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Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown expo-
nentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on 
the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released 
into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of 
each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular 
cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. 
The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic 
features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. 
The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioac-
tive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims 
to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a 
rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in 
the treatment of cancer.
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Introduction

The pharmaceutical industry has grown along with the 
development of biotechnology to generate innovative drugs 
[1]. Among these, monoclonal antibodies (mAbs) to treat 
diseases, including cancer, are distinguished: of a total of 
213 mAbs globally approved or under review up to May 15, 
2024, 99 are indicated for cancer treatment, a highly preva-
lent and deadly pathology worldwide [2, 3]. Among these 
anti-cancer mAbs, 76 are currently approved by the World 
Health Organization (WHO)-Listed Authorities (WLA) in 
several country of the world [4].

Over time, the technologies used for the development of 
therapeutic mAbs have evolved from the first therapeutic 
molecules of murine origin to completely human antibodies, 
which included modifications in their amino acid sequences, 
further optimizing the exceptional characteristics of these 
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drugs. The engineering of antibodies has enabled the devel-
opment of mAbs with enhanced binding affinity to therapeu-
tic targets and prolonged serum half-life, even far exceeding 
20 days. Moreover, they have achieved increased capacity to 
activate mediators that contribute to either eliminate tumor 
cells, modulate antibody effector functions, or facilitate the 
entry of cytotoxic drugs into the cells of interest [5].

Here, we provide an overview of the mAbs approved for 
oncology treatment by the WLA, focusing on their thera-
peutic mechanisms of action; we also examine the rational 
design of modifications applied to antibodies in order to 
improve their therapeutic efficacy. Anti-cancer mAbs that 
received approval by the WLA, but have been withdrawn or 
marketing discontinued, will not be covered in this review.

Structure and function of antibodies

Antibodies (Abs) or immunoglobulins (Igs) are soluble 
glycoproteins responsible for the specific and selective rec-
ognition of antigens. Structurally, the basic unit of Abs is 
a monospecific monomer composed of four polypeptide 
chains: two identical heavy chains (HC) with a molecu-
lar mass of 50–75 kDa each and two identical light chains 
(LC) of approximately 25 kDa each (Fig. 1A). The modu-
lar domains that compose each HC consist of one variable 
heavy domain (VH) and three or four constant heavy domains 
(CH1, CH2, CH3, CH4), depending on the antibody isotype. 
The modular domains that form each LC consist of one vari-
able light domain (VL) and one constant light domain (CL). 
The combination of a VH domain with a VL domain forms 
the antigen-binding region, which can also be referred to as 
the Fv region. Each variable domain contains three hyper-
variable regions called complementary-determining regions 
(CDRs). The amino acids of CDRs are different in sequence 
and structure between different antigen-specific antibodies. 
Upon protein folding, in each VH and VL chain, the CDR 
regions give rise to three loops that connect to β-strands; 
the six loops are in proximity to each other; together, they 
form the antigen-binding site, also known as the paratope. 
The strands of the two β-sheets and the non-hypervariable 
loops are called framework regions (FRs) [5]. Although the 
paratope aligns harmoniously with the antigen’s epitope, 
only a few residues on the paratope contribute to the bind-
ing energy. The antibody-antigen binding strength, meas-
ured in KD (dissociation constant in the order of nM to pM), 
as well as the antibody specificity, is useful properties to 
design therapeutic monoclonal Abs (TmAbs) for treating 
several diseases, including cancer. In addition, the selection 
of targets that discriminate between a tumor and a non-tumor 
cell contributes to the ability of the TmAb to neutralize or 
selectively block molecules that facilitate tumor growth or 
even induce cell death.

The two HCs are linked by disulfide bonds between 
their hinge regions; the VH and CH1 domains, together 
with the LCs, form the antigen-binding fragment (Fab), 
and the CH2, CH3, and CH4 domains of both HCs form 
the crystallizable fragment (Fc), located at the carboxyl-
terminal end of each chain. Both Fab and Fc fragments are 
linked by the hinge region, which provides conformational 
flexibility to the antibody [5]. In a given antibody, the two 
HCs are identical, as are the two LCs; therefore, an Ab is 
a bivalent molecule, having two identical combinations 
of VH and VL domains. Although most mammals have the 
conventional IgG subclass structure, which is composed 
of four polypeptide chains (2 HCs and 2 LCs), camelid 
species and sharks contain smaller Ig fractions lacking 
the LCs and the first HC constant domain (HC-only anti-
bodies or HCAbs), accounting for 25–75% of their total 
serum IgG [6] (Fig. 1A). In this case, the term “VHH” is 
used to distinguish the variable domains of camelid from 
the conventional VH domains [7]. Due to its biological 
properties, IgG is the most widely used Ig as the basis 
for therapeutic antibody development, a topic that will be 
discussed in detail in this article.

Of the 76 TmAbs currently approved by the WLA, 49 
are human IgG1, 3 are IgG2, and 19 are IgG4 [4]. The 
IgG HC constant region determines the antibody sub-
class. Human IgG1, IgG2, IgG3, and IgG4 carry the γ1, 
γ2, γ3, and γ4 chains, respectively. The Fc fragment of IgG 
(IgG-Fc) accounts for the antibody’s effector functions, 
which include complement-dependent cytotoxicity (CDC) 
[8], antibody-dependent cellular cytotoxicity (ADCC), 
antibody-dependent cellular phagocytosis (ADCP), and 
antibody-dependent cellular trogocytosis (ADCT) [9–12] 
(Fig. 1B). These effector functions depend, respectively, 
on IgG-Fc binding to complement factor 1 (C1q), specific 
Fc-gamma receptors (FcγRs) on phagocytes, such as mac-
rophages, FcγRs on Natural Killer (NK) cells, and FcγRs 
on neutrophils (Table 1). The IgG-Fc region can also bind 
to the neonatal Fc receptor (FcRn); this receptor promotes 
antibody recycling through rescue from normal lysosomal 
degradation by increasing the affinity of these molecules 
for the acidic pH of endosomes–lysosomes, which pro-
longs the antibody plasma half-life for more than 21 days 
for IgG1, IgG2, and IgG4, thus contributing to the pharma-
cokinetics of TmAbs [13, 14]. The binding of Fc regions 
to different receptors depends on allotypic variations on 
the FcγRIIa (CD32a), such as H131/R131, and FcγRIIIa 
(CD16a) such as F158/V158, with effect, respectively, on 
the ADCP and ADCC activities (Table 1). In addition, the 
type of post-translational modification to the Ab, such as 
N-glycosylation (addition of carbohydrates to the arginine 
297 residue in the CH2 domain of IgG), also influences 
Fc-binding to specific receptors [5].
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Development of TmAbs in oncology

Throughout history, the technology used for the produc-
tion of mAbs has involved the application of techniques 
that seek to resolve the quantity and the design of essential 
fragments of Ab structure [15]. The hybridoma platform 
based on the fusion of murine B cells and myeloma cells, 
established by George Kohler and César Milstein in 1975 
[16], allowed the in vitro production of a large number of 
mAbs. Muromonab, the first murine anti-CD3 TmAb, used 

to eliminate T lymphocytes, was approved in 1986 to treat 
acute graft rejection [17]. The only two therapeutic anti-can-
cer full-length murine mAbs were approved by the WLA in 
2002 (ibritumomab tiuxetan, an anti-CD20 TmAb radioim-
munoconjugate (RIC) with Itrium-90 (Y90), which was used 
for the treatment of non-Hodgkin's lymphoma [18]) and by 
the National Regulatory Authorities in Cuba (CECMED) in 
2013 (racotumomab, a murine anti-GM3 mAb used for the 
treatment of non-small cell lung cancer). Nevertheless, the 
administration of murine antibodies to humans can evoke, in 

