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In recent years, artificial intelligence (AI) has been extensively 
used in image-based disease diagnosis (1–6). Although these 

models have attained or exceeded expert-level performance, the 
concern of fairness has emerged in various medical domains and 
populations (7). In the AI algorithm, fairness denotes the absence 
of bias or favoritism toward an individual or group based on their 
inherent or acquired characteristics (8). In medical domains, cer-
tain groups, such as those defined by race, sex, and age, have 
been identified as subject to unfair or biased decisions made by 
AI models (9–11).

A chest radiograph is a quick and convenient diagnostic tool 
that uses a low dose of ionizing radiation to produce images of 
the chest, including the lungs, heart, and chest wall. This imaging 
technique can shed light on the underlying cause of shortness 
of breath, persistent cough, chest pain, and injury. Additionally, 
chest radiographs help diagnose and monitor lung conditions 
such as pneumonia, emphysema, and cancer. Several studies have 
focused on automating disease diagnosis based on chest radio-
graph imaging to achieve accurate results (12–15). Although 
these efforts have achieved high accuracy in detecting abnormal-
ities in chest radiographs, exploring AI model fairness and bias 

reduction has been relatively limited. Therefore, there is a need 
to develop methods to minimize bias in automated chest radio-
graph diagnosis.

Three primary methods exist to reduce bias in medical im-
age classification. Preprocessing methods work to reduce bias 
through dataset resampling or augmentation (10,16). In-pro-
cessing methods typically incorporate an adversarial component 
into the baseline model. This component predicts sensitive at-
tributes derived from the input image and emphasizes the loss 
function selection (17,18). Last, postprocessing techniques can 
address unfairness by introducing perturbations to input images 
(19). These techniques prevent the model from relying on biased 
features and can be achieved without necessitating model retrain-
ing. Despite these strategies, they have two limitations. First, the 
changes might inadvertently affect overall performance. This type 
of degradation, where fairness is achieved by deteriorating the 
performance of one or more groups, is quite problematic (20,21). 
Furthermore, the testing and development of these methods are 
predominantly conducted on relatively small datasets. This lim-
itation can impede their ability to be generalized or applied to 
more extensive, real-world scenarios.

Purpose: To develop an artificial intelligence model that uses supervised contrastive learning (SCL) to minimize bias in chest radiograph diagnosis.

Materials and Methods: In this retrospective study, the proposed method was evaluated on two datasets: the Medical Imaging and Data Resource Center 
(MIDRC) dataset with 77 887 chest radiographs in 27 796 patients collected as of April 20, 2023, for COVID-19 diagnosis and the National Institutes of 
Health ChestX-ray14 dataset with 112 120 chest radiographs in 30 805 patients collected between 1992 and 2015. In the ChestX-ray14 dataset, thoracic 
abnormalities included atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, 
fibrosis, pleural thickening, and hernia. The proposed method used SCL with carefully selected positive and negative samples to generate fair image embed-
dings, which were fine-tuned for subsequent tasks to reduce bias in chest radiograph diagnosis. The method was evaluated using the marginal area under 
the receiver operating characteristic curve difference (∆mAUC).

Results: The proposed model showed a significant decrease in bias across all subgroups compared with the baseline models, as evidenced by a paired t 
test (P < .001). The ∆mAUCs obtained by the proposed method were 0.01 (95% CI: 0.01, 0.01), 0.21 (95% CI: 0.21, 0.21), and 0.10 (95% CI: 0.10, 
0.10) for sex, race, and age subgroups, respectively, on the MIDRC dataset and 0.01 (95% CI: 0.01, 0.01) and 0.05 (95% CI: 0.05, 0.05) for sex and age 
subgroups, respectively, on the ChestX-ray14 dataset.

Conclusion: Employing SCL can mitigate bias in chest radiograph diagnosis, addressing concerns of fairness and reliability in deep learning–based diagnos-
tic methods.

Supplemental material is available for this article.
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The current study aims to investigate fairness issues in 
employing AI for chest radiograph diagnosis and to mitigate 
biases related to race, sex, and age. One potential reason for 
bias in AI models is the presence of nonneglectable subgroup 
information in image embeddings. For example, in the race 
subgroup, the image embeddings may contain race-related in-
formation that could lead to biased predictions by the models. 
Supervised contrastive learning (SCL) is a pretraining tech-
nique that uses label information to draw embeddings from 
the same class closer and push those from different classes 
further apart (22). Benefiting from well-trained embedding, 
it achieves superior performance on downstream classification 
tasks. Inspired by this method, we propose using SCL with 
carefully selected positive and negative samples to generate fair 
image embedding. Subsequently, the model is fine-tuned for 
downstream tasks. In our approach, we define images with the 
same label from different subgroups as positive samples and 
images with different labels from the same subgroup as nega-
tive samples. The evaluation focuses on the model’s ability to 
reduce bias across subgroups.

Materials and Methods
The protocol for this retrospective study was approved by the 
institutional review board at each clinical center and Weill 
Cornell Medicine. Due to the publicly available nature of both 
datasets used in this study, the requirement for obtaining writ-
ten informed consent from all patients was waived by the insti-
tutional review board.

