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Abstract
Background Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with high mortality, and only a 
limited subset of extensive-stage SCLC (ES-SCLC) patients demonstrate prolonged survival under chemoimmunotherapy, 
which warrants the exploration of reliable biomarkers. Herein, we built a machine learning-based model using pathomics 
features extracted from hematoxylin and eosin (H&E)-stained images to classify prognosis and explore its potential associa-
tion with genomics and TIME.
Methods We retrospectively recruited ES-SCLC patients receiving first-line chemoimmunotherapy at Nanjing Jinling Hos-
pital between April 2020 and August 2023. Digital H&E-stained whole-slide images were acquired, and targeted next-
generation sequencing, programmed death ligand-1 staining, and multiplex immunohistochemical staining for immune cells 
were performed on a subset of patients. A random survival forest (RSF) model encompassing clinical and pathomics features 
was established to predict overall survival. The function of putative genes was assessed via single-cell RNA sequencing.
Results and conclusion During the median follow-up period of 12.12 months, 118 ES-SCLC patients receiving first-line 
immunotherapy were recruited. The RSF model utilizing three pathomics features and liver metastases, bone metastases, 
smoking status, and lactate dehydrogenase, could predict the survival of first-line chemoimmunotherapy in patients with 
ES-SCLC with favorable discrimination and calibration. Underlyingly, the higher RSF-Score potentially indicated more 
infiltration of  CD8+ T cells in the stroma as well as a greater probability of MCL-1 amplification and EP300 mutation. At 
the single-cell level, MCL-1 was associated with TNFA-NFKB signaling and apoptosis-related processes. Hopefully, this 
noninvasive model could act as a biomarker for immunotherapy, potentially facilitating precision medicine in the manage-
ment of ES-SCLC.
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Introduction

Lung cancer is a life-threatening malignancy with the high-
est mortality, making it a leading cause of cancer-related 
deaths globally[1]. Small cell lung cancer (SCLC) is a highly 
aggressive neuroendocrine tumor, featuring strong tenden-
cies of metastases, proliferation, and resistance to defini-
tive therapy[2] and accounting for ~ 15% of all cases of lung 
cancer. Approximately two-thirds of patients are diagnosed 

with fatal extensive-stage SCLC (ES-SCLC) at onset, sig-
nificantly surpassing the prevalence of limited-stage SCLC 
(LS-SCLC)[3]. Over the past few decades, immunotherapy 
has grounded its position as the standard first-line treatment 
for ES-SCLC, achieving an incremental 5-year overall sur-
vival (OS) rate of 12%, compared to around 2% for chemo-
therapy [4]. Despite initial robust responses to immunother-
apy, acquired resistance inevitably occurs. Consequently, the 
exploration of reliable and therapeutic biomarkers is cru-
cial and might facilitate the realm of precision medicine for 
SCLC.

Histological examination was essential in the diagnostic 
and therapeutic processes of SCLC. Given the intrinsic het-
erogeneity of SCLC, molecular subtyping identified via the 
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expression of transcription factors (ASCL1, NEUROD1, and 
POU2F3) alongside neuroendocrine and non-neuroendocrine 
classifications, has emerged as a promising framework for 
SCLC characterization [5]. Nevertheless, the impact of these 
molecular subtypes on immunotherapeutic efficacy has yielded 
inconsistent results [4, 6, 7], suggesting that molecular sub-
typing alone may not suffice as a standalone biomarker for 
immunotherapy. Recent advancements have highlighted the 
tumor immune microenvironment (TIME) as a potential bio-
marker for immunotherapy [8, 9]. Within the context of SCLC, 
tumor-infiltrating lymphocytes (TILs) have been identified as 
candidate prognostic biomarkers in SCLC patients undergo-
ing chemotherapy or immunotherapy [7, 10, 11]. However, 
the challenge of obtaining adequate SCLC tissue samples for 
comprehensive immune cell marker staining underscores the 
need for alternative noninvasive methodologies to evaluate the 
TIME.

Hematoxylin and Eosin (H&E)-stained sections from 
biopsy samples are routinely employed in the diagnosis of 
SCLC, which could provide high-resolution images embed-
ded with morphological and textural features of tumor tissues. 
The extensive array of features extracted from these images 
offers a wealth of information, contributing to a more compre-
hensive histological profile. Recently, two studies have applied 
pathomics to evaluate the prognosis of SCLC patients [12, 13]. 
However, the sample size of the ES-SCLC cohort was limited, 
and another study predominantly enrolled LS-SCLC patients 
who had undergone prior surgical intervention. This warrants 
the necessity of larger cohorts of ES-SCLC patients in the set-
tings of chemoimmunotherapy. Furthermore, researchers have 
validated the presumed connection between pathomics and 
underlying biological functions or gene expression in malig-
nancies [14, 15]. Although a few studies have investigated 
the relationship between pathomics and prognosis, none have 
elaborated on the underlying genomic alterations associated 
with pathomics features in SCLC, highlighting the necessity 
of our study.

Consequently, we integrated pathomics and clinical features 
to develop a random survival forest (RSF) model in predicting 
prognosis in ES-SCLC patients undergoing first-line chemo-
immunotherapy. Additionally, we explored the putative cor-
relations between RSF-derived risk-score and genomic altera-
tions, as well as immune cell infiltration within the TIME. This 
approach may enhance the noninvasive assessment of TIME 
and guide the selection of appropriate candidates for first-line 
chemoimmunotherapy in ES-SCLC.

