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Abstract

Background: Seronegative elderly-onset rheumatoid arthritis (EORA)neg and polymyalgia 

rheumatica (PMR) have similar clinical characteristics making them difficult to distinguish based 

on clinical features. We hypothesized that the study of serum metabolome could identify potential 

biomarkers of PMR vs EORAneg.

Methods: Arthritis in older adults (ARTIEL) is an observational prospective cohort with patients 

older than 60 years of age with newly diagnosed arthritis. Patients’ blood samples were compared 

at baseline with 18 controls. A thorough clinical examination was conducted. A Bruker Avance 

600 MHz spectrometer was used to acquire Nuclear Magnetic Resonance (NMR) spectra of 

serum samples. Chenomx NMR suite 8.5 was used for metabolite identification and quantification. 
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Student t-test, one-way ANOVA, binary linear regression and ROC curve, Pearson’s correlation 

along with pathway analyses were conducted.

Results: Twenty-eight patients were diagnosed with EORAneg and 20 with PMR. EORAneg 

patients had a mean disease activity score (DAS)-Erythrocyte Sedimentation Rate (ESR) of 

6.21±1.00. All PMR patients reported shoulder pain, and 90% reported pelvic pain. Fifty-eight 

polar metabolites were identified. Of these, 3-hydroxybutyrate, acetate, glucose, glycine, lactate, 

and o-acetylcholine (o-ACh), were significantly different between groups. Of interest, IL-6 

correlated with different metabolites in PMR and EORAneg suggesting different inflammatory 

activated pathways. Finally, lactate, o-ACh, taurine, and sex (female) were identified as 

distinguishable factors of PMR from EORAneg with a sensitivity of 90%, specificity of 92.3%, 

and an AUC of 0.925 (p<0.001).

Conclusion: These results suggest that EORAneg and PMR have different serum metabolomic 

profiles that might be related to their pathobiology and can be used as biomarker to discriminate 

between both diseases.

Keywords

Metabolomics; PMR; seronegative RA; NMR

BACKGROUND

Elderly Onset Rheumatoid Arthritis (EORA) is a geriatric rheumatic disease with a 

prevalence of approximately 2% (Kobak & Bes, 2018). The diagnostic is usually considered 

in patients who are more than 60 years old and newly diagnosed with RA(Kobak & Bes, 

2018). Unlike young onset RA, EORA tends to affect larger joints such as shoulders(Aletaha 

et al., 2010). Even with shoulder pain being a distinguishable factor, it is still difficult 

to properly diagnose EORA because of the overlap with other rheumatic diseases such 

as polymyalgia rheumatica (PMR), which is another inflammatory and idiopathic geriatric 

disease, with a prevalence of 0.37–0.62%(Manzo, 2019). Women are more likely to develop 

PMR with a lifetime risk of 2.4% compared to 1.7% in men(Hancock et al., 2014). 

Symptoms of PMR include stiffness in the back, shoulders and hips, fatigue, and weight 

loss. Blood tests such as C-reactive Protein (CRP), erythrocyte sedimentation rate (ESR), 

rheumatoid factor (RF), anti-cycle citrullinated peptides (anti-CCP) or clinical parameters 

cannot accurately distinguish PMR from seronegative EORA (EORAneg)(Aletaha et al., 

2010).

Biomarkers to differentiate between PMR and EORAneg are an unmet need. Metabolomics 

is an emerging field of biomedical research that can offer a better understanding of 

mechanisms underlying diseases and help develop new strategies for treatment. Unlike genes 

and proteins, whose functions are subject to epigenetic regulation and post-translational 

modifications, metabolites serve as direct signatures of biochemical activity that may 

help understand the underlying biological pathways and may be easier to correlate with 

phenotype (Cho et al., 2014). Variations in metabolite concentrations can also serve 

as diagnostic or prognostic biomarkers. A small number of metabolomics studies have 

been focused on identifying metabolites associated with rheumatic diseases, primarily for 
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diagnostic purposes,(Costenbader et al., 2021; Kim et al., 2014; Kosinska et al., 2013; Luan 

et al., 2021; Madsen et al., 2011; Souto-Carneiro et al., 2020) but even fewer have attempted 

to predict response to treatment.(Kapoor et al., 2013; Medcalf et al., 2021; Murillo-Saich et 

al., 2021; Sweeney et al., 2016)