Dataset Acquisition
Our proposed method was designed and assessed using two 
chest radiograph imaging datasets. The first dataset is a reposi-
tory created for COVID-19 diagnosis, hosted at the University 
of Chicago as part of the Medical Imaging and Data Resource 
Center (MIDRC) (23). The MIDRC is a collaborative initia-
tive funded by the National Institute of Biomedical Imaging 
and Bioengineering under contracts 75N92020C00008 and 
75N92020C00021 and jointly led by the American College of 
Radiology, the Radiological Society of North America, and the 
American Association of Physicists in Medicine. The MIDRC 
accepts images using Digital Imaging and Communications 
in Medicine (DICOM) standard and clinical data in various 
formats. It is currently seeking COVID-19–related CT scans, 
radiographs, MRI studies, and US images along with similar 
control cases. This study focuses on radiographs. The race, 
sex, and age data in MIDRC are self-reported. According to 
the MIDRC Data Contributor Reference Document, the out-
come in MIDRC was confirmed through COVID-19 test re-
sults (polymerase chain reaction or rapid antigen test) within 
a time frame of 0 to 14 days before the imaging study. As of 
September 2022, 126 295 imaging studies with demographic 
information were included in the MIDRC data. We collected 
computed radiography and digital radiography studies with age, 
sex, and race information. Figure 1 provides an overview of the 
data selection process. A final total of 77 887 chest radiographs 
from 60 802 imaging studies in 27 796 patients were included 
in this study.

The second dataset used in this study was the publicly acces-
sible National Institutes of Health ChestX-ray14 dataset, which 
comprised 112 120 frontal chest radiographs in 30 805 patients 
(3). In the ChestX-ray14 dataset, race and sex information were 
self-reported, while age was recorded at the time of the patient’s 
first admission. In the ChestX-ray14 dataset, a thoracic abnor-
mality refers to any abnormal finding in the chest area. This find-
ing encompasses various conditions, such as lung masses.

Bias Definition
To assess the model’s fairness, we used the difference between 
the maximum and minimum values of the marginal area under 
the receiver operating characteristic curve (∆mAUC); mAUC 
represents the mean marginal pairwise equal opportunity crite-
rion (24). The mAUC (24) is defined as:

.

G is the dataset used, Gi is the subgroup in the dataset, f(x) is the 
output of the AI model with input image x, and y is the ground 
truth label for x, indicating whether the input image shows dis-
ease. P stands for the mAUC, which measures the AUC for a 
specific subgroup. It is calculated by determining the probabil-
ity that the model ranks a randomly selected positive sample 
from the subgroup over a randomly selected negative example 
from the entire data. For binary classification, the mAUC re-
quires that positive labels have an equal chance to be predicted 
positively across subgroups (24). By subtracting the minimum 
value of mAUC from the maximum, ∆mAUC can be obtained. 
A higher ∆mAUC signifies significant disparities at the levels 

Abbreviations
ADV = adversarial learning, AI = artificial intelligence, AUC = area 
under the receiver operating characteristic curve, BS = Brier score, 
DICOM = Digital Imaging and Communications in Medicine, ∆BS 
= difference between maximum and minimum BS values, ∆FPR = 
difference between maximum and minimum FPR values, ∆mAUC = 
difference between maximum and minimum marginal AUC values, 
∆TPR = difference between maximum and minimum TPR values, 
∆wAUC = difference between maximum and minimum wAUC val-
ues, FPR = false-positive rate, MIDRC = Medical Imaging and Data 
Resource Center, OR = odds ratio, SCL = supervised contrastive 
learning, TPR = true-positive rate, wAUC = within-group AUC

Summary
A proposed artificial intelligence model based on supervised contras-
tive learning effectively minimized bias in automated chest radiograph 
diagnosis.

Key Points
 ■ A new supervised contrastive learning pretraining method was used 

to generate fair image embeddings from chest radiographs.
 ■ The proposed method significantly reduced algorithmic bias for 

subgroups spanning race, sex, and age in automated chest radio-
graph diagnosis across two large chest radiograph datasets when 
compared with the baseline (paired t test, P < .001).

 ■ Although the study focused on bias in COVID-19 and chest 
abnormality diagnosis, extensive experiments showed that the pro-
posed method also reduced bias across subgroups for the detection 
of other thorax diseases when compared with the baseline (paired t 
test, P < .001).

Keywords
Thorax, Diagnosis, Supervised Learning, Convolutional Neural 
Network (CNN), Computer-aided Diagnosis (CAD)
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of individual subgroups and a lack of fairness in the model’s 
predictions. For example, in the age subgroup, the mAUC for 
individuals younger than 75 years and their counterparts is 0.83 
and 0.73, respectively, resulting in a ∆mAUC of 0.10. If the 
proposed method can reduce this value from 0.10 to a lower 
value, it successfully reduces bias.