Materials and methods

Study design

This retrospective study was conducted according to the eth-
ics of the Declaration of Helsinki (as revised in 2013) and 
the Institutional Review Board of Nanjing Jinling Hospital 
(registration ID. 2024NZKY-050–01). Informed consent 
was obtained from each patient before sample collection 
for research purposes. Patients with histologically diag-
nosed ES-SCLC receiving first-line chemoimmunotherapy 
between April 2020 and August 2023 were retrospectively 
recruited. The inclusive criteria were (I) pathologically 
diagnosed ES-SCLC according to Veterans Administra-
tion Lung Study Group staging criteria; (II) receiving lung 
biopsy at diagnosis at Nanjing Jinling Hospital; (III) receiv-
ing first-line programmed cell death 1 (PD-1) or PD-L1 
(programmed cell death ligand-1) inhibitors combined with 
chemotherapy; (IV) with Eastern Cooperative Oncology 
Group Performance Status (ECOG PS) 0 ~ 3. Patients dying 
of non-cancer reasons (cardiovascular diseases, infectious 
diseases, etc.), defined as transformed SCLC, with ECOG 
PS ≥ 4, lost to follow-up within 1 month or receiving biopsy 
in other medical centers were ruled out from the study. The 
last follow-up time was in April 2024.

Extraction of clinical variables

The baseline clinicopathological characteristics were col-
lected from electronic medical records, including age, gen-
der, ECOG PS, smoking status, metastatic site (brain, liver, 
contralateral lung, and bone), chemotherapy regimens, and 
immunotherapy regimens. Serum parameters including lac-
tate dehydrogenase (LDH), C-reactive protein (CRP), and 
interleukin-6 (IL-6) were also recorded. Each continuous 
variable was dichotomized using the “survminer” R package 
with the OS as the endpoint.

Image acquisition and processing

Archival formalin-fixed paraffin-embedded (FFPE) tumor 
sections from ES-SCLC patients undergoing needle biopsy 
of the lung were retrieved from the pathological specimen 
repository of the Jinling cohort. The digital H&E-stained 
whole-slide images (WSIs) in MRXS format were captured 
at 20 × magnification via a digital scanner (Pannoramic 
MIDI scanner, 3DHISTECH) and were further converted 
into tiled TIFF using the 3DHISTECH's Slide Converter 
software. The pathologist (XX. W) with 10 years of clinical 
experience reviewed and agreed on the image quality for 
all WSIs. By applying Qupath 0.5.0, all TIFF images were 
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preprocessed in a pyramidal TIFF format. Next, the tissue 
regions excluding the white background in the WSIs were 
identified through the pipeline of “Classify,” “Pixel clas-
sification,” and “Create threshold” (resolution: 17.52 um/
pixel; channel: red; prefilter: Gaussian; smoothing sigma: 0; 
threshold: 240). We further automatically segmented the tis-
sue regions into non-overlapping 1000 × 1000 pixels (0.2738 
um/pixel) tiles. Tiles that were fizzy or with tissue folds 
were excluded. Only the tiles with the tumor region coverage 
surpassing 60% of the total area were retained, which was 
further confirmed by an experienced pathologist who was 
blinded to the clinical responses (XX. W). Finally, a total of 
826 tiles were generated from 118 WSIs.

Endpoint events and clinical response

The primary and secondary endpoints were designed as OS 
and progression-free survival (PFS), which were respec-
tively defined as the time from the baseline to death and 
disease progression. Clinical response was defined as com-
plete response (CR), partial response (PR), stable disease 
(SD), or progressive disease (PD) according to the modified 
Response Evaluation Criteria in Solid Tumors version 1.1 
for immune-based therapeutics [16].

Extraction of pathomics features

The pipeline of pathomics features extraction was built using 
CellProfiler[17] (version 4.2.6) according to previously pub-
lished methods[18–20]. Firstly, the “UnmixColors” module 
was performed to unmix the selected tiles for tissue fore-
ground identification by a threshold calculated by the Otsu 
algorithm. Secondly, the pipeline automatically identified 
the cell nuclei and cytoplasm by using “IdentifyPrimary-
Objects” module and “IdentifySecondaryObjects“ module 
with adaptive Otsu thresholds, respectively. Afterward, 401 
image features were obtained by multiple modules including 
“Measure Object Size Shape,” “Measure Texture,” “Measure 
Object Intensity,” and “Measure Object Intensity Distribu-
tion,” covering the shapes, sizes, textures, pixel intensity 
distributions, and proximity relations of the primary and 
secondary objects. The mean values of each selected fea-
ture were calculated for each sample. After eliminating futile 
features, a total of 345 quantitative image features are listed 
in Table S1 for further analysis.

Feature selection and the establishment 
of the random survival forest model

To select the candidate features, all pathomics features were 
standardized using the Z-score method. Subsequently, to 
prefilter features strongly embedded with prognostic infor-
mation, only pathomics or clinical features with P < 0.05 

from univariate Cox regression analysis for OS were 
retained. Later, the LASSO (least absolute shrinkage and 
selection operator) method based on Cox regression with 
tenfold cross-validation was applied to regularize the num-
ber of features in proportion to the sample size. The reserved 
features were subsequently used for model construction.

The Cox regression model (Cox) was developed. The 
risk-score was calculated based on a linear combination of 
selected features, weighted by their respective coefficients 
in the multivariate Cox regression model. The RSF model, 
a decision tree ensemble learning regression algorithm uti-
lizing feature and sample bragging through random forest, 
was established using the “randomForestSRC” R package. 
The parameters were set to 1000 trees, a maximum of 15 
levels per decision tree, and a random seed of 123. The esti-
mated cumulative hazard function (CHF) was calculated 
by integrating the Nelson-Allen estimator within the model 
[21], serving as the RSF risk-score (RSF-Score). Addition-
ally, variable importance was determined by measuring the 
decrease in prediction accuracy using out-of-bag data, which 
were not used in tree construction each time.