Fig. 1   A Structure of therapeutic monoclonal antibodies (TmAbs). 
Human IgG (top) is formed by two heavy chains and two light 
chains linked to each other by disulfide bonds, which originate Fab 
and Fc fragments. Fab fragment contains the antigen-binding site 
formed by complementary-determining regions (CDRs). The Fc 
fragment is responsible for effector functions and binds to the neo-
natal receptor. The single-chain fragment variable (scFv) structure 
is composed of the variable domains of heavy and light chains. The 
structure of heavy chain-only antibodies (HcIgG) from camelids 
(bottom) includes their respective variable domains (VHH), which 
are being used in the design of TmAbs. B Mechanism of action 
of TmAbs. i Blockage of immunoregulators (CTLA-4, PD-1, or 
PDL-1), cytokines or growth factors. The antibody binds to its tar-
get expressed on the tumor cell membrane and prevents its interac-
tion with its ligand; ii complement activation-dependent cytotoxicity 
(CDC). Complement molecule C1q directly interacts with target-
bound IgG CH2 domain, resulting in the activation of the comple-
ment cascade and the formation of the membrane attack complex, 
which induces cell lysis. iii Antibody-dependent cellular cytotoxicity 
(ADCC). FcγRIIIa (CD16a), a low-affinity activation receptor present 
on Natural Killer (NK) cells, binds to target-bound IgG1 CH2 domain. 
Activation of CD16 triggers the release of perforin and granzymes, 

resulting in target cell death. iv Antibody-dependent cellular phago-
cytosis (ADCP). ADCP is mediated through the interaction of the 
Fc domain of target cell-bound IgG with FcγRs on phagocytic cells, 
such as tumor-associated macrophages (TAM). FcγRI (CD64) and 
FcγRII (CD32) recognize overlapping but not identical sites in the 
lower hinge region of IgGs, which promotes tumor cell phagocyto-
sis. v Antibody-dependent cellular trogocytosis (ADCT). Neutrophils 
can remove tumor cell surface content in the presence of TmAbs tar-
geting specific cell membrane proteins through Fc binding to FcγR 
on the effector immune cell, which may trigger tumor cell lysis. vi 
Antibody–drug conjugate (ADC) and radioimmunoconjugate (RIC). 
Antineoplastic drugs or radioactive elements can be conjugated to 
the antibody through a peptide linker to be directed to the target tis-
sue, increasing its cytotoxic concentration in  situ and decreasing its 
unwanted effects on other tissues. vii,viii Bispecific molecules. vii 
Bispecific antibodies. They have dual binding sites that bind two 
different antigens. viii Bispecific T-cell engager (BiTE). They are 
recombinant proteins composed of two scFvs linked by a short flex-
ible linker. These bispecific molecules are designed to target tumor 
antigens and CD3, thereby creating a link between tumor cells and 
T cells. Created with Microsoft® PowerPoint for Mac. Version 15.32 
and Prism 6 for Mac OS X
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some patients, the production of human anti-mouse antibod-
ies (HAMA); these are endogenous antibodies with speci-
ficity for antigenic determinants present in the Fc region 
of mouse Igs [19]. Production of HAMA accelerates mAb 
clearance, thus reducing its serum half-time; on the other 
hand, repeated mAb administration could result in undesir-
able allergic reactions [20, 21].

The limitations in using mAbs of murine origin have 
been overcome by the development of engineering tech-
niques, such as the recombination of murine variables 
with human constant regions, thus resulting in the pro-
duction of chimeric antibodies. In 1997, the Food and 
Drug Administration (FDA) agency of the USA approved 
the first chimeric TmAb, rituximab, an anti-CD20 mAb 
for treating non-Hodgkin’s lymphoma [22, 23]. Later, 
humanized antibodies were generated, which contained 
human framework sequences surrounded by murine anti-
gen-binding CDRs on the light and heavy variable chains. 
In 1998, the first humanized TmAb, trastuzumab, a mAb 
targeting the human epidermal growth factor receptor 2 
(HER2), was approved for the treatment of breast cancer 

[24]. Currently, there are 10 chimeric and 40 humanized 
TmAbs, with an expected significant growth in the devel-
opment of antibodies with a greater proportion of human 
amino acid sequences (Supplementary Fig. 1A). In 2021, 
envafolimab, the first humanized anti-programmed death 
ligand 1 (PD-L1) single-variable domain camelid antibody 
(VHH), was approved in China for the treatment of adult 
patients with previously treated microsatellite instability-
high (MSI-H) or deficient Mismatch Repair (dMMR) 
advanced solid tumors. Unlike other immune checkpoint 
inhibitors that are administered intravenously, which can 
be uncomfortable and lead to discontinuation of therapy 
protocols, envafolimab is injected subcutaneously (SC) to 
improve patient tolerance [25, 26].

Another strategy to avoid HAMA while using murine-
derived antibodies that provide high specificity and affinity 
for antigens with low immunogenicity is the use of scFv 
antibodies [27]. These antibodies are fusion proteins of the 
variable regions of VH and VL chains connected with a short 
linker peptide of 10–25 amino acids [27, 28]. In 2014, the 
WLA approved blinatumomab, a bispecific molecule that 

Table 1   Structural, biological, and functional properties of IgG subclasses

Number of ( +) symbols indicates the affinity/interaction magnitude of each one of the immunoglobulin subclasses. *IgG allotype-specific. 
⇞Mechanism demonstrated for IgG1-TmAb. CDC: Complement-dependent cytotoxicity. ADCP: Antibody-dependent cellular phagocytosis. 
ADCC: Antibody-dependent cellular cytotoxicity. ADCT: Antibody-dependent cellular trogocytosis. FcRn: Neonatal Fc receptor. N-linked gly-
cans connect the sugar to an asparagine residue in the glycosylation process, whereas O-linked glycans connect a serine or threonine residue

Characteristics IgG1 IgG2 IgG3 IgG4

Structural
Molecular weight (kDa) 150 150 155–165 150
Disulfide bond between heavy chains 2 4 11 2
H chain type γ1 γ2 γ3 γ4
Ig H constant gene IGHG1 IGHG2 IGHG3 IGHG4
Glycosylation site 297 297 297 297
N-linked glycans per H chain 1 1 2 * 1
O-linked glycans per H chain 0 0 3 0
Biological
Biological half-life (days) 21–24 21–24 7–8 21–24
Mean adult serum level (g/L) 6.98 3.8 0.51 0.56
Placental transfer +++ ++ ++/+++* ++
Functional (binding—activation)
C1q- CDC ++ + +++ –
FcγRI (CD64) on monocytes—ADCP +++ – +++ ++
FcγRIIa (CD32a)-H131 on monocytes and neutrophils—ADCP (ADCT⇞)¨ ++ ++ ++ +
FcγRIIa (CD32a)-R131 on monocytes and neutrophils—ADCP (ADCT⇞)¨ ++ – ++ +
FcγRIIb (CD32b) on monocytes and neutrophils—ADCP + – ++ +
FcγRIIIa (CD16a)-F158 on NK cells—ADCC ++ – +++ –
FcγRIIIa (CD16a)-V158 on NK cells—ADCC +++ + +++ +
FcγRIIIb (CD16b)NA1 on neutrophils and monocytes—ADCP (ADCT⇞)¨ +++ – +++ –
FcγRIIIb (CD16b)NA2 on neutrophils and monocytes—ADCP (ADCT⇞)¨ +++ – +++ –
FcRn on epithelial, endothelial, macrophages/monocytes and dendritic cells—

homeostasis—pH 7,4 / < 6,5
+/+++ +/+++ +/+++ +/+++
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includes the scFv structure [29] (Supplementary Fig. 1A 
and Fig. 2E).

In 1990, Gregory P. Winter introduced phage display, a 
groundbreaking technique that integrates human antibody 
genetic sequences into the genome of filamentous bacterio-
phages. These sequences are further expressed on the phage 
surface, enabling subsequent screening processes, and this 
technology also constitutes the basis for scFv production 
[30–32]. This opened new frontiers in the development 
of fully human antibodies. In 2002, the first fully human 
antibody, adalimumab, a phage display-derived mAb that 
neutralizes tumor necrosis factor-α (TNF-α), was approved 
for the treatment of rheumatoid arthritis. In addition, since 
1994, transgenic mice engineered to carry human Ig genes 
have been used to develop fully human antibodies [33, 34]. 
In 2006, the first fully human antibody derived from a trans-
genic mouse platform, panitumumab, which inhibits epider-
mal growth factor receptor (EGFR) signaling, was approved 
for treating colorectal cancer [2, 22, 35]. Currently, there 
are 23 fully human TmAbs, most of which derive from 
transgenic mice. The use of the single B cell technique has 
allowed the isolation of antigen-specific B cells from human 
blood for the generation of human natural antibodies, which 
have been applied in the search for antiviral antibodies. More 
recently, the Next Generation Sequencing (NGS) technology 
has also been useful in discovering new antibodies and their 
optimization through glycoengineering [15].

The development of antineoplastic drug conjugation has 
also improved the efficacy of TmAbs; indeed, 19.7% of the 
antibodies approved in oncology are antibody–drug conju-
gates (or ADC) and chemical conjugates. In 2000, the first 
conjugated antibody was approved; this is gemtuzumab ozo-
gamicin, an anti-CD33 mAb conjugated to the anti-tumor 
antibiotic calicheamicin. Over the last seven years, the WLA 
has approved 10 monospecific conjugated antibodies (Sup-
plementary Fig. 1B). In September 2020, the Japanese gov-
ernment approved cetuximab sarotalocan, the first antibody-
photosensitizer conjugate, to treat unresectable advanced or 
recurrent head and neck cancer [36].

The development of recombinant bispecific antibodies 
has strongly increased in recent years, which goes hand in 
hand with the increment in the number of uncovered molec-
ular targets to which each therapeutic antibody is designed. 
These account for 13% of the total antibodies approved 
in oncology (Supplementary Fig. 1C); 80% of them were 
approved between 2022 and 2023. Most bispecific antibodies 
are full-length IgG that can target two different antigens on 
the same cell or on two different cells [37]. In 2021, amivan-
tamab, a fully human, full-length bispecific antibody against 
EGFR and the cell survival-related tyrosine kinase receptor 
cMET, was approved for the treatment of non-small cell lung 
cancer (NSCLC). In 2022, tebentafusp, the first humanized 
T-cell receptor-fused scFv bispecific anti-gp-100 and CD3, 

expressed in E. coli bacteria, was approved for treating meta-
static uveal melanoma.