Metabolomic analysis can involve different analytical platforms. The most commonly 

utilized platforms are nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS). NMR spectroscopy, although having lower sensitivity than MS, is a 

robust metabolomic platform with several advantages. NMR is currently the best technique 

for chemical structure elucidation; it requires only minimal sample preparation, and is 

non-destructive, inherently untargeted, highly reproducible(Dumas et al., 2006; Viant et 

al., 2008) and intrinsically quantitative(Viant et al., 2009; Wishart et al., 2012; Zhang et 

al., 2010). Researchers have used 1H-NMR to study biomarkers in different diseases such 

as Alzheimer’s disease(Di Costanzo et al., 2020), or the microbiome of irritable bowel 

syndrome(Le Gall et al., 2011) among others. 1D 1H-NMR may be a promising tool to 

identify patients with different types of rheumatic diseases.

Although there are prior studies defining the metabolomic profile of young onset RA 

patients, which successfully distinguished between healthy controls and individuals with 

RA(Rodríguez-Carrio et al., 2021; Teitsma et al., 2018; Young et al., 2013), there is a lack 

of information about the metabolomic profile in patients with EORA or PMR. The study of 

metabolomics could be of interest to identify significant metabolites especially in EORAneg 

vs PMR, and to better understand elements of inflammation pathobiology in the geriatric 

populations. The main objective of this study is to compare the metabolomic profiles from 

PMR and EORAneg patients.

METHODS

Patient selection and assessment:

This is an observational longitudinal prospective study (ARTIEL -arthritis in the elderly)

(Coras et al., 2021), that enrolled elderly patients with new onset arthritis. The study was 

approved by the Universitat Hospital Germans Trias i Pujol Institutional Review Board and 

included patients older than 60 years with clinically newly diagnosed peripheral and/or 

rhizomelic arthritis. Patients with infections, neoplasia, dementia, immunodeficiencies, or 

who had received or are receiving glucocorticoids or diseases-modifying anti-rheumatic 

drug (DMARDs) in the last 6 months were excluded from the study. Individuals with 

new onset arthritis were identified by a primary care physician and then referred to a 

rheumatologist who prescribed treatment according to the standard of care. Additionally, 18 

controls without rheumatic diseases in the same age range were recruited.

Clinical assessment included: presence/ absence of pelvic and shoulder pain, stiffness, 

edema, fatigue and loss of appetite, global pain using a Visual Analogue Scale (VAS 

- 0 to 10), evaluation of the number of tender (TJC) and swollen joints (SJC) (out 

of 28), functional status as assessed by Health Assessment Questionnaire (HAQ), and 

assessments of global disease severity by patients, and a global assessment of disease by 

physicians, using a VAS ranging from 0 to 10. Erythrocyte sedimentation rate (ESR) and 
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C-reactive protein (CRP) were also measured. Composite measures of peripheral arthritis 

were calculated using the above measures including Disease Assessment Score using a 

28-joint count (DAS)-CRP and DAS-ESR. Blood samples were collected at baseline (first 

consultation in rheumatology clinics), processed immediately, and serum aliquots were 

stored at −80°C until analysis.

Out of 64 patients that fulfilled the inclusion criteria, 44 were diagnosed with EORA 

according to the ACR/EULAR 2010 criteria(Aletaha et al., 2010), 28 of them were 

seronegative (EORAneg), additionally, 20 were diagnosed with PMR (2012 EULAR/ACR 

criteria)(Dasgupta et al., 2012). From those, 28 patients with EORAneg and 20 patients with 

PMR were also evaluated at 3 months posttreatment. The EORAneg patients were classified 

in two categories: responders (good responders) and non-responders (moderate responders 

and null responders) according to DAS-ESR based EULAR response criteria(van Riel & 

Renskers, 2016).