Evaluation and comparison of model performances

Multiple methods were employed to evaluate model per-
formance, including model discrimination, calibration and 
clinical utility [22]. Specifically, the area under the curve 
(AUC) of the time-dependent receiver operating character-
istic (ROC) curve and Harrell’s concordance index (C-index) 
were applied to assess model discrimination. The decision 
curve analysis (DCA) and calibration plots were utilized to 
evaluate clinical utility and model calibration, respectively. 
The bootstrap C-index reported as median [standard error of 
the mean (SEM)] and ROC curves for the model with 1000 
resampling groups were calculated for internal validation. 
The DeLong test was applied for model comparison at dif-
ferent time points.

Immunohistochemical and multiplex 
immunohistochemical staining

Consecutive tissue sections, each four micrometers thick, 
were acquired from FFPE tumor biopsy samples. The 
expression of PD-L1 was evaluated using the combined 
positive score (CPS), with sections stained employing the 
PD-L1 IHC 22C3 pharmDx kit (Agilent, Santa Clara, CA, 
USA).

The infiltration of immune cells within the TIME was 
assessed through multiplex immunohistochemistry (mIHC) 
staining using the PANO Multiplex IHC kit (Panovue, Bei-
jing, China). FFPE sections were stained with antibodies 
targeting CD8A (Mouse#70,306, CST, Massachusetts, 
USA), CD56 (Mouse#3576, CST, Massachusetts, USA), 
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CD68 (Rabbit#76,437, CST, Massachusetts, USA), HLA-
DR (Rabbit#ab92511, Abcam, Cambridge, England), and 
panCK (Mouse#4545S, CST, Massachusetts, USA). Specifi-
cally, immune cells were identified as  CD8+ T cells (CD8A 
positive),  CD56dim+ and  CD56bright+ natural killer (NK) cells 
(distinguished by the surface density expression of CD56), 
M1-like macrophages (double positive for CD68 and HLA-
DR), M2-like macrophages (CD68 positive and HLA-DR 
negative), and tumor cells (panCK positive). Following the 
application of primary antibodies, tyramide signal amplifi-
cation and incubation with secondary antibodies conjugated 
with horseradish peroxidase were performed. All images 
were analyzed in batches using the InForm automated image 
analysis software (PerkinElmer, Waltham, MA, USA).

Targeted next‑generation sequencing

24 ES-SCLC patients from the Jinling cohort published 
previously were subjected to a targeted next-generation 
sequencing (tNGS) panel which included 437 cancer-related 
genes (Geneseeq PrimeTM, Nanjing Geneseeq Technolo-
gies Inc.). Sequencing analysis and sample preparation fol-
lowed previously published guidelines [23, 24]. In brief, the 
QIAamp DNA FFPE Tissue Kit (QIAGEN, Dusseldorf, Ger-
many) was used to extract genomic DNA from FFPE tumor 
tissue samples. Leukocytes were used to isolate genomic 
DNA for the normal control using the DNeasy Blood and 
Tissue Kit (QIAGEN, Dusseldorf, Germany). The KAPA 
Hyper Prep Kit (KAPA Biosystems, Wilmington, MA, 
USA) was used to prepare the libraries in accordance with 
the guidelines. Using the GeneseeqPrime™ tNGS panel and 
the xGen Lock-down Hybridization and Wash Reagents Kit 
(Integrated DNA Technologies), libraries with different 
indices were combined for targeted enrichment. Sequenc-
ing was performed on a Novaseq6000 platform (Illumina, 
San Diego, USA).

Bulk and Single‑cell RNA sequencing analysis

A public cohort by George et al. [25] accessed via cbioportal 
(https:// www. cbiop ortal. org/ study/ summa ry? id= sclc_ ucolo 
gne_ 2015) with 81 limited-stage SCLC patients receiving 
both whole-genome sequencing and bulk RNA sequencing 
tests were enrolled for transcriptomics analysis. To evaluate 
gene expression and function at the single-cell level, lung 
tissues from untreated SCLC patients with single-cell RNA 
sequencing were used [26]. Preprocessed single-cell RNA 
sequencing data, annotated with detailed cell types, were 
obtained [26] and subjected to analysis using the R pack-
age “Seurat.“ The differentially expressed genes (DEGs) 
across cell types were identified with “FindMarkers“ func-
tion through the application of the “MAST“ test. Adjusted 
P-values < 0.05 and an absolute average log2 (fold change) 

larger than 1.5 were used to evaluate significance. Further-
more, Metascape enrichment analysis [27] was carried out 
to elucidate the molecular processes that underlie the dif-
ferent groups.

Statistical analysis

The mean ± standard deviation (SD) is used to represent 
continuous variables with a normal distribution, whereas 
the median (interquartile range) was used to express non-
normally distributed data. For continuous and categorical 
variables, the Fisher's exact test and the Wilcoxon signed-
rank test were respectively used. Log-rank tests and Cox 
proportional hazard models were used to assess survival 
predictors. The cutoff values of continuous variables were 
recognized using the “survminer” R package, with OS as 
the endpoint. Likewise, using the “survminer” R package 
with OS as the endpoint, patients in the RSF and Cox mod-
els were classified into high- and low-risk groups based on 
their risk scores. The "MICE" R package was utilized to 
impute missing values through the predictive mean matching 
method. Two-sided P-values less than 0.05 were considered 
statistically significant. All analyses were conducted using R 
version 4.3.2 and GraphPad Prism version 9.3.1.