Additionally, we use the difference between the maximum 
and minimum values of the subgroups in traditional evaluation 
metrics, specifically within-group AUC (wAUC), true-positive 
rate (TPR), false-positive rate (FPR), and Brier score (BS) to 
assess fairness. We refer to them as ∆wAUC, ∆TPR, ∆FPR, and 
∆BS, respectively.

Overall Architecture
The overall architecture is presented in Figure 2. We first pre-
trained the model using contrastive learning, which learns the 
initial parameters for the model backbone. We then fine-tuned 
the model for the subsequent tasks. We used DenseNet-121 
(25) as the backbone in this study.

Contrastive Learning Model
We used contrastive learning as a pretraining technique to 
minimize the bias among different subgroups, resulting in fair 
image embeddings. To implement contrastive learning, we re-
placed the final output layer of the prediction network with a 
single-layer perceptron, which served as the contrastive head. In 
contrastive learning, anchor image refers to an image that serves 
as a reference point within the contrastive loss function. For an-
chor images in a minibatch, we used images with the same label 
but originating from different subgroups as positive samples and 
images with different labels from the same subgroup as negative 
samples. In this scenario, a male individual with COVID-19 
served as the anchor image, while the image of a female indi-
vidual with COVID-19 that followed served as a positive sam-
ple. On the other hand, the image of a male individual without 
COVID-19 was considered a negative sample. In this context, 
positive sampling encouraged image embeddings from differ-
ent subgroups to be similar to one another while still consider-
ing the label information. Image embeddings were the feature 

embeddings obtained by the convolutional part of the model. 
Conversely, negative sampling pushed image embeddings with 
distinct labels further apart, without emphasizing the group in-
formation. The contrastive loss can be expressed as follows (22):

∈ ∈ .

i is the anchor in the minibatch I, and the upper limit of the 
summation for i is the total number of anchor images in the 
minibatch. I is the set of all indices in the minibatch, P(i) rep-
resents all the positive samples of i in the minibatch, N(i) are 
all the negative samples of i in the minibatch, and zi, zp, and zn 
are the image embeddings of i, p, and n, respectively. The loss 
function allows all positive pairs to contribute to the numerator, 
encouraging the encoder to provide closely aligned representa-
tions for all entries from the same class. The form of the loss 
function can distinguish between positive and negative samples.

Downstream Prediction
After we pretrained the model using contrastive learning, we re-
placed the contrastive head with the origin output layer, which 
is the prediction head in Figure 2. We then fine-tuned the model 
to generate the output result. We used binary cross-entropy loss 
in the downstream prediction.

Experimental Settings
For the MIDRC dataset, we followed the same image process-
ing method as described in the study by Johnson et al (26) for 
the original chest radiographs. We started by converting all the 
posterior-anterior or anterior-posterior chest radiographs from 
DICOM to JPG format. Specifically, pixel values in the DI-
COM format were normalized to a range of [0, 255]. If neces-
sary, all pixels were inverted to ensure that the air in the image 
appeared white and the area outside the patient’s body appeared 
black. After that, we performed histogram equalization to en-
hance the image contrast. Finally, the processed image was saved 
in JPG format with a quality factor of 95.

All images were subsequently resized to 256 × 256 × 3 us-
ing PyTorch’s default bilinear interpolation and center cropped 
to 224 × 224 × 3. Stochastic image augmentation was randomly 
applied to transform a chest radiograph into an augmented view. 
We sequentially applied two simple augmentation operations: (a) 
random rotation between 0° and 10° and (b) random flipping.

The proposed method is not exclusive to specific deep learning 
models, and DenseNet-121 (25) showed good performance in 
classification on ChestX-ray14 in the previous study (4). There-
fore, we used a DenseNet-121 architecture pretrained on CheX-
pert (27) in this study. The last layer of the model is first substi-
tuted by a single-layer perceptron with an output dimension of 
128 (backbone + contrastive head). We then fine-tuned the entire 
network for the subsequential tasks. Adam optimizer (28) with a 
learning rate of 0.0001 was used for contrastive learning. We set 
the temperature to 0.05 and trained the model for 10 epochs. 
After that, we replaced the output layer with the classification 
output layer (backbone + prediction head) and fine-tuned the 
model for 1 epoch. The experiments were conducted on an Intel 
Core i9–9960X 16-core processor and an NVIDIA Quadro RTX 

Figure 1: Flowchart of creation of Medical Imaging and Data Resource Cen-
ter dataset. AP = anterior posterior, CXR = chest radiograph, PA = posterior anterior.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 6: Number 5—2024 ■ radiology-ai.rsna.org 4

Improving Fairness of Automated Chest Radiograph Diagnosis by Contrastive Learning Lin et al

6000 GPU. The models were implemented using PyTorch. The 
code is available at https://github.com/bionlplab/CXRFairness.

For the MIDRC dataset, we randomly split the entire dataset 
at the patient level. We designated one group (20% of the pa-
tients) as the held-out test set and used the remaining portion as 
the training and validation sets. For the ChestX-ray14 dataset, we 
used the official training, validation, and testing split.