Nomenclature of therapeutic antibodies

The first generation of TmAbs (murine, chimeric, human-
ized, and fully human) gave rise to the nomenclature used 
until 2017. With the generation of bispecific and conjugated 
TmAbs, a new nomenclature was adopted. The nomencla-
ture of TmAbs is now standardized according to the Inter-
national Nonproprietary Names (INN) assigned by the 
WHO. The names consist of a prefix (arbitrarily created by 
the registrant) followed by two infixes, and a suffix. The 
first infix indicates the target (e.g.: “tu'' for tumor, such as 
trastuzumab; “li'' when the antibody regulates the immune 
system, such as inebilizumab, a TmAb that targets CD19 
[2]), while the second infix includes the source used for pro-
ducing the antibody (e.g.: “u” for human or “o” for mouse, 
or their modifications: “xi” for chimeric, as cetuximab, 
“zu” for humanized, as gemtuzumab). However, the WHO 
discontinued the second infix for antibodies created after-
mid 2017 to avoid inconsistencies [38]. For all the TmAb 
developed before 2022, the suffix used was “mab”; how-
ever, in 2021, four new suffixes were introduced to provide 
information about modifications to the Fc structure; these 
suffixes include: “tug,” for full-length unmodified Igs that 
recognize a single epitope (monospecific); “bart,” for full-
length monospecific Igs with engineered constant regions or 
any point mutation introduced by engineering; “mig,” bispe-
cific or multispecific Igs with any structure, and “ment” for 
monospecific Ig variable region fragments [39].

Classification of TmAbs targets in oncology

The current WLA-approved anti-cancer TmAbs were devel-
oped for different target molecules (Fig. 2). The most com-
mon target is programmed cell death protein 1 (PD-1) (15), 
followed by CD20 (9), PD-L1 (7), HER2 (7), and EGFR 
(6). The target molecules can be classified according to their 
main biological function, biochemical structure, site where 
they are expressed and release mechanisms, among others. 
In this review, we used the following target classification:

(1) Molecules that modulate cells of the immune sys-
tem, such as cytotoxic T lymphocyte antigen 4 (CTLA-4), 
PD-1, PD-L1, and lymphocyte activation gene 3 (LAG-3 
or CD223) (Fig. 2E, F). The TmAbs directed toward these 
molecules block the inhibition of the immune system and are 
used in various types of tumors; these include ipilimumab 
and nurulimab, anti-CTLA-4 TmAbs for the treatment of 
melanoma; durvalumab and atezolizumab, two anti-PD-
L1 TmAbs for bladder cancer treatment; avelumab, an 
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anti-PD-L1 TmAb for the treatment of Merkel cell carci-
noma; pembrolizumab and nivolumab, which are anti-PD-1 
TmAbs used for patients with melanoma; cemiplimab, an 
anti-PD-1 TmAb used in advanced cutaneous squamous 
cell carcinoma (SCC); nivolumab and sintilimab, anti-PD-1 
TmAbs against NSCLC; toripalimab and penpulimab, anti-
PD-1 TmAbs used for nasopharyngeal carcinoma: tisleli-
zumab, an anti-PD-1 TmAb used for esophageal squamous 
cell carcinoma, and dostarlimab, an anti-PD-1 TmAb for 
endometrial cancer. Retifanlimab, also an anti-PD-1 TmAb, 
as well as nivolumab, pembrolizumab, and avelumab, is 
used against anal canal carcinoma [40], while pembroli-
zumab, cemiplimab, durvalumab, atezolizumab, avelumab, 
nivolumab, and balstilimab (an anti-PD-1 TmAb) are also 

used for the treatment of cervical cancer [14, 41]. A LAG-3 
blocking antibody, relatlimab, is indicated for melanoma 
treatment; it interferes with the binding of LAG-3 to major 
histocompatibility (MHC) class II molecules on antigen-
presenting cells, an interaction that induces T cell exhaus-
tion and prevents effector T cell function in the tumor 
microenvironment [42, 43]. Recently, it has been indicated 
for advanced melanoma protocols in combination with 
nivolumab [42].

(2) Tyrosine kinase receptors of the ErbB family proteins, 
which are overexpressed in solid cancers (Fig. 2D). ErbB 
receptors are pivotal for regulating cellular processes, such 
as proliferation, survival, differentiation, and migration; 
disruptions in their signaling are linked to cancer develop-
ment [44, 45]. Some TmAbs bind to cell membrane recep-
tors, thus altering their functions and potentially inducing 
receptor degradation [46]. This targeted approach offers 
improved therapeutic options for cancer patients. Combi-
nations of tyrosine kinase inhibitors, which block receptor 
phosphorylation, can hinder cancer cell growth; therefore, 
antibodies are often employed to maximize treatment effi-
cacy, addressing diverse aspects of cell signaling and sur-
vival [47, 48]. EGFR and HER2 (also known as the neu 
oncogene or ErbB2) were the first ErbB family receptors 
used as therapeutic targets, as they are involved in cell 
growth control and differentiation. TmAbs against EGFR 
include necitumumab, used in NSCLC, and cetuximab 
and panitumumab, used to treat colorectal cancer. On the 
other hand, trastuzumab, pertuzumab, and margetuximab, 
TmAbs that block HER2, are used in breast cancer, while 
ramucirumab, which blocks the vascular endothelial growth 
factor receptor 2 (VEGFR2), is used in gastric cancer [44]. 
Olaratumab blocks the platelet-derived growth factor recep-
tor α (PDGFRα) and is used to treat soft tissue sarcoma [49]. 
The vascular endothelial growth factor (VEGF), a family 
of proteins involved in the regulation of angiogenesis, an 
essential step supporting tumor growth and metastasis [50, 
51], is targeted by bevacizumab in colorectal, cervical, and 
ovarian cancers [41, 52, 53].

(3) Molecules that are preferentially expressed on the 
lymphoid and/or myeloid cell lineage, which are the targets 
for most of the currently approved TmAbs used for treating 
hematological cancers (Fig. 2E–G). One of these therapeutic 
targets is CD19, a cell membrane protein that is expressed on 
all B cell lineages and that plays two major roles in human B 
cells: On the one hand, it acts as an adaptor protein to recruit 
cytoplasmic signaling proteins to the membrane; on the 
other, it works within the CD19/CD21 complex to decrease 
the threshold for B cell receptor (BCR) signaling pathways 
[54]. Another significant target is CD20, a receptor involved 
in calcium transport [55–57]. It is a highly restricted cell sur-
face antigen with abundant, stable, and highly characterized 

Fig. 2   WLA-approved TmAbs and their targets for the treatment of 
solid and hematological tumors. A Cell-membrane molecules on 
T lymphocytes (LT), antigen-presenting cell (APC) and tumor cell 
associated with T cell activation (TCR, CD3, CD4/8, MHC-I/II, 
CD80/86), T cell inhibition (immune checkpoint molecules CTLA-4, 
PD-1, PD-L1, Gal-3, LAG-3), and therapeutic antibodies that block 
immune checkpoint. B and C Specific TmAbs that target immune 
checkpoint molecules that regulate T cell function. D TmAbs that 
bind to tyrosine kinase receptors of the ErbB family proteins. E 
TmAbs and their corresponding targets expressed on B lymphocytes 
(LB), multiple myeloma cells. Hodgkin lymphoma, systemic anaplas-
tic large cell lymphoma (CD30), acute myeloid leukemia (CD33), 
and mycosis fungoides or Sézary syndrome (CCR4). F IFN-g, a solu-
ble target involved in hemophagocytic lymphohistiocytosis (HLH) 
syndrome, can be targeted by a TmAb. G TmAbs that bind to cell 
surface molecules expressed on neuroblastoma cells and other types 
of solid tumors. The number in each target indicates the number of 
WLA-approved therapeutic antibodies for that target. The origin-
dependent suffix letter is indicated in bold: Antibody is fully murine 
(-omab), chimeric (-ximab), humanized (-zumab), or fully human 
(-umab or -mab). IgG subclasses and modifications incorporated into 
TmAb design and their respective conjugated drugs are indicated. 
Afucosylated or low-fucose antibodies improve FcγRIIIa binding and 
ADCC; aglycosylated (N297A) block Fc effector functions; hinge 
stabilizing (S228P) is a IgG4 chain mutation to increase the binding 
between heavy chains (HCs), similar to IgG1. Antibody-conjugated 
molecules are indicated, including monomethyl auristatin E and F 
(MMAE and MMAF, respectively), calicheamicin, pyrrolobenzodi-
azepines (PBD), deruxtecan (DXd), emtansine (DM4), and govitecan 
(SN38). The radioactive compound yttrium-90 (Y90) is a radioimmu-
notherapeutic (RIT) drug. Bispecific antibodies, such as epcoritamab 
bind, concomitantly, to tumor cell targets and CD3 on T lymphocytes 
(LT). CD: Cluster of differentiation; PD-1: Programmed cell death 
protein 1, PD-L1: Programmed cell death ligand 1, CTLA-4: Cyto-
toxic T lymphocyte antigen 4, MHC: Major histocompatibility com-
plex, Gal-3: Galectin-3 protein, LAG-3: Lymphocyte activation gene 
3, VEGFA: Vascular endothelial growth factor A, HER2: Human 
epidermal growth factor receptor 2, VEGFR2: Vascular endothelial 
growth factor receptor 2, PDGFRα: Platelet-derived growth factor 
receptor α, BCMA: B cell maturation antigen, expressed primarily 
on B cells, but especially on multiple myeloma plasma cells; IFN-γ: 
interferon-gamma; SLAMF7: CD319 surface antigen. FRα: Folate 
receptor alpha; Hz: Humanized; scFv: Single-chain fragment vari-
able; TCR: T cell receptor. Created with Microsoft® PowerPoint for 
Mac. Version 15.32 and Prism 6 for Mac OS X