Results

Baseline characteristics

The study design is depicted in Fig. 1. Over a median follow-
up period of 12.12 months (interquartile range: 7.61–22.75), 
118 patients with ES-SCLC receiving first-line immunother-
apy at Nanjing Jinling Hospital were recruited. The cohort 
predominantly consisted of male patients [101 (85.6%)] with 
a history of smoking [84 (71.2%)]. A sum of 34 (28.8%) and 
23 (19.5%) patients had bone and liver metastases respec-
tively. The majority of patients received etoposide plus 
cisplatin (EP)-based chemotherapy [42 (35.5%)], while 48 
(40.7%) patients were treated with the PD-1 inhibitors as 
the immunotherapy regimen. In terms of the best treatment 
response, 65 (55.1%) patients achieved SD, 37 (31.4%) 
achieved PR, and 16 (13.6%) exhibited PD. Throughout the 
follow-up period, 77 (65.3%) patients experienced disease 
progression, and 59 (50.0%) patients died. Detailed informa-
tion is provided in Table 1.

Analysis of clinical and serum parameters associated 
with OS

Univariate and multivariate analyses revealed that spe-
cific chemotherapy regimens [etoposide plus lobapl-
atin (EL) vs. etoposide plus cisplatin (EP), Hazard ratio 

https://www.cbioportal.org/study/summary?id=sclc_ucologne_2015
https://www.cbioportal.org/study/summary?id=sclc_ucologne_2015
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(HR): 0.68; 95% confidence interval (CI): 0.35–1.31; 
P = 0.247; etoposide plus carboplatin (EC) vs. EP, HR: 
0.73; 95% CI: 0.35–1.52; P = 0.401] and immunotherapy 
regimens (HR: 0.72; 95% CI: 0.41–1.28; P = 0.264) did 

not significantly impact survival. Among various serum 
parameters, elevated levels of LDH were identified as an 
independent risk factor for OS, whereas IL-6 and CRP 
were not. Additionally, current or former smokers status 

Fig. 1  Flowchart of the study
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Table 1  Baseline characteristics 
and Cox regression analysis for 
predicting overall survival

LDH, lactate dehydrogenase; CRP, C-reactive protein; PD-L1, Programmed cell death ligand-1; PD-1, Pro-
grammed cell death protein-1; ECOG PS, Eastern Cooperative Oncology Group Performance Status; EL, 
etoposide plus lobaplatin; EC, etoposide plus carboplatin; EP, etoposide plus cisplatin; SD, standard devia-
tion; HR, hazard ratio; CI, confidence interval

Subgroups Univariate Cox regression Multivariate Cox regression

Mean ± SD/ N (%) HR (95% CI) P-value HR (95% CI) P-value

Age 64 ± 8 1.02 (0.99–1.05) 0.235 1.01 (0.98–1.05) 0.245
ECOG PS
0 108 (91.5) Reference
1–3 10 (8.5) 1.15 (0.41–3.21) 0.784 1.18 (0.40–3.51) 0.766
Gender
Female 17 (14.4) 0.76 (0.36–1.60) 0.465 1.00 (0.44–2.26) 0.999
Male 101 (85.6) Reference Reference
Stage
Extensive-stage 118 (100.0) – –
Smoking status
Current or former 84 (71.2) 1.99 (1.07–3.67) 0.029 2.37 (1.19–4.70) 0.014
Never 34 (28.8) Reference Reference
Metastatic site
Brain
Yes 20 (16.9) 1.22 (0.63–2.35) 0.550 1.07 (0.50–2.28) 0.860
No 98 (83.1) Reference Reference
Contralateral lung
Yes 14 (11.9) 1.49 (0.76–2.94) 0.249 1.90 (0.87–4.15) 0.109
No 104 (88.1) Reference Reference
Liver
Yes 23 (19.5) 2.15 (1.19–3.87) 0.011 1.96 (1.03–3.72) 0.040
No 95 (80.5) Reference Reference
Bone
Yes 34 (28.8) 1.91 (1.13–3.23) 0.016 1.99 (1.07–3.68) 0.029
No 84 (71.2) Reference Reference
Chemotherapy regimen
EP 42 (35.5) Reference
EL 48 (40.7) 1.00 (0.56–1.79) 0.999 0.68 (0.35–1.31) 0.247
EC 28 (23.7) 0.98 (0.51–1.89) 0.961 0.73 (0.35–1.52) 0.401
Immunotherapy regimen
PD-L1 inhibitors 48 (40.7) 0.72 (0.43–1.21) 0.218 0.72 (0.41–1.28) 0.264
PD-1 inhibitors 70 (59.3) Reference Reference
Best response
Stable disease 65 (55.1) – –
Progressive disease 16 (13.6) – –
Partial response 37 (31.4) – –
LDH
High (> 259.00) 46 (39.0) 2.20 (1.33–3.63) 0.002 1.91 (1.06–3.46) 0.031
Low (≤ 259.00) 72 (61.0) Reference Reference
IL-6, U/L
High (> 12.86) 39 (33.1) 1.29 (0.77–2.17) 0.335 1.22 (0.65–2.27) 0.538
Low (≤ 12.86) 79 (66.9) Reference Reference
CRP, mg/L
High (> 0.70) 85 (72.0) 1.35 (0.75–2.42) 0.312 0.83 (0.43–1.60) 0.580
Low (≤ 0.70) 33 (28.0) Reference Reference
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(HR, 2.37; 95% CI: 1.19–4.70; P = 0.014), liver metas-
tases (HR, 1.96; 95% CI: 1.03–3.72; P = 0.040), bone 
metastases (HR, 1.99; 95% CI: 1.07–3.68; P = 0.029) 
and LDH > 259 (HR: 1.91; 95% CI: 1.06–3.46; P = 0.031) 
were independently associated with poorer OS.

Identification of pathomics and clinical features 
associated with prognosis

In a panel of quantitative characteristics, 42 pathom-
ics and 4 clinical features with P < 0.05 via univariate 
Cox regression analysis for OS were retained for further 
analysis (Table S2). Finally, seven features were selected 
using LASSO Cox regression analysis with tenfold cross-
validation, including liver metastases, bone metastases, 
LDH, and three pathomics features (Fig. 2A). Later, we 
established the Cox and RSF models based on the selected 
features. According to the Cox model, patients with a pre-
dicted OS probability score greater than 1.251 were classi-
fied into the high-risk group, while the remaining patients 
were categorized into the low-risk group. It was observed 
that patients in the low-risk group had distinctly better 
OS and PFS compared to those in the high-risk group 
(P < 0.001; P < 0.001) (Fig. S1A, B).