We evaluated our methods on all subgroups across age, sex, 
and race. We compared our results with four baselines: empiri-
cal risk minimization (29), balanced empirical risk minimization 
(20), adversarial learning (30), and SCL (22). These four baselines 
were based on DenseNet-121 pretrained on CheXpert (27), which 
we refer to as DenseNet-121, Balance DenseNet-121, ADV, and 
SCL, respectively. DenseNet-121 is an original algorithm that does 
not consider the bias problem, and our proposed algorithm used 
DenseNet-121 as its backbone. Data resampling is a commonly 
used data preprocessing technique for reducing bias in subgroups, 
so we employed Balance DenseNet-121 as one of the baselines. 
In this study, we resampled the subgroups with fewer samples to 
ensure that the number of samples in all subgroups was the same. 
ADV is a widely used in-processing method derived from the 
domain adaptation field, which treats the sensitive attribute as a 
domain-specific label and attempts to use only domain-irrelevant 
features for the target task. SCL is a general contrastive learning 

approach without label definitions related to demographic in-
formation, which we use to demonstrate the effectiveness of the 
proposed method. To further evaluate the proposed method, we 
used both DenseNet-121 and the proposed model trained on the 
ChestX-ray14 dataset, testing them on the MIMIC-CXR test set.

Statistical Analysis
We used 200 bootstrap samples to obtain a distribution of the 
∆mAUC and reported 95% CIs. For each bootstrap iteration, 
we sampled n images with replacements from the test set of n 
images. To compare the difference in ∆mAUC between the pro-
posed model and baseline across all subgroups, we conducted a 
paired t test. Statistical analysis was conducted using SciPy 1.7.1 
(Python Software Foundation), with statistical significance de-
fined as a P value less than .05. We also attempted to perform 
bootstrapping at the patient level.

To analyze the bias within each dataset, we first employed lo-
gistic regression to analyze the association between demographic 
information (age, sex, and race) and the prevalence of COVID-19 
on the MIDRC dataset. Age, sex, and race were used as predictors 
and compared with the reference group (eg, individuals younger 
than 75 years vs those 75 years and older, male vs female, Black 
vs White, and other race vs White). Other races included Amer-
ican Indian or Alaska Native, Asian, Native Hawaiian or other 

Figure 2: Graphic shows the overview of the proposed workflow using the contrastive learning model for fairness. 
A male individual with COVID-19 serves as the anchor image (middle), while the image of a female individual with 
COVID-19 serves as a positive sample (left), and the image of a male individual without COVID-19 is considered a nega-
tive sample (right).

http://radiology-ai.rsna.org
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Pacific Islander, and other races. Odds ratios (ORs) larger than 
1 indicated that the comparison groups had higher antecedent 
rates than the reference group. When comparing rates, 95% CIs 

were calculated. We also examined the associa-
tion between demographic factors (age and sex) 
and thorax abnormality on the ChestX-ray14 
dataset.

Results

Study Patients
Table 1 lists the patient characteristics for both 
datasets. For the MIDRC dataset, the train-
ing set included 22 237 patients (median age, 
59 years [IQR: 44–71 years]; 11 257 [51%] 
male, 10 980 [49%] female), and the test set 
included 5559 patients (median age, 59 years 
[IQR: 25–75 years]; 2815 [51%] male, 2744 
[49%] female). For the ChestX-ray14 dataset, 
the training set included 28 008 patients (me-
dian age, 48 years [IQR: 34–59 years]; 15 073 
[54%] male, 12 935 [46%] female), and the 
test set included 2797 patients (median age, 49 
years [IQR: 34–59 years]; 1557 [56%] male, 
1240 [44%] female).

Table 2 presents the subgroup information 
of the datasets at the image level. Our study 
focused on training image-based classifiers for 
disease detection and evaluating the model’s 
performance on subgroups based on sex, age, 
and race for the MIDRC dataset and sex and 
age for the ChestX-ray14 dataset. Due to the 
different age characteristics between these two 
datasets (Table 1), we set the age groups for 
each dataset differently.

Analysis of Bias within Each Dataset
As shown in Figure 3, age younger than 75 years 
(OR = 1.59 [95% CI: 1.53, 1.66]), male sex (OR 
= 1.04 [95% CI: 1.02, 1.08]), Black race (OR = 
4.00 [95% CI: 3.87, 4.13]), and other race (OR 
= 1.14 [95% CI: 1.09, 1.20]) were associated with 
higher odds of COVID-19 diagnosis.

In the ChestX-ray14 dataset, age of 60 years 
or older (OR = 1.34 [95% CI: 1.30, 1.37]) and 
male sex (OR = 1.03 [95% CI: 1.00, 1.05]) were 
associated with higher odds of thorax abnormal-
ity (Fig 3).

Model Fairness Comparisons in MIDRC 
Dataset
Figure 4 shows that our proposed method 
produced significantly smaller ∆mAUC 
across all demographics compared with the 
baselines.

Table 3 presents a detailed perfor-
mance comparison of various methods for 
COVID-19 diagnosis based on sex, race, and 

age. Individuals in subgroups with lower AUC values are at 
a higher risk of being misdiagnosed than their counterparts.