◂
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expression on B cells [58]. Additional targets are CD22, a 
receptor that regulates B lymphocyte survival and signal 
transduction [59], and CD79b, an Igβ transmembrane sign-
aling subunit that, together with Igα, forms part of the mul-
timeric BCR complex; both subunits are necessary for the 
expression and function of the BCR [60] (Fig. 2E).

In multiple myeloma (MM), the malignant clonal plasma 
cells overexpress the B cell maturation antigen (BCMA); 
it is expressed preferentially by mature B lymphocytes, 
with minimal expression on hematopoietic stem cells or 
non-hematopoietic cells, and is essential for the survival of 
long-lived bone marrow plasma cells, but not for overall B 
cell homeostasis [61–64]. The overexpression and activation 
of BCMA is associated with the progression of MM [65]; 
therefore, this molecule represents an interesting therapeu-
tic target for the treatment of this disease. Another target is 
CD38, a cell surface glycoprotein that functions in cell adhe-
sion, signal transduction, and calcium signaling. It is found 
at relatively low levels on normal lymphoid cells, including 
T cells, B lymphocytes, and NK cells, as well as myeloid 
cells, and some tissues of non-hematopoietic origin [66]. 
CD38 is highly and uniformly expressed on MM cells [66]. 
The G-protein-coupled receptor family C group 5 member 
D (GPRC5D) is a transmembrane receptor expressed in cells 
with a plasma-cell phenotype, including cells from patients 
with MM. However, aside from plasma cells and B cells, it 
is not found at appreciable levels on normal hematopoietic 
cells and bone marrow progenitors [67]. The signaling lym-
phocytic activation molecule family member 7 (SLAMF7) is 
a glycoprotein expressed on myeloma and NK cells but not 
normal tissues (Fig. 2E). The development of TmAbs tar-
geting molecules associated with MM, whether used alone 
or in combination therapy, has shown promising results in 
the treatment of naive and relapsed/refractory MM, even in 
advanced-stage patients [68, 69]. One of the most revolu-
tionary immunotherapy in MM is the use of ADCs, which 
will be reviewed below. Belantamab mafodotin was the first 
ADC approved for treating MM [70].

CD30, a member of the tumor necrosis factor receptor 
superfamily, is overexpressed on neoplastic cells and Reed-
Sternberg cells typical of Hodgkin's lymphoma; therefore, 
this molecule also constitutes an interesting therapeutic tar-
get [71, 72]. CD33, a transmembrane receptor expressed on 
cells of the myeloid lineage, is implicated in the inhibition 
of cellular activity [73]; it is a target for gemtuzumab ozo-
gamicin, used in the treatment of acute myeloid leukemia. 
Another target is C-Cg chemokine receptor type 4 (CCR4), 
as it is often expressed on leukemic cells in cutaneous T-cell 
lymphoma (CTCL), which encompasses a heterogeneous 
collection of non-Hodgkin lymphomas that arise from skin-
tropic memory T lymphocytes. Among them, mycosis fun-
goides (MF) and Sézary syndrome (SS) are the most com-
mon malignancies [74] (Fig. 2E).

(4) Molecules that are released into the extracellular 
milieu in soluble forms. In hemophagocytic lymphohistio-
cytosis (HLH), an acute and rapidly progressive systemic 
inflammatory disorder that can be triggered by infection or 
malignancies, including leukemia and lymphoma, the exces-
sive production of IFN-γ contributes to the life-threatening 
hyperinflammation that characterizes this condition [75, 76]. 
Emapalumab, approved for use in this syndrome [77], neu-
tralizes IFN-γ by forming immune complexes, thus facilitat-
ing cytokine elimination and decreasing its serum concentra-
tion [78] (Fig. 2F).

(5) Miscellaneous targets. These include disialoganglio-
side (GD2), a target for high-risk neuroblastoma and refrac-
tory osteomedullary disease (naxitamab-gqgk in combi-
nation with granulocyte–macrophage colony-stimulating 
factor) [79]; GM3 ganglioside, a trophoblast cell surface 
antigen-2 (TROP-2) targeted for the treatment of triple-
negative breast cancer (sacituzumab); Nectin-4, a target in 
urothelial cancer (enfortumab-vedotin linked to monomethyl 
auristatin E, MMAE); folate receptor α (FRα), a target in 
ovarian cancer (mirvetuximab); gp100 in metastatic uveal 
melanoma (tebentafusp scFv-TCR fusion protein) and Clau-
din 18.2, a tight-junction molecule, become accessible on 
the tumor cell surface in advanced-stage gastric cancer [80] 
(Fig. 2G).

Mechanisms of action of TmAbs

TmAbs can either block immunoregulatory molecules, 
cytokines or growth factors, tag cells to induce an immune 
response, or transport chemotherapeutics, toxins or radioac-
tive elements into the tumor cells (Fig. 1B). TmAbs exert 
direct and indirect anti-tumor mechanisms of action (MoA) 
[81]. Most TmAbs can induce direct apoptosis, interfere 
with receptor signaling, neutralize soluble ligands, or block 
cell-surface receptors. TmAbs can also destroy tumor cells 
indirectly through the recruitment and activity of immune 
response mechanisms [82]. In this sense, once TmAbs bind 
to its target on the tumor cell, they can activate the classical 
pathway of the complement cascade and mediate CDC [8]; 
in addition, they can trigger ADCC, ADCP, ADCT, or a 
combination of these [10, 12].

Complement‑dependent cytotoxicity (CDC)

The efficacy of TmAbs to induce CDC depends on several 
factors related to IgG subtype, antigen density [83, 84], anti-
body hexamerization [85], the specific orientation of the 
bound antibody molecules with each other, and the proxim-
ity of the epitope to the target cell membrane [84].
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Under physiological conditions, complement molecules 
are continuously produced as inactive zymogens; these are 
cleaved into their active products by specific complement 
proteases, which generate effector molecules that ultimately 
promote cell lysis or phagocytosis [86]. To this end, the 
complement cascade can be activated through three distinct 
pathways that converge to generate the same set of effec-
tor molecules; these are the alternative, the lectin and the 
classical pathways. Distinct subclasses of IgG can activate 
the classical pathway: IgG1, IgG2, and IgG3, while IgG4 is 
unable to activate complement [87, 88].

Binding of IgG molecules to their specific target on the 
cell membrane is followed by aggregation and hexameri-
zation of the antibodies, which permits the activation of 
the classical pathway of the complement cascade [8]. It is 
initiated by the C1 complex, a soluble multimolecular pro-
tease compromising a recognition subunit (C1q) and two 
modular serine proteases (C1r and C1s) [89]. The binding 
of C1q to the Fc region of TmAbs activates its associated 
proteases, which initiates the proteolytic cascade of com-
plement [89–92]. Fc-bound C1q leads to the autoactivation 
of C1r for cleavage and activation of C1s; activated C1s 
cleaves soluble C4 into C4a and C4b; C4b fragments attach 
to the cell membrane and bind soluble zymogen C2, forming 
the C4bC2 proconvertase complex. Once associated with 
C4b, C2 is cleaved by C1s into C2a and C2b, generating 
the classical pathway C3 convertase C4bC2a, which binds 
and cleaves soluble C3 into C3a and C3b. The latter associ-
ates with C4bC2a, forming the C5 convertase C4bC2aC3b. 
C5 is further cleaved into C5a and C5b; C5b, attached to 
the cell membrane, binds C6, C7, C8, and multiple pore-
forming C9 molecules, which polymerize and insert into the 
cell membrane, leading to complement-dependent cell lysis 
[93]. C3b alone can also deposit on the cell surface, lead-
ing to amplification of complement activation through the 
alternative pathway; in addition, C3b on the cell membrane 
can act as an opsonin, as it binds to specific receptors on the 
surface of phagocytes, thus promoting phagocytosis [88]. 
In turn, soluble fragments C3a and C5a are anaphylatoxins 
that induce chemotaxis of macrophages, neutrophils, and 
dendritic cells, among others, to the tumor microenviron-
ment, which generates inflammation [94].