Sample Preparation for Metabolite Extraction:

The samples were thawed at room temperature for 30 minutes, and subsequently 150 μL of 

each sample was transferred to a deep well plate. The plates were spun at 2000xg at 4°C for 

1 min (Eppendorf 5804 R centrifuge, A-2-DWP rotor). Methanol was taken directly from a 

−20°C freezer and 750 μL was added into each well while shaking using an Agilent Bravo 

96-channel liquid handling robot. The plates were shaken at 850 rpm, 12°C for 30 min 

(Eppendorf Thermomixer Comfort), and then centrifuged at 2250 x g, 4°C for 60 min. After 

that, 600 μL of the supernatant was transferred to a new deepwell plate with the Agilent 

Bravo and dried overnight (Labconco CentriVap lyophilizer set to 20°C). Each dried pellet 

was washed with 50 μL of methanol-d4, shaken at 850 rpm, 12°C for 10 min before drying 

again for 1 hr at 20°C. To finish, 200 μL of buffer (37.5 mM sodium phosphate pD 6.95, 

0.02% w/v sodium azide, 0.747 mM TSP-d4) was added and it was shaken at 850 rpm, 20°C 

for 1 h. 180 μL of each sample was transferred to a 3 mm SampleJet NMR tube with a 

Bruker SamplePro Tube L robot.

NMR Acquisition and Processing:

A 600 MHz Bruker Avance III spectrometer equipped with a cooled SampleJet and a 5 mm 

room temperature BBI-probe was used for data acquisition. 1D 1H spectra were acquired 

using the pulse sequence ‘zgespe’, encompassing water suppression through excitation, 

sculpting, and including a perfect echo sequence. The acquisition time was 2.04s, the 

relaxation delay was of 2s, the receiver gain 181 and 128 scans were collected into 64k 

points. A 0.3Hz exponential line broadening was applied before Fourier transformation 

and zero filling to 128k points. Spectra were phased, baseline-corrected, and referenced 

to TSP-d4, all performed in TopSpin3.5pl7 (Bruker BioSpin). Samples in the SampleJet 

carousel were kept at 6°C before and after insertion in the magnet. A daily quality assurance 

procedure was performed before sample data acquisition, involving temperature calibration 

checks, shim and water suppression quality, and consistent quantification using a reference 

sample, all according to the Bruker In Vitro Diagnostics for research (IVDr) SOP.
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Metabolites Identification and Quantification:

The Chenomx suite 8.5 professional (Chenomx Inc., Edmonton, Canada) 600 mHz, version 

11 was used to identify and quantify the metabolites detected by 1D 1H-NMR by 

matching the compounds’ peak with its library according to the chemical shift. Metabolite’s 

concentration was normalized to the TSP-d4, and 58 metabolites were found in this process. 

The metabolites’ concentrations were reported in micromolar (μM).

ELISA:

Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF) were measured in serum according to 

the manufacturer’s instructions by ELISA (R&D systems).

Statistical Analysis:

The metabolites were normalized by sum of the data followed by a logarithmic 

transformation and scaled by mean centering using MetaboAnalyst version 5.0(Xia & 

Wishart, 2011) in order to achieve a comparable dataset, since some metabolites had 

extremely high concentrations in comparison to others, which deemed it necessary 

to perform a logarithmic transformation. Overall, sum normalization and logarithmic 

transformation helps avoid false significance(Misra, 2020). Partial Least Square 

Discriminant Analysis (PLS-DA) was used as a classification model between control, PMR 

and EORAneg according to the variable importance of projection (VIP) that identifies those 

metabolites which most influence the separation of groups considering a VIP>1 (Chong 

& Jun, 2005). Pathway analysis of control, PMR and EORAneg were evaluated with the 

tool of enrichment analysis available on MetaboAnalyst (Wieder et al., 2022). The 58 

metabolites identified were ran through MetaboAnalyst using an open data base known as 

Kyoto Encyclopedia of Genes and Genomes (KEGG)(Kanehisa et al., 2016) 2019, which 

contains a set of 84 metabolites, including those identified in this work. Considering the 

algorithm proposed by G. Nyamundanda et al (Nyamundanda et al., 2013) to calculate 

sample size in metabolomic data, we determined that a minimum sample size of 22 patients 

(11 on each group) were needed to obtain 80% power and 10% of false discovery rate (FDR) 

assuming probabilistic principal component analysis (PPCA) as model, no covariates, 200 

bins, 0.2 as expectation of proportion of significant bins and untargeted analysis calculated 

in R studio using “MetSizeR” package (https://cran.r-project.org/web/packages/MetSizeR/

MetSizeR.pdf).