Specifically, compared with DenseNet-121, the ∆mAUC 

Table 1: Patient Characteristics for Both Datasets

Characteristics per Dataset Training Set Test Set Complete Set

MIDRC dataset 22 237 5559 27 796
 Age (y) 59 (44–71) 59 (25–75) 59 (43–71)
 Sex
  Male 11 257 (51) 2815 (51) 14 072 (51)
  Female 10 980 (49) 2744 (49) 13 724 (49)
 Race
    Black 7444 (33) 1912 (34) 9356 (34)
    White 12 002 (54) 2998 (54) 15 000 (54)
    Other 2791 (13) 649 (12) 3440 (12)
ChestX-ray14 dataset 28 008 2797 30 805
 Age (y) 48 (34–59) 49 (34–59) 48 (34–59)
 Sex
  Male 15 073 (54) 1557 (56) 16 630 (54)
  Female 12 935 (46) 1240 (44) 14 175 (46)

Note.—Data are reported as medians, with IQRs in parentheses, for continuous 
variables and numbers of patients, with percentages in parentheses, for categorical 
variables. The racial category “other” includes American Indian or Alaska Native, 
Asian, Native Hawaiian or other Pacific Islander, and other race. MIDRC = Medical 
Imaging and Data Resource Center.

Table 2: Subgroup Information of Both Datasets at Image Level

Characteristics per 
Dataset

Training set Test set

Positive Total Positive Total

MIDRC dataset 31 434 62 178 7935 15 709
 Age
  <75 years 26 868 (67) 52 427 (84) 6970 (88) 13 115 (83)
  ≥75 years 4566 (15) 9751 (16) 965 (12) 2594 (17)
 Sex
  Male 17 991 (57) 35 081 (56) 4404 (56) 8799 (56)
  Female 13 443 (43) 27 097 (44) 3531 (44) 6910 (44)
 Race
  Black 16 836 (54) 24 104 (39) 4456 (56) 6135 (39)
  White 11 616 (37) 30 667 (49) 2739 (35) 7790 (50)
  Other 2982 (9) 7407 (12) 740 (9) 1784 (11)
ChestX-ray14 dataset 43 021 86 524 9671 25 596
 Age
    <60 years 30 933 (72) 66 048 (76) 7579 (78) 19 634 (77)
    ≥60 years 12 088 (28) 20 476 (24) 2092 (22) 5962 (23)
 Sex
  Male 24 409 (57) 48 458 (56) 5595 (58) 14 882 (58)
  Female 18 612 (43) 38 066 (44) 4076 (42) 10 714 (42)

Note.—Data are presented as numbers of images, with percentages in parentheses. 
The racial category “other” includes American Indian or Alaska Native, Asian, Native 
Hawaiian or other Pacific Islander, and other race. MIDRC = Medical Imaging and 
Data Resource Center.

http://radiology-ai.rsna.org
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Figure 3: Forest plot of relative odds (95% CIs) of 
COVID-19 (Medical Imaging and Data Resource Center 
[MIDRC] dataset) and thorax abnormality (National Institutes 
of Health ChestX-ray14 [NIH-CXR] dataset) associated with 
age, sex, and race.

Figure 4: Bar graphs of ∆mAUC across 
subgroups of (A) sex, (B) age, and (C) 
race in COVID-19 detection on the Medical 
Imaging and Data Resource Center dataset. 
The results are averaged over 200 times in 
a bootstrap experiment. **** = P ≤ .001, 
ADV = adversarial learning (30), Balance 
DenseNet-121 = DenseNet-121 with 
balanced empirical risk minimization (29), 
∆mAUC = difference in marginal area under 
the receiver operating characteristic curve, ns 
= not significant, SCL = supervised contrastive 
learning (22).

http://radiology-ai.rsna.org
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obtained by the proposed method decreased from 0.01 (95% CI: 
0.01, 0.01) to 0.004 (95% CI: 0.003, 0.004) for sex, with female 
individuals showing lower mAUC values than their male counter-
parts. For the race subgroup, the ∆mAUC obtained by the pro-
posed method decreased from 0.21 (95% CI: 0.21, 0.21) to 0.18 
(95% CI: 0.18, 0.18) compared with DenseNet-121. The other 
racial group showed lower mAUC values than the White and Black 
groups. Similarly, for the age subgroup, the ∆mAUC values de-
creased from 0.10 (95% CI: 0.10, 0.10) to 0.07 (95% CI: 0.07, 
0.07) compared with DenseNet-121, with individuals younger than 
75 years displaying lower mAUC values than their counterparts.