Additionally, we developed an ensemble learning ran-
dom forest classifier for the OS prediction based on the 
seven features. As illustrated in Fig. 2B-C, the ranking 
of each variable in the RSF model according to the vari-
able importance is as follows: bone metastases, LDH, liver 
metastases, factor 1 (Mean_PrimaryObjects_RadialDistri-
bution_FracAtD_Hematoxylin_3of4), factor 2 (Mean_Pri-
maryObjects_Texture_Variance_Hematoxylin_3_00_256), 
factor 3 (Mean_PrimaryObjects_Texture_SumVariance_
Hematoxylin_3_02_256) and smoking status. Each patient 
was assigned a score based on the estimated RSF-Score, 
with an optimized cutoff value of 32.508. It was observed 
that the patients in the high-risk group had distinctly worse 
OS (HR: 5.59; 95% CI: 3.35–10.12; P < 0.001) and PFS 
(HR: 3.71; 95% CI: 2.32–5.94; P < 0.001) compared to 
those in the low-risk group. Notably, the median OS in 
the high-risk group was 8.17 (6.63–11.00) months, com-
pared to 29.70 (23.03-NR) months in the low-risk group 
(Fig. 2D-E).

We selected representative images of long- and short-
term survival patients to visualize the differences in their 
tumor cell morphology. Both patients presented a central 
type lung cancer, with patient 1 dead at 8.7 months without 
liver or bone metastases and smoking history, and patient 2 
dead at 20.3 months with smoking history but without liver 
or bone metastases. However, no distinct morphological dif-
ferences were visually detected between the two patients 
(Fig. 3A-B).

Performances of the RSF model

The performances of the Cox and RSF models in risk strati-
fication of OS under chemoimmunotherapy were evaluated. 
The time-dependent ROC curve estimation of the predicted 
probability for OS indicated that the time-dependent AUC 
of the RSF model mainly ranged from 0.781 at 43 months 
to 0.861 at 11 months, while the Cox model displayed a 
fluctuating AUC between 0.727 at 21 months and 0.818 at 
33 months (Fig. 4A). The RSF model demonstrated superi-
ority over the Cox model according to the Delong test, with 
improved AUCs at 9 months (84.46 vs. 77.56, P = 0.018), 
1 year (81.98 vs. 73.76, P = 0.002) and 2 years (81.20 vs. 
73.70, P = 0.002) (Table 2). Furthermore, we assessed the 
prediction accuracy of the models. The mean C-index (SEM) 
of the RSF model using bootstrap resampling at 1000 times 
was 0.767 (0.029), compared to 0.704 (0.040) for the Cox 
model (Fig. 4B). Bootstrap ROC curves of the RSF model 
showed a mean AUC of 0.833 (0.761–0.905) (Fig. 4C). The 
calibration curve demonstrated a satisfactory agreement 
between the predicted and observed probabilities for OS 
based on the RSF model at 6 months, 9 months, 1 year, and 
2 years (Fig. S2A). The potential clinical utility was further 
confirmed by DCA (Fig. S2B). To underscore the impor-
tance of incorporating pathomics features, we conducted 
a comparative analysis between the RSF-based combined 
model integrating pathomics and clinical features and the 
RSF-based clinical model (Clinical model), which includes 
bone metastases, liver metastases, LDH, and smoking status. 
The Delong test indicated that the RSF model outperformed 
the Clinical model, achieving a superior AUC of 0.812 com-
pared to 0.736 at 2 years (P = 0.011) (Table S3).

The underlying association between genomics 
and the RSF‑Score

The correlation between the pathomics signature and 
genomic alterations was investigated based on 24 ES-SCLC 
patients from the Jinling cohort who underwent additional 
tNGS testing, which has been published by our group before-
hand (Fig. 5A). The cohort was divided into high-risk (10 
patients) and low-risk (14 patients) subgroups according to 
the RSF-Score. We further analyzed genes with an alteration 
frequency greater than three. It was found that the MCL-1 
amplification and EP300 mutation were more prevalent in 
the high-risk group. Specifically, the RFS-Score was signifi-
cantly higher in patients with MCL-1 amplification (AMP) 
(P) and EP300 mutant (MUT) (P = 0.008) types compared to 
their counterparts (Fig. 5B, Table S4). Additionally, no sig-
nificant differences were observed between the risk groups 
in terms of tumor mutation burden (TMB) (P = 0.105) (Fig. 
S3A) or PD-L1 CPS (P = 0.338) (Figure S3B).
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In a public cohort by George et al. with 81 limited-stage 
SCLC patients receiving both whole-genome sequencing 
and bulk RNA sequencing tests, we found that 9 (11.1%) 
patients harbored EP300 mutation and none of them exhib-
ited MCL-1 amplification. Furthermore, we compared the 
EP300 mRNA levels among the MUT and wild-type (WT) 

tumors. However, no significant disparities in EP300 expres-
sion were found between EP300 MUT and WT patients (Fig. 
S4). Furthermore, we probed into the specific mutation sites 
of EP300. In our cohort, a total of four patients harbored 
EP300 mutations with varying survival outcomes and muta-
tion sites. Specifically, three patients (exon 26: c.4195G > T, 

Fig. 2  Establishment of the random survival forest model indicative 
of survival in ES-SCLC patients receiving first-line chemoimmuno-
therapy. (A) Seven parameters were selected via LASSO-Cox regres-
sion analysis based on overall survival. (B) Variable importance of 

reserved parameters in the RSF model. (C) The heatmap of the RSF 
model. (D–E) The K-M survival curves of OS and PFS between 
patients in the high-risk (RSF-Score>32.508) and low-risk (RSF-
Score≤32.508) groups
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exon 13: c.2299C > G, and exon 26: c.4199G > A) suc-
cumbed within seven months, while one patient (exon 11: 
c.2084G > A) survived for more than 27 months.