Continuous variables were expressed as mean ± standard deviation (SD) and categorical 

variables as percentage. Differences in metabolite concentration between the three groups 

were assessed using one-way analysis of variance (ANOVA) adjusted by diabetes mellitus 

(DM) and sex, with Tukey Honest Significance Difference (HSD) post-hoc analysis. 

Additionally, quantitative variables between the three groups were analyzed using an 

ANOVA with a Scheffe post-hoc analysis to determine the significance of variables between 

groups. Heatmaps were created using R studio.v.4.0.3 to calculate Pearson’s correlations 

to analyze correlations between metabolite and inflammatory marker levels in PMR and 

EORAneg patients, and were adjusted by age, sex, DM, and BMI. A logistic regression 

analysis was performed to obtain a variable of prediction between EORAneg and PMR 

adjusted by age, sex, and DM. The variables included in the regression analyses were 
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those with p<0.1 obtained by univariant comparisons between PMR and EORAneg. Data 

were assessed for multivariate outliers using Mahalanobis Distance Test (Todeschini et al., 

2013) where two multivariate outliers were identified and removed for this analysis. The 

area under the curve (AUC) obtained from ROC analysis was used to determine the best 

cut-off value and predictability for PMR in base of the probability obtained from the logistic 

regression. The comparisons, logistic regressions and ROC curve were assessed with SPSS 

v.27 (IBM Corp. Released 2019 v27.0. Armonk, NY: IBM Corp.). The value p<0.05 was 

considered statistically significant.

Results

Patient demographics and disease characteristics

The characteristics of control and patient population are summarized in Table 1. Eighteen 

controls (average age: 75.38, SD 6.04, 39% males, and an average ESR level of 17.9, SD 
17.03 mm/h) and 48 patients were analyzed. Of these patients, 28 were diagnosed with 

EORAneg with an average age of 76.75, SD 6.99, 57% males, and an average ESR level 

of 52.54, SD 27.20 mm/h, and 19 with PMR, with an average age of 76.40, SD 4.99, 15% 

were males, and an average ESR level of 57.80, SD 21.50 mm/h. There were more males in 

the EORAneg group (57%) compared to PMR group (15%, p=0.01), BMI was not different 

between groups. Comorbidities including high blood pressure (HBP), and dyslipidemia 

(DL), were also similar in both arthritic populations and controls, but diabetes mellitus 

(DM) was present in over half of EORAneg patients compared to PMR (25%) and controls 

(16%; p=0.02). As expected, PMR and EORAneg patients, presented with higher erythrocyte 

sedimentation rate (ESR), C-reactive protein (CRP), and IL-6 than controls, although TNF 

levels were relatively similar across all three groups.

Within the arthritic population, PMR patients presented more shoulder pain (100% vs 75% 

in EORAneg, p=0.02), more pelvic pain (90% vs 60% in EORAneg, p<0.001), and less 

peripheral arthritis than EORAneg at baseline (9.11, SD 5.83 vs 2.70, SD 0.98, p<0.001 

and 11.46, SD 5.89 vs 0.25, SD 0.64, p<0.0001, for tender and swollen joints in EORAneg 

vs PMR, respectively). We did not observe differences between PMR and EORAneg in 

other clinical characteristics including pain (p=0.12), HAQ (p=0.18), ESR (p=0.48), CRP 

(p=0.44), TNF (p=0.90) or IL-6 (p=0.28). Both PMR and EORAneg patients experienced a 

similar amount of pain according to the visual analog scale (VAS) (81.25, SD 17.46 and 

73.04, SD 17.81, respectively), and a similar dose of non-steroidal anti-inflammatory drugs 

(NSAIDs) (Table 1). At baseline (first visit in rheumatology clinics), none of the patients 

were on steroids, or on any synthetic or biological DMARDs.

