myelofibrosis. R/R: relapsed/refractory.
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ASO therapy is in the early stages of oncology due to issues
around systemic ASO delivery and penetrance in hematologic
and metastatic cancer sites. To target the JAK-STAT pathway,
STAT3-targeting ASOs have been tested in clinical trials for lung
cancer and lymphoma (Reilley et al., 2018) and were well tol-
erated and showed disease activity (Roschewski et al., 2023;
Hong et al., 2015). MDM4 targeting ASOs have been shown to
lead to exon 6 skipping, decreasing MDM4 levels, and therefore
increasing p53 tumor suppressor function (Dewaele et al., 2016).
Additionally, MDM4 may work downstream of PRMT5 as a
sensor of splicing defects to increase p53 response (Bezzi et al.,
2013). Additionally, ASOs targeting aberrant BRD9 splicing
(Fig. 3 E) in uveal melanoma (Inoue et al., 2019) have been
shown to restore BRD9 protein levels preclinically. Further work
is needed to determine how ASOs fare in clinical trials. Some
early attempts to use ASOs targeting BCL2 in combination with
chemotherapy (Walker et al., 2021) have shown that they
are safe but did not improve outcomes compared with
chemotherapy alone.

Conclusions and future therapeutic opportunities
Several promising opportunities exist to target RNA processing.
While some of the aforementioned approaches will continue into
phase 2 clinical trials in the coming years, other early-stage
approaches targeting splicing include small molecules target-
ing the U1 snRNP (Prajapati et al., 2023), polyadenylation
(Fig. 3 F) (Araki et al., 2018), U2AF homology motifs (UHMs),
and U2AF ligand motifs (Fig. 3 G) (ULMs) (Jagtap et al., 2020;
Kobayashi et al., 2022a; Chatrikhi et al., 2021). Preclinical effi-
cacy for molecules targeting the cleavage and polyadenylation
complex component CPSF3 (Tao et al., 2024; Liu et al., 2023) has
shown efficacy in leukemia (Ross et al., 2020), Ewing’s sarcoma
(Ross et al., 2020), ovarian (Shen et al., 2023), and pancreatic
cancer models (Alahmari et al., 2024). Additionally, recently
developed synthetic introns that deliver a therapeutic payload
that is spliced and expressed only in splicing factor mutant cells
(North et al., 2022) are under development. Finally, additional
preclinical studies are underway to determine if modulation of
splicing can induce the generation of mis-splicing–derived im-
munogenic peptides and lead to increased response to check-
point inhibitors (Lu et al., 2021).

While prior approaches have utilized synthetic lethality to
target preferential cell death in spliceosome mutant cells (Seiler
et al., 2018b), these have been limited by toxicity (Eskens et al.,
2013; Reilley et al., 2018) and uncertain therapeutic windows
in vivo (Steensma et al., 2021). Rather than targeting core spli-
ceosomal components, approaches that utilize the context of
spliceosome mutants, either by targeting mutant-specific co-
factors (Benbarche et al., 2024) or by selectively killing mutant
cells without affecting wild-type cells (North et al., 2022), may
overcome some of the previous issues.

We are undoubtedly in an exciting time as our understanding
of RNA processing in cancer biology advanced rapidly by in-
creased utilization of high throughput sequencing, genome ed-
iting, and investments to target these pathways in early-stage
clinical trials. In the coming years there will likely be an
expansion of tools and small molecules to modulate RNA

processing. Further mechanistic work is needed to connect
the plethora of splicing changes that occur in cancer cells to
the progression of malignancy and to develop a better un-
derstanding of how other aspects of RNA processing (such as
capping) may be altered in cancer and targeted. By further
understanding the downstream effects of this modulation, be
it alternative splicing, polyadenylation, capping, NMD, or
neopeptide presentation, we are getting closer to utilizing
these tools to selectively eliminate cancer cells.
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