Several studies have reported classical pathway activa-
tion with therapeutic mAbs. One example is HuMab-7D8, 
a fully human IgG1 that binds to the extracellular loops of 
CD20, leading to potent complement-mediated B cell lysis 
[95]. Through cryo-electron microscopy analyses, Ugur-
lar and cols showed that the amino acid residues in IgG1 
that are important for direct C1q binding are located on the 
two Fc-CH2 domains, which is near the Fab-Fc hinge [96]. 
Rituximab, a chimeric human-mouse IgG1 TmAb used for 
the treatment of non-Hodgkin's B cell lymphoma [97], binds 
to CD20 on malignant B cells, which triggers B cell lysis 

through the classical pathway [98]. Idusogie et al. demon-
strated that the binding site of C1q on rituximab is centered 
around amino acid residues D270, K322, P329, and P331 of 
the Fc region [98]. Interestingly, it was further demonstrated 
that C1q binds a distinct site in each of the two CH2 domains 
of IgG1: One binding site includes the loop formed by resi-
dues 325–331, while the other binding site consists of two 
loops formed by residues 266–272 and residues 294–300 of 
the second CH2 domain [96, 98]. The addition of a positive 
charge at residues E269, E294, and Y300 abolished CDC, 
and mutations N297Q and S298K decreased CDC due to 
the absence of glycosylation; on the contrary, mutations of 
Y300D and G236D enhanced CDC [96, 99]. The knowl-
edge of residues involved in the interaction between TmAbs 
and C1q is useful for designing therapeutic antibodies with 
improved CDC activity.

Antibody‑dependent cellular cytotoxicity (ADCC)

A dominant component of the in vivo activity of antibodies 
against tumors involves ADCC, a mechanism that implies 
the binding of the Fc regions of target cell-bound TmAbs to 
functional activating Fc receptors for IgG (FcγR) on cyto-
lytic cells, which triggers target cell death [100, 101]. The 
majority of antibodies, upon opsonizing target cells, exert 
their effector functions through FcγR on NK cells, mainly 
via FcγRIIIa (CD16a). These cells induce cytotoxicity 
through the exocytosis of perforin, a glycoprotein that forms 
pores on the membranes of target cells, and granzymes, a 
family of structurally related serine proteases. As perforin 
and granzymes are previously synthesized and stored in 
intracellular granules, they can rapidly trigger apoptosis of 
target cells [102]. The granule-exocytosis pathway potently 
activates cell-death mechanisms via the activation of apop-
totic cysteine proteases (caspases) [103].

The IgG subclasses used in the design of TmAbs (IgG1, 
IgG2, and IgG4) differ from each other in their capacity to 
bind FcγR on immune cells [104], the strength of ADCC 
activity they trigger, the presence of N297-linked glycosyla-
tion on the antibody, and FcγR polymorphisms [105]. The 
FcγRIIIa (V158F) polymorphism has been reported to corre-
late with the response and efficacy of TmAbs, as its isoforms 
display higher affinity for the Fc region of IgG, resulting in 
a greater immunological response. These polymorphisms 
may even be useful as molecular markers to predict clini-
cal outcomes in patients with metastatic colorectal cancer 
treated with cetuximab [106] or in patients bearing early 
ErbB2/HER2-positive breast cancer who receive treatment 
with trastuzumab [107].

Although ADCC has been studied mainly in NK cells, 
neutrophils can also participate in this mechanism in the 
presence of TmAbs. The antibody-related cytotoxic activ-
ity of neutrophils is associated especially with FcγRIIa 
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[108, 109] and the presence of polymorphisms, such as 
the FcγRIIa-131H variant, which has shown higher killing 
capacity in comparison with the FcγRIIa-131R [110].

Antibody‑dependent cellular phagocytosis (ADCP)

TmAbs can also promote tumor cell elimination through 
phagocytosis. The mechanism, named antibody-dependent 
cellular phagocytosis (ADCP), is mediated through the 
interaction of the Fc domain of target cell-bound IgG with 
FcγRs on phagocytic cells, such as macrophages [111, 112]. 
TmAbs can opsonize the tumor cell to promote its phago-
cytosis and degradation through phagosome acidification. 
Currently, some researchers have implemented novel in vitro 
models to demonstrate the internalization of antibody-coated 
target cells into macrophages [113, 114], or the capture of 
antigen-coated fluorescent beads bound to specific antibod-
ies to measure antibody-dependent neutrophil phagocytosis 
[115]; such methodologies would certainly be useful tools to 
improve the development of therapeutic antibodies.

FcγRs that participate in ADCP preferentially interact 
with IgG1, which shows the best high binding affinity for 
activating FcγRs that trigger ADCC and/or ADCP [116]. 
On the other hand, FcγRs levels on the cell membrane can 
be modulated by cytokines. For instance, FcγRI expres-
sion can be upregulated on polymorphonuclear cells [117], 
macrophages [118], and monocytic cells [119] in response 
to IFN-γ [117], a cytokine released by activated NK cells 
[120], suggesting that the interplay of immune cells with 
cytokines may enhance the mechanisms of ADCC and/ or 
ADCP.

For some TmAbs, the ADCP contributes significantly to 
their anti-tumor activity [121]. This is the case for bren-
tuximab vedotin, a chimeric IgG1-drug conjugate used for 
Hodgkin’s lymphoma and systemic anaplastic large cell 
lymphoma [122]. Not only have its effects been associated 
with the expected cytotoxicity triggered by mAb-conjugated 
drugs; its anti-tumor effect also relies on ADCP mediated by 
macrophages [121]. Similarly, rituximab is able to induce a 
potent ADCP response in in vitro and in vivo models, and 
depletion of macrophages results in the attenuation of the 
anti-tumor activity of this TmAb [123].

It has also been demonstrated that macrophage-mediated 
ADCP contributes to the anti-tumor activity of daratu-
mumab, an IgG1 antibody against CD38 used for the treat-
ment of MM [124]. ADCP may also be relevant for other 
hematological tumors [125]. Although some researchers 
have shown that target molecule expression is correlated 
with ADCP [126], this may not be the case for some TmAbs, 
including rituximab, as the expression level of CD20 on B 
cell-chronic lymphocytic leukemia (B-CLL) cells does not 
affect the efficacy of the antibody’s mediated ADCP [126]. 
This mechanism involves the participation of FcγRIIa 

(CD32a) expressed on macrophages (Table 1). Another 
TmAb that exerts ADCP is elotuzumab, a humanized IgG1 
directed toward SLAMF7 in MM [112, 127]. This antibody 
induces activation of macrophages and mediates ADCP, thus 
contributing to its antitumor response [112].

Antibody‑dependent cellular trogocytosis (ADCT)

A novel MoA of TmAbs, known as antibody-dependent cel-
lular trogocytosis (ADCT), refers to the capacity of immune 
cells, such as monocytes, macrophages, and neutrophils, to 
remove cell surface proteins from the tumor cell membrane 
through an endocytic process [128]. This mechanism is 
enhanced by the Fc region of amivantamab [12]. This thera-
peutic antibody binds simultaneously to cMET and EGFR, 
cell surface receptors that promote tumor cell proliferation 
and survival [129]. Such binding leads to FcγRIIIa-mediated 
monocyte and macrophage-dependent downmodulation of 
these proteins by trogocytosis; deprivation of tumor cell 
membrane cMET and EGFR leads to an improved antibody-
mediated tumor cell killing, both in vitro and in vivo [11, 
130]. Neutrophils can also perform ADCT in the presence of 
TmAbs. Indeed, it has been demonstrated that rituximab can 
mediate trogocytosis of CLL B cells by neutrophils in vitro, 
as detected by CD20 downmodulation on these tumor cells. 
Although this response does not trigger tumor cell death, 
it will be important to uncover whether it has functional 
consequences in vivo, as downmodulation of CD20 has 
been associated with resistance to anti-CD20 treatment in 
CLL [131–133]. On the other hand, ADCT mediated by 
neutrophils can precede tumor cell lysis when associated 
with mechanical disruption of the tumor cell membrane, a 
process known as trogoptosis. After in vitro incubation of 
neutrophils with SKBR3 human breast cancer cells, previ-
ously labeled with the cytosolic dye calcein and opsonized 
with trastuzumab, tumor cells displayed significant loss of 
membrane integrity, which coincided with target cell lysis, 
as detected by 51Cr release assay. Therefore, these data pro-
vide evidence that neutrophil-mediated ADCT can directly 
cause tumor cell death [134].