Tables S1–S5 present mAUC and ∆mAUC (bootstrap on 
patient level), wAUC and ∆wAUC, TPR and ∆TPR, FPR and 
∆FPR, and BS and ∆BS of various methods for COVID-19 di-
agnosis based on sex, race, and age, respectively. The proposed 
method obtained comparable ∆mAUC in sex and lower ∆mAUC 
in age and race compared with DenseNet-121. The proposed 
method achieved comparable ∆wAUC in sex, higher ∆wAUC in 
race, and lower ∆wAUC in age compared with DenseNet-121. 
The proposed method demonstrated comparable TPR in sex and 
race subgroups to DenseNet-121, with lower ∆TPR in sex, race, 
and age subgroups. Moreover, the proposed method exhibited a 
lower FPR in the age subgroup and reduced ∆FPR in race and 
age subgroups compared with DenseNet-121. Additionally, the 
proposed method generated lower ∆BS in sex and age subgroups 
as well as lower BS in the age subgroup.

Model Fairness Comparisons in ChestX-ray14 Dataset
Figure 5 shows that our proposed method produced signifi-
cantly smaller ∆mAUC across all demographics in diagnosing 
thorax abnormalities on the ChestX-ray14 dataset compared 
with the baselines.

Table 4 further presents a detailed analysis of the results. The 
proposed method achieved a lower ∆mAUC than the baselines 
for all demographic groups. In the sex subgroup analysis, the 
∆mAUC obtained by the proposed method decreased from 0.01 
(95% CI: 0.01, 0.01) to 0.005 (95% CI: 0.005, 0.01) compared 
with DenseNet-121. The proposed model performed similarly 
for male individuals as their counterparts in the sex subgroup 
analysis, while the baselines generated lower AUC for male indi-
viduals. In the age subgroup, the ∆mAUC obtained by the pro-
posed method decreased from 0.05 (95% CI: 0.05, 0.05) to 0.04 
(95% CI: 0.04, 0.04) compared with DenseNet-121. Individuals 
older than 60 years had lower AUCs than their counterparts.

Tables S6–S10 list mAUC and ∆mAUC (bootstrap on patient 
level), wAUC and ∆wAUC, TPR and ∆TPR, FPR and ∆FPR, 
and BS and ∆BS of various methods for diagnosing thorax ab-
normalities on the ChestX-ray14 dataset across sex and age, re-
spectively. The proposed method obtained comparable ∆mAUC 
in the sex subgroup and lower ∆mAUC in the age subgroup 
compared with DenseNet-121. The proposed method achieved 
higher ∆wAUC in the sex subgroup and lower ∆wAUC in age 
than DenseNet. The proposed method achieved higher TPR in 
sex and age subgroups than DenseNet-121. Additionally, the pro-
posed method exhibited lower ∆FPR in the sex subgroup than 
DenseNet-121. Furthermore, compared with DenseNet-121, the 
proposed method generated comparable BS and lower ∆BS in sex 
and age subgroups.

External Testing
The details of the results are presented in Table S11. For ex-
ternal testing, our proposed method achieved a higher AUC 
for both sex and age subgroups and a lower ∆mAUC for the 
sex subgroup.

Table 3: AUC, Marginal AUC, and Marginal AUC Difference of Baseline and Proposed Model for COVID-19 Diagnosis in 
MIDRC Dataset

Variable DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
 Overall AUC 0.82 (0.82, 0.82) 0.81 (0.81, 0.81) 0.81 (0.81, 0.81) 0.81 (0.81, 0.81) 0.81 (0.81, 0.81)
 Male 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.81 (0.81, 0.81)
 Female 0.81 (0.81, 0.81) 0.80 (0.80, 0.81) 0.79 (0.79, 0.79) 0.80 (0.80, 0.80) 0.81 (0.81, 0.81)
 ∆mAUC 0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 0.03 (0.03, 0.03) 0.02 (0.02, 0.02) 0.004 (0.003, 0.004)
Race
 Overall AUC 0.82 (0.82, 0.82) 0.81 (0.80, 0.81) 0.82 (0.82, 0.82) 0.81 (0.81, 0.81) 0.79 (0.79, 0.79)
 White 0.76 (0.76, 0.76) 0.77 (0.77, 0.77) 0.76 (0.76, 0.76) 0.76 (0.75, 0.76) 0.75 (0.75, 0.75)
 Black 0.88 (0.88, 0.88) 0.85 (0.85, 0.85) 0.88 (0.88, 0.88) 0.87 (0.87, 0.87) 0.84 (0.84, 0.84)
 Other 0.67 (0.67, 0.67) 0.65 (0.65, 0.65) 0.66 (0.65, 0.66) 0.65 (0.65, 0.65) 0.66 (0.66, 0.66)
 ∆mAUC 0.21 (0.21, 0.21) 0.20 (0.20, 0.20) 0.22 (0.22, 0.23) 0.22 (0.22, 0.22) 0.18 (0.18, 0.18)
Age
 Overall AUC 0.82 (0.82, 0.82) 0.80 (0.80, 0.80) 0.81 (0.81, 0.81) 0.81 (0.81, 0.81) 0.80 (0.80, 0.80)
 <75 years 0.83 (0.83, 0.83) 0.81 (0.81, 0.81) 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.81 (0.81, 0.81)
 ≥75 years 0.73 (0.73, 0.73) 0.71 (0.71, 0.71) 0.75 (0.75, 0.75) 0.75 (0.75, 0.75) 0.74 (0.74, 0.74)
 ∆mAUC 0.10 (0.10, 0.10) 0.10 (0.10, 0.10) 0.08 (0.08, 0.08) 0.07 (0.07, 0.07) 0.07 (0.07, 0.07)