The function of MCL‑1 and EP300 in SCLC 
at single‑cell level

We further elaborated on the expression of MCL-1 and 
EP300 at the single-cell level (Fig. 6A). Utilizing a dataset 
comprising 14,283 cells from three treatment-naïve SCLC 
patients, we observed robust MCL-1 expression across all 
SCLC subtypes (SCLC-A, SCLC-N, and SCLC-P). Nota-
bly, elevated MCL-1 expression was observed across various 
immune cell types, including mast cells, B cells, monocytes, 
natural killer cells, neutrophils, dendritic cells, plasma cells, 
and multiple T cell subtypes (Fig. 6B, C). Metascape enrich-
ment analysis further revealed that SCLC cells exhibiting 

Fig. 3  Representative histopathological images and transverse section PET/CT images. (A) Representative images of a short-term survival 
patient. (B) Representative images of a long-term survival patient

Fig. 4  The performance of the RSF and Cox models. (A) Time-
dependent area under the curve of the RSF and Cox models. (B) 
Bootstrap C-index for the Cox and RSF model. The heights of the 

columns represent the average of 1000 resampling groups, and verti-
cal lines represent the SEM of 1000 resampling groups. (C) Bootstrap 
ROC curves of the RFS model at 1000 resampling times

Table 2  The performances of the RSF model and Cox regression 
model for predicting overall survival

*  Delong test comparing the RSF model to the LASSO model at dif-
ferent time points
LASSO, least absolute shrinkage and selection operator; tAUC, time-
dependent area under the curve; RSF, random survival forest; mo, 
month(s); yr, year(s)

Models Time of 
prediction

tAUC (95% CI) P-value*

RSF model 9 mo 84.46 (76.40–92.52) Reference
Cox model 9 mo 77.56 (66.45–88.66) 0.018
RSF model 1 yr 81.98 (73.43–90.53) Reference
Cox model 1 yr 73.76 (63.04–84.48) 0.002
RSF model 2 yr 81.20 (71.52–90.88) Reference
Cox model 2 yr 73.70 (62.43–84.97) 0.022
RSF model 3 yr 81.60 (65.59–97.61) Reference
Cox model 3 yr 77.25 (57.23–96.08) 0.565
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increased MCL-1 levels were concomitantly enriched in 
TNFA-NFKB signaling, apoptosis-related processes, and 
hypoxia pathways (Fig. 6D). However, EP300 expression 
remained relatively limited across all subtypes, with only 
moderate expression observed in plasma cells (Fig. S5).

The correlation between the RSF‑Score and TIME

We further investigated whether the RSF-Score could reflect 
the TIME by analyzing the correlation between the RSF-
Score and immune cell infiltration using mIHC. Only 19 
patients had accessible data for both tNGS and mIHC stain-
ing (Fig. 7A, B). Among the four classical immune cell 
types  (CD8+ T cells,  CD56dim+ and  CD56bright+ NK cells, 
M1-like and M2-like macrophages) identified in the paren-
chyma, stroma and total areas, the RSF-Score was positively 
correlated with the count and percentage of  CD8+ T cells 
in the stroma, both by density (R = 0.51, P = 0.028) and 
percentage (R = 0.48, P = 0.041) (Fig. 7C, D). However, no 
significant association was observed between the infiltra-
tion of  CD8+ T cells in the parenchyma and the RSF-Score 
(R = 0.06, P = 0.81; R = 0.11, P = 0.65) (Fig. S6). Addition-
ally, we investigated the potential impact of gene alterations 

on immune cell population infiltration. Our analysis revealed 
that a sum of three patients harbored an EP300 mutation and 
five patients exhibited MCL-1 amplification. However, no 
significant correlation was identified for the immune cells 
between the wild-type and mutant-type (amplification/muta-
tion) groups (Table S5).

Discussion

SCLC is a highly aggressive and heterogeneous neuroendo-
crine lung cancer with a poor prognosis and limited treat-
ment options. The challenge of obtaining samples has sig-
nificantly impeded the progress of biomarker research in 
SCLC, which warrants the discovery of easily accessible 
prognostic tools. Recently, pathomics, which involves the 
extraction of features from H&E-stained digital images, has 
emerged as a promising field in various malignancies[29, 
30]. However, studies on the application of pathomics in 
SCLC remain scarce. In 2024, Shibaki et al. [12] pioneered 
the use of pathomics features derived from TIME images in 
SCLC. They established a deep-learning (DL) pathomics 
model based on tumor and immune cell features to predict 

Fig. 5  The correlation between genomics and RFS-Score. (A) Heatmap of the genomics and clinical information patients with different RFS-
Score. (B) The associations between RSF-Score and alterations in EP300 and MCL-1 
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1-year PFS of immunotherapy in a 78-patient ES-SCLC 
cohort[12]. Subsequently, Zhang et al.[13] enrolled SCLC 
patients undergoing resection and identified 50 intricate 
histomorphological phenotypes for prognosis classifica-
tion. However, these studies were either limited to LS-SCLC 
patients with surgery or bearing a small sample size with 
1-year PFS as the endpoint, thus constraining the optimiza-
tion of DL models. Consequently, these findings may not 
apply to the broader population of extensive-stage patients, 
and PFS may not fully represent OS, necessitating further 
investigations in larger cohorts. Additionally, no existing 
studies have explored the underlying genomic alterations 
beneath the pathomics signatures.