Antibody–drug conjugate (ADC)

An antibody–drug conjugate (ADC) consists of a monoclo-
nal antibody that targets a tumor-specific antigen and is cova-
lently bound to a cytotoxic drug or payload through a chemi-
cal linker [135]. ADCs are designed to specifically deliver 
drugs or payloads into the vicinity of tumor cells, thereby 
mitigating the side effects of their cytotoxicity [135]. Cur-
rently, 13 monospecific ADCs have been approved by WLA 
(discussed later) (Supplementary Fig. 2A-1I). These ADCs 
are primarily used to treat hematological malignancies (6 
out of 13) and breast cancer (3 out of 13). Additionally, 
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ADC approvals extend to the treatment of ovarian, cervical, 
urothelial, and gastric cancer [4].

The primary advantage of ADCs in clinical use is their 
ability to extend the therapeutic window of cytotoxic drugs. 
This allows for higher local concentration at the target site 
while minimizing the risk of systemic toxicity compared to 
the cytotoxic drug without conjugate [135].

The efficacy of an ADC’s payload depends on various 
factors, including adequate cytotoxicity, low immunogenic-
ity, high stability, and modifiable functional groups [136]. 
As a result, the drugs or payloads used in the conjugation 
process have undergone modifications over the years, lead-
ing to three generations of innovation fueled by emerging 
technologies [137]. They mainly include substances that dis-
rupt the cellular cycle, such as tubulin inhibitors and DNA-
damaging agents. Next, we describe the ADCs currently 
used in the clinic to treat cancer.

•	 Payloads of the ADCs approved by the WLA

Monomethyl auristatin E (MMAE) and F (MMAF) are 
tubulin inhibitors that are linked to more than half of the 
approved ADCs, including belantamab mafodotin, an anti-
BCMA antibody for MM treatment; brentuximab vedotin, 
an anti-CD30 antibody to treat Hodgkin lymphoma and sys-
temic anaplastic large cell lymphoma treatment; disitamab 
vedotin, an anti-HER2 antibody for gastric cancer treatment; 
enfortumab vedotin, an anti-Nectin-4 antibody for urothe-
lial cancer treatment; polatuzumab vedotin, an anti-CD79b 
antibody for diffuse large B-cell lymphoma treatment, and 
tisotumab vedotin, an anti-tissue factor antibody for cervi-
cal cancer treatment [4]. These substances are water-soluble 
synthetic analogs of dolastatin [138, 139], whose mecha-
nisms of action involve binding to tubulin dimers and dis-
rupting microtubule assembly, leading to cell cycle arrest 
and apoptosis [140].

Calicheamicins are a class of enediyne natural products 
that are isolated from the bacterium Micromonospora echi-
nospora [141]. These natural compounds are among the 
most cytotoxic DNA-damaging products ever discovered, 
with unique molecular and cellular mechanisms of action 
[142]. Calicheamicin y11, a member of this family, was 
identified for its strong cellular activity, as it binds double-
helical DNA within the minor groove, leading to site-spe-
cific double-stranded break [143–146]. Due to their robust 
antitumor activity, calicheamicins have been included in the 
clinical development of ADCs for treating hematological 
malignancies: gemtuzumab ozogamicin, which targets CD33 
for acute myeloid leukemia (AML) treatment, and inotu-
zumab ozogamicin, which targets CD22 for acute lympho-
blastic leukemia (ALL) treatment [147]. CD33 and CD22 
are endocytic receptors ideal for delivering the cytotoxic 
drug into the cell [147].

Emtansine (DM1) and ravtansine (DM4) are maytansi-
noid drugs derived from maytansine, a compound originally 
isolated from the shrub Maytenus ovatus. They bind to the 
β-subunit of tubulin, inhibiting its polymerization and induc-
ing its aggregation. Tubulin polymerization is crucial for 
spindle fiber formation and subsequent cell division. DM1 
is a component of ado-trastuzumab emtansine (Supplemen-
tary Fig. 2F), a humanized anti-HER2 IgG1 used in breast 
cancer treatment. In turn, DM4 is utilized in mirvetuxi-
mab soravtansine, an antibody that targets folate receptor 
alpha (FRa), which is indicated for treating ovarian cancer 
[148]. DM1 exhibits both HER2-dependent and independ-
ent mechanisms of action. In the HER2-dependent pathway, 
upon internalization of the HER2-ACD complex, the pay-
load activates caspase 3/7, inducing apoptosis; it also binds 
the microtubule to initiate mitotic arrest. In the HER2-inde-
pendent pathway, when DM1 is conjugated to trastuzumab 
(T-DM1), it interacts with the cytoskeleton-associated pro-
tein 5 (CKAP5), causing cell membrane damage, increased 
calcium influx, and subsequent microtubule disruption [148, 
149]. This cytotoxicity mechanism could also be extrapo-
lated to DM4, but further studies are needed to unravel this 
possibility [150].

Camptothecin analogs, such as DXd, a derivative of 
exatecan, and SN-38, the active metabolite of irinotecan, 
are topoisomerase I inhibitors that interrupt DNA replica-
tion, resulting in cell death [151]. DXd has been reported 
to be more potent than SN-38 [152]. These components are 
conjugated to a humanized antibody targeting HER2 (fam-
trastuzumab deruxtecan) (Supplementary Fig. 2D) [153] 
and to an antibody against the intracellular calcium signal 
transducer TROP-2 (sacituzumab govitecan), respectively 
[154]]; these TmAbs are indicated for HER2-positive meta-
static breast cancer and triple-negative breast cancer treat-
ment, respectively.

Pyrrolobenzodiazepine (PBD) dimers are powerful syn-
thetic payloads developed for targeting low antigen expres-
sion and to overcome resistance to auristatins or may-
tansinoids [136]. An example of the dimeric derivative is 
SG3199, which is incorporated into loncastuximab tesirine, 
an anti-CD19 IgG1 humanized antibody for treating diffuse 
large B-cell lymphoma (Supplementary Fig. 2B). SG3199 
produces covalent cytotoxic DNA interstrand cross-links 
mainly in human hematological tumor cell lines, but also in 
solid tumors. One of the main advantages of SG3199 over 
other DNA cross-linking drugs is its persistence in cells due 
to its ability to cause minimal distortion of the DNA. This 
property contributes to evading excision repair mechanisms 
that are initiated after repair enzymes detect distortion or 
perturbations in the DNA. Thus, PBD dimer avoids drug 
resistance [155].



	 Cancer Immunology, Immunotherapy (2024) 73:242242  Page 12 of 22

•	 Linkers of ADCs approved by WLA

The linker utilized in ADC conjugation plays a critical 
role in determining the efficacy and safety of these TmAbs. 
Ideally, the linker should exhibit stability in the bloodstream 
and facilitate the controlled release of the drug at the tar-
get site [156]. There are two main types of linkers used in 
ACD development: cleavable (chemically or enzymatically) 
and non-cleavable (thioether and maleimidocaproyl linkers) 
[157]. Most approved ADCs employ cleavable linkers, such 
as inotuzumab ozogamicin and brentuximab vedotin.

The chemically cleavable linkers can be pH-sensitive or 
reduction-sensitive types. An acid-labile hydrazone linker is 
stable in alkaline environments, but highly sensitive to acidic 
environments; thereby, it is hydrolyzed in the endosome and 
lysosome to release the payload. This chemical principle is 
applied to the conjugation of gemtuzumab ozogamicin or 
inotuzumab ozogamicin with calicheamicin (Supplemen-
tary Fig. 2I), which utilizes hydrozone as a linker; in turn, 
sacituzumab govitecan (Supplementary Fig. 2E) employs an 
ester linker enabling the conjugation of the antibody with 
SN-38 [136].

The group of enzymatically cleavable linkers used in 
the ADCs are peptide-based, also known as lysosomal pro-
tease-sensitive linkers. A prime example is valine-citrulline 
(Val-Cit), employed in conjugating brentuximab vedotin 
with MMAE (Supplementary Fig. 2A); this linker relies on 
cathepsin B, an intracellular protease, to cleave a dipeptide 
bond and release the payload. Loncastuximab tesirine (Sup-
plementary Fig. 2B) also utilizes the same linker to conju-
gate PBD dimers. Another class of enzymatically cleavable 
linkers is based on phosphatase-cleavable, with enzyme 
targets pyrophosphatase and acid phosphatase in lysosomal 
compartments. Disitamab vedotin, an anti-HER2 antibody, 
enfortumab vedotin, an anti-Nectin-4 antibody, polatuzumab 
vedotin, an anti-CD79b antibody, and tisotumab vedotin, an 
anti-tissue factor antibody utilizes this strategy to conjugate 
MMAE through maleimidocaproyl-valine-citrulline-p-amin-
obenzyloxylcarbonyl (PABC) (Supplementary Fig. 2A). This 
latter, a self-cleavage spacer between the Val-Cit dipeptide 
and the drug, improves cathepsin B access for the cleavage 
site [158, 159].

Other cleavable linkers include mirvetuximab soravtan-
sine, an anti-FRɑ antibody conjugated to DM4 through a 
cleavable sulfo-SPDB linker (Supplementary Fig. 2H), and 
fam-trastuzumab deruxtecan, an anti-HER2 antibody con-
jugated to DXd via Glycine-Glycine-Phenylalanine-Glycine 
(GGFC) (Supplementary Fig. 2D) [136].