Note.—Data in parentheses are 95% CIs. ADV = adversarial learning (30), AUC = area under the receiver operating characteristic curve, 
Balance DenseNet-121 = DenseNet-121 with balanced empirical risk minimization (29), ∆mAUC = difference between the maximum and 
minimum values of the marginal AUC, MIDRC = Medical Imaging and Data Resource Center, SCL = supervised contrastive learning (22). 
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Relative Change
Table S12 lists the relative changes in AUC and mAUC, which 
are within 2%, while the relative change in ∆mAUC ranges 
from 13.5% to 68.10%.

Model Fairness Comparisons in Intersectional Groups
Table S13 provides a summary of the characteristics of the in-
tersectional groups within the MIDRC dataset. It indicates that 
certain intersectional groups (eg, ≥75 years, other race, male 

Table 4: AUC, Marginal AUC, and Marginal AUC Difference of Baseline and Proposed Model for Thorax Abnormalities 
Diagnosis in ChestX-ray14 Dataset

Variable DenseNet-121 Balance DenseNet-121 ADV SCL Proposed

Sex
 Overall AUC 0.74 (0.73, 0.74) 0.73 (0.73, 0.73) 0.71 (0.71, 0.71) 0.73 (0.73, 0.73) 0.73 (0.73, 0.73)
 Male 0.73 (0.73, 0.73) 0.73 (0.73, 0.73) 0.70 (0.70, 0.70) 0.72 (0.72, 0.73) 0.74 (0.73, 0.73)
 Female 0.74 (0.74, 0.74) 0.74 (0.74, 0.74) 0.73 (0.73, 0.73) 0.74 (0.74, 0.74) 0.73 (0.73, 0.73)
 ∆mAUC 0.01 (0.01, 0.01) 0.01 (0.01, 0.02) 0.03 (0.03, 0.03) 0.01 (0.01, 0.01) 0.005 (0.005, 0.005)
Age
 Overall AUC 0.74 (0.73, 0.74) 0.72 (0.72, 0.73) 0.71 (0.71, 0.71) 0.73 (0.73, 0.73) 0.73 (0.73, 0.73)
 <60 years 0.75 (0.75, 0.75) 0.73 (0.73, 0.74) 0.72 (0.72, 0.72) 0.74 (0.74, 0.74) 0.74 (0.74, 0.74)
 ≥60 years 0.69 (0.69, 0.70) 0.69 (0.69, 0.69) 0.67 (0.66, 0.67) 0.69 (0.69, 0.69) 0.69 (0.69, 0.70)
 ∆mAUC 0.05 (0.05, 0.05) 0.05 (0.05, 0.05) 0.05 (0.05, 0.05) 0.05 (0.05, 0.05) 0.04 (0.04, 0.04)

Note.—Data in parentheses are 95% CIs. ADV = adversarial learning (30), AUC = area under the receiver operating characteristic curve, 
Balance DenseNet-121 = DenseNet-121 with balanced empirical risk minimization (29), ∆mAUC = difference between the maximum and 
minimum values of the marginal AUC, SCL = supervised contrastive learning (22).

Figure 5:  Bar graphs of ∆mAUC across subgroups of (A) sex and (B) age in thorax abnormality detection in the Na-
tional Institutes of Health ChestX-ray14 dataset. The results are averaged over 200 times in a bootstrap experiment. **** 
= P ≤ .001. ADV = adversarial learning (30), Balance DenseNet-121 = DenseNet-121 with balanced empirical risk mini-
mization (29), ∆mAUC = difference in marginal area under the receiver operating characteristic curve, ns = not significant, 
SCL = supervised contrastive learning (22).
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sex) contain a small number of positive cases. This small num-
ber not only poses challenges to model training but also affects 
the statistical significance of the results.

Table S14 presents the ∆mAUC between baseline and pro-
posed models on the MIDRC across various intersectional 
subgroups. The proposed method demonstrates comparable or 
improved performance in terms of ∆mAUC across the different 
intersectional subgroups.

Discussion
In this study, we proposed a method leveraging SCL to reduce 
bias in AI models for chest radiograph image diagnosis across 
different groups. The proposed model was evaluated using two 
large-scale chest radiograph datasets. We observed systematic 
model biases in subgroups across all settings. This observation 
highlights the importance of addressing biases in AI models to 
ensure fair and accurate diagnoses across all demographic sub-
groups. Key observations are discussed below.

First, our proposed method effectively improves the fairness 
of chest radiograph diagnoses by using SCL to obtain fair image 
embeddings that retain label information. In contrast to state-
of-the-art models, we modified the definitions of positive and 
negative samples to enable the network to capture more label and 
less group information. Our proposed method generated smaller 
∆mAUC for both datasets across all demographics compared 
with the baselines. Additionally, the proposed method consis-
tently maintains overall performance. We conducted quantitative 
analysis using the metric of relative change. The result showed 
that the relative change in AUC and mAUC remains consistently 
within 2%, while the relative change in ∆mAUC ranges from 
13.5% to 68.10%. The results suggest that our proposed method 
can reduce bias (∆mAUC) without significantly compromising 
AUC and mAUC.