To overcome these constraints, we enrolled a larger 
cohort of ES-SCLC patients to develop a RSF-based com-
bined model that integrates pathomics and clinical param-
eters, to predict OS under first-line chemoimmunotherapy. 
Unlike previous studies, we employed a more accessible 
and automated pipeline of tile delineation and feature selec-
tion using an open-source software. The RSF model, which 
encompassed pathomics features, liver metastases, bone 
metastases, LDH, and smoking status, demonstrated robust 

performance with a 2-year tAUC of 0.81. Moreover, our 
study was the first to suggest that the proposed RFS-Score 
was higher in patients with MCL-1 AMP and EP300 MUT. 
At the single-cell level, MCL-1 was associated with TNFA-
NFKB signaling and apoptosis-related processes. The RSF-
Score was also positively correlated with the infiltration of 
 CD8+ T cells in stromal areas. Promisingly, our findings 
might prompt the application of routinely performed H&E 
staining sections in the assessment of chemoimmunother-
apy prognosis, thereby facilitating precision medicine in the 
management of ES-SCLC.

In this study, we identified three pathomics and four clini-
cal features—liver metastases, bone metastases, LDH, and 
smoking status—as prognostic factors. It was reported that 
the primary and secondary objects identified by the Cell-
profiler software respectively represented the cell nuclei 
and cell cytoplasm [18]. The selected image factors, includ-
ing PrimaryObjects Radial Distribution FracAtD, Texture 
Variance Hematoxylin, and Texture SumVariance Hema-
toxylin, were all related to the shape and staining depth 
of the cell nucleus [31]. Specifically, Radial Distribution 
FracAtD represented the intensity distribution of the cell 

Fig. 6  The function of MCL-1 in SCLC at single-cell level. (A) The 
UMAP plot of MCL-1hi and MCL-1lo SCLC cells and other cell types 
in the tumor microenvironment. (B-C) The expression of MCL-1 

among different SCLC molecular subtypes and immune cells. (D) 
The enrichment analysis between MCL-1hi and MCL-1lo SCLC cells
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nucleus at a pixel position, while texture features provided 
statistical properties of variance of the gray levels of the 
points, descriptive of the spatial regularity or smoothness/
coarseness of the cell nucleus. Pathologically, SCLC tumors 
are characterized by small size, scant cytoplasm, ill-defined 
borders, finely granular nuclear chromatin, and inconspicu-
ous nucleoli [28]. This may explain why all the pathomics 
features retained in our model were associated with tumor 
cell nuclei. Furthermore, the subtle differences in patho-
logical images, which are not easily discernible by visual 
inspection, highlight the importance of quantitative feature 
measurement for survival classification.

A prior DL-based study suggested that pathological 
images were more significant than clinical information in 
evaluating the efficacy of immunotherapy for SCLC [12]. 
This conclusion was contradictory to our findings, which 
underscored the importance of metastatic sites and LDH. 
The discrepancy may stem from different feature extrac-
tion methodologies. It has been proved that the presence 
of liver metastases and elevated LDH levels are associated 
with worse clinical responses in treatment-naïve or relapsed/
refractory SCLC patients undergoing immunotherapy [32, 
33]. Fundamentally, PD-1/PD-L1 inhibitors function by acti-
vating cytotoxic T lymphocytes, hindering immune escape, 
and sensitizing antitumor activities [34]. Consequently, 
markers related to the systemic immune or inflammation 

status, including LDH, are naturally correlated with immu-
notherapy response. Therefore, incorporating these clinical 
parameters in prognosis prediction is essential.

TIME has been identified as a potential biomarker in 
SCLC [11]. It has been inferred that TILs, macrophages, and 
their ratio are associated with survival in LS-SCLC patients 
treated with chemotherapy [10, 11, 35]. Recently, the infil-
tration of  CD8+ T cells was found to correlate with survival 
in ES-SCLC patients treated with immuno-monotherapy or 
doublets in CheckMate 032 [7]. Our previous investigations 
[36] indicated that the count of  CD8+T cells in the stroma 
and M1-like macrophages at any site could predict the sur-
vival of ES-SCLC patients with chemoimmunotherapy. We 
hypothesized that this might be attributed to the inability of 
 CD8+T cells to migrate into tumor parenchyma to exert their 
antitumoral effects. Notably, Shibaki et al. [12] confirmed 
the superior performance of a machine learning-based path-
omics model in delineating tumor and immune cells com-
pared to the manual measurement of individual immune 
cells in assessing the 1-year PFS of ES-SCLC receiving 
chemoimmunotherapy. The AUC of their combined model 
was 0.789, compared to 0.681, 0.626, and 0.567 for  CD8+, 
 FoxP3+ TILs, and PD-L1 score respectively. We further 
validated that our RSF risk group was correlated with the 
infiltration of  CD8+T cells in stromal areas, which could 
facilitate the assessment of TIME in a noninvasive manner.