Non-cleavable linkers can be grouped into thioether or 
maleimidocaproyl (MC) categories. ADCs that use this 
type of linker have greater plasma stability; in addition, 
drug release depends on lysosomal enzymatic degradation 
of the antibody upon internalization into the cell target. An 

example of the first group is ado-trastuzumab emtansine 
(Supplementary Fig. 2F), an anti-HER2 antibody in which 
trastuzumab-lysine is conjugated with thioether linker to 
DM1. On the other hand, the MC linker is used in the design 
of belantamab mafodotin (Supplementary Fig. 2C), an anti-
BCMA antibody that conjugates with MMAF (described 
previously) [136].

Photoactivatable antibody–drug conjugates

Another innovative cancer treatment strategy is photoim-
munotherapy, which involves an antibody conjugated with 
a light-sensitive compound. One example is cetuximab saro-
talocan, a chimeric anti-EGFR IgG1 conjugated with the 
dye IRDye® 700DX. This antibody is specifically designed 
to treat head and neck cancer. Upon administration, the 
antibody is activated by laser illumination (690 nm), which 
damages the cell membrane, increases transmembrane water 
flux, and leads to tumor cell rupture and necrosis [160, 161].

Radioimmunoconjugate (RIC)

Radioimmunotherapy (RIT) is a highly effective modality in 
cancer therapy that uses radioisotope-conjugated mAbs to 
target cancer cells selectively. In 2002, the FDA approved 
the first radioimmunoconjugate (RIC). It was ibritumomab, 
a murine anti-CD20 IgG1 mAb that is bound to the chela-
tor tiuxetan and covalently linked through a stable thiourea 
covalent bond to the β-emitting radionuclide 90 Y (Supple-
mentary Fig. 2G). This RIC is specifically indicated for the 
treatment of non-Hodgkin lymphomas. Upon administration, 
the emitted radiation directly damages the DNA of cancer 
cells, ultimately destroying them [162].

Bispecific molecules

Bispecific molecules have dual binding sites that bind two 
different antigens; these molecules belong to either of three 
groups: bispecific antibodies (BsAs), scFv-TCR fusion pro-
teins, or bispecific T-cell engagers (BiTEs).

•	 Bispecific antibodies (BsAs)

Between 2021 and May 2024, the WLA approved 8 BsAs 
for cancer treatment [4, 163] (Supplementary Fig. 1B), as 
the biological features of these Abs are suitable for this 
type of clinical application [164, 165]. Such characteristics 
include increased specificity, as they target two distinct anti-
gens, inhibition of activation of intracellular signals associ-
ated with drug resistance, activation of the immune system, 
and reduction of side effects [164–169]. They also have the 
potential to target various types of cancer, allow treatment 
customization, and may reduce disease recurrence [164].
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Most BsAs simultaneously engage with an antigen pre-
sent on the surface of tumor cells and CD3 on T cells, mak-
ing them particularly effective in hematological cancers 
[170, 171] (Fig. 1B (vii, viii). The interaction between T 
cells and cancer cells promotes the immune response against 
the tumor [172]. Examples of BsAs include: elranatamab, 
an anti-BCMA and anti-CD3 antibody to treat patients with 
MM; epcoritamab, an anti-CD20 and anti-CD3 antibody for 
the treatment of relapsed or refractory diffuse large B-cell 
lymphoma; glofitamab, an anti-CD20 and anti-CD3 anti-
body for the treatment of diffuse large B-cell lymphoma or 
large B-cell lymphoma; mosunetuzumab, an anti-CD20 and 
anti-CD3 antibody for the treatment of follicular lymphoma; 
talquetamab, an anti-GPCR5D and anti-CD3 antibody for 
the treatment of MM; teclistamab-cqyv, an anti-BCMA and 
anti-CD3 antibody for the treatment of relapsed or refractory 
MM [4, 163].

On the other hand, only 2 approved BsAs are directed 
against tumor-expressed antigens (Fig. 2B,D): they are 
amivantamab, an anti-EGFR and anti-cMET antibody, and 
cadonilimab, an anti-PD-1 and anti-CTLA-4 antibody; 
these TmAbs are used to treat patients with NSCLC bearing 
EGFR exon 20 insertion mutations and with cervical cancer, 
respectively [4, 163].

•	 scFv-TCR fusion proteins

Included in the roster of WLA-approved bispecific mole-
cules is tebentafusp-tebn (approved in 2022), an anti-tumor-
associated antigen gp100 and anti-CD3 scFv-TCR fusion 
protein for the treatment of metastatic uveal melanoma. 
This molecule is also known as the first immune-mobilizing 
monoclonal TCR against cancer (ImmTACs) due to its MoA 
and engineering. The design involves the fusion of two pro-
teins. The first protein arm contains a soluble high-affinity 
TCR that recognizes a complex formed by a specific pep-
tide of the gp100 protein presented by HLA-A*02:01, which 
is expressed in approximately 45% of patients with uveal 
melanoma in the USA and Europe. As a result, the thera-
peutic response to tebentafusp-tebn is allele-specific. The 
second protein arm comprises an anti-CD3 scFv to recruit 
killer T cells to the tumor microenvironment, where they can 
become activated [173, 174].

•	 Bispecific T-cell engagers (BiTEs)

BiTEs are recombinant proteins that consist of two scFvs 
linked by a short flexible linker. They are a promising class 
of bispecific molecules directed to tumor antigens and 
CD3, thus establishing a bridge between tumor cells and 
T cells. In this platform, the activation of T cells is inde-
pendent of MHC haplotype [175] or TCR recognition and 
costimulation [176]. This strategy is advantageous, as loss or 

downregulation of MHC is a common mechanism in tumor 
cells [177]. Moreover, BiTEs contribute to T cell prolifera-
tion, amplifying the T cell population and enhancing the 
efficacy of the treatment [178].

Blinatumomab was the first approved BiTE. It is com-
posed of two fragments of scFv targeting CD19 and CD3; 
therefore, it is indicated for treating B cell malignancies, 
such as philadelphia chromosome-negative relapsed or 
refractory B-cell precursor acute lymphoblastic leukemia 
(Fig. 2E). The fragments are linked by a short linker com-
posed mainly of serine/lysine (G4S) [179]. The proximity 
between both cells, provided by blinatumomab, structurally 
forms a typical cytolytic immune synapse, inducing the acti-
vation of T cells and triggering the migration of intracel-
lular vesicles containing granzyme B and perforins into the 
synapse space. Perforins create pores on the membrane of 
tumor cells, allowing granzyme B to enter the target cell and 
induce its apoptosis [177, 180].

Rational design of TmAbs

The functions of TmAbs can be optimized by rational 
designs of different antibody subclasses used in the clinic, 
such as IgG1, IgG2, and IgG4. Although IgG3 binds with 
high affinity to most FcγRs, it is not usually chosen for thera-
peutic purposes because of its long hinge region, which is 
accessible to proteolysis, and polymorphisms, which may 
generate immunogenicity [116]. It is important to take into 
consideration that the variability in the flexibility and length 
of the hinge region between the different IgG subclasses 
affects the spatial arrangement of the Fab arms. This fea-
ture facilitates the ability of the Fab arms to bind to differ-
ent targets, while allowing autonomous interactions of the 
Fc region with effector components of the immune system 
[181]. TmAbs can also be modified, radiolabeled, conju-
gated to drugs or toxins, or made bispecific.

IgG subclass selection

There are no strict criteria for selecting the IgG subclass for 
the design of TmAbs. The target cell type and aspects related 
to pharmacokinetics, such as molecular half-life, affinity for 
neonatal receptors and clearance, should be considered. In 
addition, the pharmacodynamic features, such as the ability 
of the therapeutic antibody to activate, reduce, or eliminate 
Fc effector functions, will also depend on its affinity for the 
different FcγRs expressed on immune cells and the glyco-
sylation status in the Fc region (Table 1). To this end, it is 
essential to remember that each IgG subclass has different 
structural, functional, and biological characteristics [116]; 
therefore, the appropriate design of TmAbs must consider 
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these characteristics to stimulate or inhibit immune cell 
functionality.

In general, IgG1 and IgG4 subclasses have been chosen 
for the design of most TmAbs (49 and 19, respectively) 
due to their functional characteristics and longer half-life 
in the serum, as they bind to FcRn [13, 182]. However, 
the instability of the γ4 chains of IgG4 due to the presence 
of S228 at the hinge region implies the need to introduce 
a mutation at this amino acid for proline to stabilize the 
binding between the two heavy chains, as it occurs at the 
junction between the γ1-γ1 chains in IgG1 [183]. The func-
tion and type of immune cells must be considered when 
selecting the appropriate IgG subclass. IgG4, in particular, 
does not trigger target cell lysis, making it a good candidate 
for blocking immune checkpoint molecules expressed on 
effector immune cells, such as PD-1 or LAG3, as maintain-
ing the viability of these cells is crucial [184]. Addition-
ally, IgG4 has been incorporated into the design of ADCs 
for drug delivery (Fig. 2). Structurally, both IgG1 and IgG4 
have two disulfide bridges in their hinge region, serving as 
available sites for their conjugation with drugs. Although 
fewer sites than IgG2, this feature potentially enables more 
efficient drug conjugation to IgG1 and IgG4, as these sites 
are more readily reducible, rendering them favorable options 
for ADC design [185, 186].