Second, this study highlights the impact of data imbalance 
on the bias of AI models. The overrepresentation of prevalent 
patients in certain subgroups can lead to biased models, as ev-
idenced by our findings. For example, in the MIDRC dataset, 
the prevalence of COVID-19 is significantly higher among Black 
individuals compared with their White counterparts (70.02% 
vs 37.33%). This overrepresentation can result in biased models 
trained on this dataset. Additionally, the sample size can still in-
troduce bias even when subgroups have similar prevalence. For 
instance, in the MIDRC dataset, the number of White, Black, 
and other race individuals are 38 457, 30 239, and 9191, respec-
tively. Although the COVID-19 prevalence is almost the same for 
the other race and White individuals (40.50% vs 37.33%), the 
former group, which had the smallest sample size among the ra-
cial subgroups, obtained the lowest AUC value. Similar phenom-
ena were observed in the age subpopulations for thorax disease 
detection in the ChestX-ray14 dataset and COVID-19 detection 
in the MIDRC dataset.

Third, data resampling is a commonly used data preprocess-
ing technique for reducing bias in subgroups, but our findings 
suggest that it may not always be effective. Specifically, our re-
sults show that the Balance DenseNet-121 model could not re-
duce bias for sex and age on the MIDRC dataset or bias for sex 
on the ChestX-ray14 dataset compared with the DenseNet-121 
model. In this study, we employed only one resampling method 

to ensure an equal sample size across subgroups. However, fu-
ture research could explore additional resampling methods to 
determine their effectiveness.

Fourth, ADV is widely used as an in-processing method to 
improve group fairness, but our results suggest that it may not 
always be effective. Specifically, our results demonstrate that the 
adversarial model could reduce bias only related to age in the 
MIDRC dataset when compared with the DenseNet-121 model.

Finally, SCL is a general contrastive learning approach with-
out label definitions related to demographic information. The 
experiments conducted with SCL can be regarded as an abla-
tion study to demonstrate that our proposed method considers 
demographic information to form positive and negative sam-
ples for learning image feature embeddings to improve group 
fairness. The results show that our proposed method effectively 
improved group fairness.

Our study had some limitations. Although this study assessed 
the fairness of binarized models, it did not examine the calibra-
tion of predicted probabilities. As a result, there was a possibility 
of overconfidence or underconfidence in certain cases. To address 
this limitation, future research should investigate the relationship 
between calibration and bias in disease detection and develop ef-
fective methods to reduce calibration bias. Moreover, expanding 
the proposed method to include continuous attributes and mul-
ticlass settings would increase its applicability.

Additionally, this study aimed to enhance the fairness of au-
tomated chest radiograph diagnosis through contrastive learning. 
We used two extensive chest radiograph datasets to showcase the 
effectiveness of the proposed method, both of which focused on 
thoracic diseases. In the future, we plan to extend the application 
of our method to other diseases and imaging modalities and test 
it on more models with other base architectures, not like this time 
when only using DenseNet-121.

Furthermore, given that MIDRC is a multi-institutional col-
laborative initiative and no exclusion criteria are specified in the 
dataset descriptions, we have taken measures to mitigate selection 
bias. However, it is important to acknowledge that MIDRC may 
not fully represent all patient populations. Finally, the data do not 
provide the comorbidity history of the patients.

Another limitation of our model was that it was designed to 
manage disparities linked to specific sensitive attributes indi-
vidually, rather than addressing multiple variables like sex, race, 
and age simultaneously. Navigating multiple sensitive attributes 
necessitates a more complex model architecture. Additionally, it 
requires a more diverse dataset. However, in the datasets used in 
this study, certain intersectional groups (eg, ≥75 years old, other 
sexes) consisted of only a small number of positive cases, which 
not only created difficulties in model training but also influ-
enced the statistical significance of outcomes. In the future, we 
plan to explore models and datasets that can effectively manage 
these challenges.

In summary, this study introduces an effective AI model that 
reduces bias toward racial, age, and sex subgroups in automated 
chest radiograph diagnosis. Notably, this represents the first at-
tempt to address bias in deep learning for COVID-19 diagno-
sis. Our proposed approach uses SCL as a pretraining method 
to obtain fair image embeddings. Unlike previous supervised 
contrastive methods, our approach uses images with the same 
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label but from different protected groups as positive samples and 
images with different labels but from the same protected group 
as negative samples for each anchor image in a minibatch. This 
approach allows the network to capture more label information 
and less group information during pretraining. The backbone of 
the model is fine-tuned in the downstream task. We developed 
and evaluated the proposed method using two large multi-in-
stitutional datasets, demonstrating its effectiveness in reducing 
bias. Therefore, the proposed method may be suitable for clinical 
practice and can help alleviate concerns regarding disparities gen-
erated by AI models.
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