Fig. 7  The correlation 
between the RSF-Score and 
the infiltration of  CD8+ T 
cells in the stroma. (A–B)
Representative multiple 
immunohistochemistry images 
of the immune cells  (CD8+, 
 CD56+,  CD68+HLADR-, and 
 CD68+HLA-DR- cells) of two 
patients with different RSF-
Scores. (C) The correlation 
between the RSF-Score and 
the density of  CD8+ T cells in 
the stroma. (D) The correlation 
between the RSF-Score and the 
percentage of  CD8+ T cells in 
the stroma
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Moreover, intrinsic alterations within cancer cells have 
been shown to correlate with an immunosuppressive “cold” 
TIME and poor responses to immunotherapy in lung cancer 
[37]. The alterations in several potent signaling pathways 
have been detected in SCLC [38], including those involving 
epigenetic regulators, metabolism, and DNA damage repair 
pathways [39]. Given the high cost of DNA sequencing tech-
niques such as NGS, the development of a noninvasive tool 
to assess gene alterations might be beneficial. Promisingly, 
using the genomics data from the Jinling cohort published 
by our group [36], we demonstrated that the higher estimated 
RSF-Score was associated with MCL-1 amplification and 
EP300 mutation. MCL-1, an antiapoptotic member of the 
BCL-2 protein family, has been observed to be amplified 
in various cancers, including breast and pancreatic cancers 
[40, 41]. MCL-1 could confer resistance to chemotherapy 
or targeted therapy [41]. Previous studies have indicated 
that MCL-1 amplification occurs in approximately 4% of all 
SCLC cases [42]. Although the relationship between MCL-1 
amplification and prognosis in SCLC has not been exten-
sively studied, it is known that MCL-1 is highly expressed 
in SCLC cell lines and promotes tumor growth [43]. Inhibi-
tion of MCL-1 has been shown to restore antitumoral effects 
in SCLC cells with elevated MCL-1 levels and overcome 
venetoclax resistance in SCLC patients [44–46]. However, 
the exploration of these studies was mainly implemented in 
chemotherapy settings, and our exploratory analysis illus-
trated that its amplification could not reflect TIME. More 
investigations should be implemented on it in the settings 
of immunotherapy. Furthermore, our analysis via the public 
cohort revealed high expression levels of MCL-1 in immune 
cells. Underlyingly, it has been reported that distinct subsets 
of immune cells rely on specific antiapoptotic BCL-2 family 
proteins for survival, with MCL-1 being a critical molecule 
in B cells, germinal center B cells, plasma cells, naïve T 
cells, memory T cells, regulatory T cells, natural killer cells, 
plasmacytoid dendritic cells, and neutrophils [47]. MCL-1 
functions as an antiapoptotic “guardian,” promoting cell sur-
vival by preventing mitochondrial outer membrane permea-
bilization via the downstream proapoptotic effectors BAX 
and BAK, which further induce apoptosis.

EP300 encodes the E1A binding protein P300, which 
plays a crucial role in epigenetic regulation, including tran-
scription, cell proliferation, and cell differentiation. EP300 
mutations have been reported to occur at a frequency of 13% 
in SCLC. Consistent with our findings, the co-occurrence of 
TP53 missense mutations and CREBBP/EP300 mutations 
has been found to be associated with shorter relapse periods 
in SCLC patients undergoing chemotherapy [48]. Preclini-
cal studies have demonstrated that SCLC cells with EP300 
mutations are susceptible to histone deacetylase (HDAC) 
inhibitors, which have been shown to upregulate both PD-L1 
and MHC-I, potentially enhancing the efficacy of combined 

immunotherapy. Consequently, a phase I study combining 
HDAC inhibitors and chemoimmunotherapy in treatment-
naïve ES-SCLC patients is currently underway [49]. Addi-
tionally, EP300 mutations have demonstrated prognostic 
significance in various malignancies. For instance, EP300 
mutations are associated with poor survival outcomes in 
patients with classic Hodgkin lymphoma [50] and cervical 
cancer [51]. Conversely, T cell acute lymphoblastic leukemia 
patients harboring EP300 mutations, in the absence of alter-
ations in N/K-RAS, the PI3K pathway (PTEN, PIK3CA, and 
PIK3R1), TP53, DNMT3A, IDH1/2, and IKZF, have shown 
favorable prognoses [52].

TMB is an established biomarker of immunotherapy [53]. 
Some studies have reported that higher TMB was associated 
with greater immunogenicity and a favorable prognosis with 
immunotherapy in SCLC, which warrants further evalua-
tion [54, 55]. Therefore, we hypothesized that our RSF risk 
group, which incorporated prognostic information, might 
reflect different levels of TMB. Although the results did 
not reach statistical significance, it was observed that the 
patients in the high-risk group exhibited lower levels of 
TMB compared to those in the low-risk group. The lack of 
statistical significance may be attributed to the small propor-
tion of patients who underwent TMB testing; thus, larger 
cohorts are warranted to validate this potential connection.

To our knowledge, this study represents the largest cohort 
of ES-SCLC patients treated with first-line chemoimmuno-
therapy and evaluates immunotherapy prognosis with OS as 
the endpoint through RSF-based models integrating pathom-
ics and clinical parameters. Nonetheless, certain limitations 
warrant further elaboration. Firstly, the retrospective and 
single-center nature of the study might mitigate the general-
izability of our RSF model. Secondly, tile segmentation and 
feature extraction were not conducted using deep-learning 
algorithms. However, the processing procedure was carried 
out using a standardized pipeline with open-access software, 
potentially making it more accessible to physicians without a 
background in artificial intelligence. Additionally, the WSIs 
of H&E sections from biopsy samples represented only a 
small proportion of the tumors, which could introduce bias 
due to tumor heterogeneity. Lastly, only a small subset of 
patients underwent additional tNGS testing and TIME stain-
ing, diminishing the reliability of examining the association 
between our RSF-Score and genomics or TIME. Therefore, 
larger cohorts with multi-omics analyses are warranted to 
validate our findings prospectively.

Conclusion

In summary, the establishment of a RSF model combining 
clinical and pathomics features could prompt the progno-
sis assessment of chemoimmunotherapy in patients with 
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ES-SCLC. Higher RSF-Score putatively indicated more 
infiltration of  CD8+ T cells in tumor stroma as well as a 
greater probability of MCL-1 amplification and EP300 
mutation. Hopefully, this noninvasive model holds promise 
as a biomarker for immunotherapy, potentially facilitating 
precision medicine in the management of SCLC.
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tary material available at https:// doi. org/ 10. 1007/ s00262- 024- 03829-9.
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