On the other hand, IgG1 is more suitable for targets 
expressed on immunosuppressive cells, as IgG1 can trigger 
target cell lysis [116, 181]. For an immunostimulatory func-
tion, it is recommended to design IgG antibodies that favor 
more significant interaction with the FcγRIIB receptor and 
efficient recognition of specific epitopes [187].

Modifications to the IgG‑Fc region

Among the five Fc gamma receptors expressed in humans, 
IgG1 and IgG3 display higher affinity for FcγRs present on 
effector cells compared to IgG2 and IgG4 (Table 1). IgG4 
is known to have reduced affinity for FcγRI, attributed to 
differences in specific amino acids compared with IgG1 and 
IgG3. On the other hand, IgG2, in its monomeric form, binds 
solely to FcγRIIa, possibly due to its short hinge lacking 
G236 [181]. Although the precise mechanisms dictating 
these affinity differences are largely unknown, advancements 
in the X-ray crystal structures of mAbs have significantly 
contributed to understanding the influence of individual resi-
dues, as well as their combination, in their effector function, 
allowing for the selective elimination or enhancement of 
specific residues as needed [188].

The IgG-Fc region can be modified to improve their 
therapeutic parameters, such as efficacy, pharmacokinet-
ics, and safety, which are rationally designed as extensively 
reviewed by Chiu et al. [5] Wang et al. [189], and Liu et al. 

[187]. In this section, we will review the major modifications 
that have been incorporated into WLA-approved TmAbs to 
modify TmAbs effector functions that influence their anti-
tumor response.

To decrease effector functions of antibodies

The IgG-Fc-FcγRIII interaction is significantly affected by 
the glucan located in the conserved N-glycosylation site 
N297 in each of the CH2 domains (Fig. 1A). Mutations in the 
CH2 domains, which destroy this N-glycosylation motif, give 
rise to an aglycosylated IgG-Fc and result in complete loss 
of binding to most FcγR, except FcγRI [190]. An example is 
anti-PD-L1 antibodies used to treat bladder cancer, such as 
atezolizumab and durvalumab [191, 192]. The Fc functions 
of IgG1 were removed from these TmAbs through mutations 
of residues N297A in atezolizumab [193], and mutations in 
L234F, L235E, and P331S in durvalumab (Supplementary 
Fig. 3) [187].

Regarding most of the antibodies designed to block the 
inhibition of the immune response mediated by PD-1/PD-L1 
axis, they lack the effector functions associated with the Fc 
region, since their mechanism of action is to block immune 
checkpoint molecules, thus maintaining the activation of 
immune cells, but not lysing them. Indeed, 19 out of the 76 
TmAbs approved for oncology treatment are IgG4, which 
does not activate CDC or ADCC. The same occurs with 
ADCs, such as gemtuzumab and inotuzumab (Fig. 2E). As 
previously mentioned, this TmAb carries the chemothera-
peutic agent calicheamicin; instead of inducing CDC or 
ADCC, this TmAb facilitates calicheamicin internalization 
and activity within the tumor cell [194]. The design of bispe-
cifics directed to recognize an oncotarget and approximate T 
cells also involves the incorporation of mutations into IgG-
Fc to reduce their effector functions. For instance, cadonili-
mab, a tetravalent PD-1/CTLA-4 bispecific antibody [195], 
decreased Fc-mediated ADCC and CDC effects after intro-
ducing L234A and L235A mutations, as well as the muta-
tion G237A (Supplementary Fig. 3), which has also been 
reported to reduce TmAb binding to Fcγ receptors [196].

To optimize antibody effector functions and their 
antitumor efficacy

Several approaches have been used to increase the affinity 
between TmAbs and FcγRIIIa. These include engineering 
of the Fc region through amino acid mutations and gly-
coengineering of the N-glycan Fc to reduce core fucose, 
which is implicated in immune regulation. This strategy 
was applied to tafasitamab, an anti-CD19 TmAb used in 
diffuse large B-cell lymphoma. The increase in binding 
strength to FcγRIIIa, which increased ADCC capacity, was 
achieved through changes in residues S239D and I332E 
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(Supplementary Fig. 3) [197, 198]. Genetically modified 
Chinese Hamster Ovary (CHO) cell lines or rat myeloma 
YB2/0 cells have also been used to produce recombinant 
afucosylated or low-fucose proteins. Obinutuzumab and 
ublituximab, two anti-CD20 TmAbs used for the treatment 
of chronic lymphocytic leukemia, are examples of these 
novel molecular modifications [199, 200] (Fig. 2E). Amivan-
tamab, a bispecific full human IgG1 antibody against EGFR 
and cMET, includes modifications at residues K409R of 
cMET and F405L on EGFR, and both are produced with low 
fucose content to increase interaction with FcγRIIIa, thus 
improving ADCC [201]. Therefore, amivantamab induces 
a more potent ADCC than cetuximab, a bivalent anti-EGFR 
mAb with normal fucose content [11]. Other modifications 
that enhance binding to FcγRIII are the F243L, R292P, 
Y300L, V305I, and P396L mutants into the Fc domain of 
margetuximab, an anti-HER2 antibody (Supplementary 
Fig. 3). These mutations are strategically designed to pro-
mote ADCC while simultaneously reducing affinity for the 
low-affinity human inhibitory FcγRIIb receptor (CD32B), 
thereby augmenting its antitumoral activity [5, 202].

Conclusions and future perspectives

The therapeutic value of manipulating the immune system 
in oncology through immunotherapy, by either improving or 
suppressing its response through TmAbs, has been revolu-
tionary, scientifically and clinically recognized.

The biotechnological development of TmAbs and the 
current scenario of their functional optimization through 
rational engineering have made it possible to consider-
ably improve the effectiveness of oncological therapies, 
even positioning them as first-line therapies in some types 
of cancers. The novel modifications introduced to their 
design, which have improved their pharmacokinetics and 
pharmacodynamics, are crucial for optimizing therapeu-
tic schemes and, simultaneously, reducing the adverse 
effects that were more severe in the first generations of 
therapeutic antibodies. In this context, the era of multispe-
cific antibodies, designed to recognize multiple epitopes 
located on the same or distinct antigens, has transformed 
cancer immunotherapy. Indeed, VHH, scFv, and Fab-
based technology platforms are helpful in their design 
due to their flexibility in building blocks against different 
molecules, thus facilitating the assembly of multispecific 
structures. Additionally, the affinity of these antibodies is 
carefully balanced for efficient binding to their respective 
antigens, which contributes to improving their pharma-
cokinetics and pharmacodynamics profiles. Several clini-
cal trials are currently enrolling participants in phase I/
II studies to evaluate the safety, tolerability, pharmacoki-
netics, and efficacy of trispecific antibodies in various 

types of cancer. Some examples of these new molecules 
include the GB263T antibody against EGFR and 2 dis-
tinct epitopes on cMET, which is being tested in advanced 
NSCLC and other solid tumors (NCT05332574), and the 
NM21-1480 antibody against PD-L1, 4-1BB, and human 
serum albumin (HSA), which is considered a new genera-
tion of immune checkpoint inhibitors that block PD-L1/
PD-1 signaling and co-stimulates 4-1BB, a member of the 
tumor necrosis factor receptor superfamily expressed on 
tumor-infiltrating T cells (NCT04442126). Development 
of T cell-redirecting trispecific antibodies is also being 
tested in hematologic malignancies, including the JNJ-
79635322 antibody targeting CD3 on T lymphocytes, as 
well as BCMA and GPRC5D on tumor cells; this TmAb 
is being evaluated in relapsed and/or refractory multi-
ple myeloma (NCT05652335); the JNJ-80948543 anti-
body targeting CD3, CD79b, and CD20 in patients with 
non-Hodgkin lymphoma and CLL (NCT05424822); and 
the PIT565 antibody against CD3, CD2, and CD19 for 
relapsed and/or refractory B-cell non-Hodgkin lymphoma 
or B-ALL (NCT05397496).

TmAbs are currently used as transporters to target radio-
active molecules, toxins, and antineoplastic drugs. They 
aim to improve the delivery of these substances, achieve 
a better antitumor response, and reduce unwanted toxicity 
in healthy cells and tissues. Their innovative design also 
considers directing therapies to more than one molecular 
target, aiming to enhance recognition of the tumor cell, thus 
favoring its elimination.

The understanding of the molecular basis of cancer devel-
opment and progression currently goes hand in hand with 
the discovery and development of novel and more efficient 
therapeutic approaches to treat this disease. In this sense, 
we envision that the challenge for the future is to continue 
improving the effector functions of TmAbs to obtain the best 
clinical outcome.
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