Metabolomic Profiling in PMR and EORAneg patients

A total of 58 polar metabolites were detected in the serum of control group, PMR, and 

EORAneg patients. We identified several amino acids, ketone bodies, and several glycolytic 

intermediates among other metabolites. We performed a multivariate OPLS-DA with all 

the metabolites observing only a small discrimination between the groups (Figure 1a, 1b). 

Principal components (1–5) explained 41.9% of the variance of the 1H-NMR data. With 

a cutoff value of Variables Importance in Projection (VIP)>1.0 obtained from PLS-DA. 
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However, 5 metabolites with a VIP>2 (O-acetylcholine, Hydroxyacetone, taurine, glycine 

and n-acetylaspartate) were the principal features driving the separation between groups. 

Several metabolites, such as o-acetylcholine (o-ACh), hydroxyacetone, taurine, glycine, 

n-acetylaspartate, methionine, glycolate, pyruvate, threonine, and creatine differentiate 

controls from EORAneg and PMR groups. Likewise, acetoacetate, trimethylamine, betaine, 

acetone, and 3-hydroxybutyrate were metabolites that better differentiate PMR patients from 

controls and EORAneg patients (Figure 1c).

We then analyzed metabolomic fingerprint in the three groups at baseline. Metabolite 

correlation patterns is shown in Figure S1 (See Supplementary material). While metabolite 

clustering in PMR population was similar to controls (Figure S1b in supplementary 

material), it was different in EORAneg (Figure S1c in supplementary material). When 

the metabolites were mapped to known metabolic pathways using MetaboAnalyst 

V.5.0, enriched pathways were significantly different in each group. While ubiquinone 

metabolism, phenylalanine, and tyrosine and tryptophan metabolism were the most enriched 

pathways in PMR, in EORAneg galactose metabolism, starch and sucrose metabolism, and 

alanine, aspartate and glutamate metabolism were the most enriched. Finally, in controls, 

selecompound metabolism, pantothenate and CoA biosynthesis and tryptophan metabolism 

were the most enriched metabolic pathways (Figure S2a–c supplementary material).

Significantly different metabolites between controls, PMR and EORAneg patients

To determine the different metabolites’ concentrations between controls, PMR and 

EORAneg, metabolites were analyzed by using an ANOVA and adjusting variables by 

DM and sex. Several metabolites were significantly different between controls, PMR and 

EORAneg patients (Table 2 and Figure 2a). We observed that 3-hydroxybutyrate, acetate, 

glucose, glycine, lactate, o-Ach, and pantothenate were significantly different between the 

3 groups, and some others such as phenylalanine, taurine and threonine showed tendency. 

Of these metabolites, phenylalanine was higher while glycine, o-Ach, and threonine were 

lower in PMR compared to the control group. On the contrary, we observed higher levels 

of 3-hydroxybutyrate, acetate, glucose, lactate, and pantothenate in the EORAneg group 

compared to the control group (Table S1 in supplementary material and Figure 2a). This 

suggests that metabolomic profiles do vary amongst controls and the diseased groups. Figure 

2b shows a visual representation of Table 2 and Table S1 in supplementary material, with a 

picture of metabolites with higher or lower concentrations in PMR (mostly amino acids) or 

EORAneg (mostly glucose metabolism related metabolites) when compared with control.

Association of metabolites with inflammatory markers in PMR and EORAneg

We also determined whether some of these metabolites were associated with inflammation 

in each disease. A Pearson correlation was performed between IL-6 levels, ESR and 

CRP, and metabolites’ concentration adjusted by age, BMI, DM and sex. The regression 

coefficients for each inflammation outcome-metabolite pair were used to form a clustered 

heatmap to lend insight into which clinical characteristics were correlated with which 

metabolites. IL-6 correlated positively with TMAO, pantothenate, O-phosphocholine, 

glycolate, glucose, creatine phosphate and acetate in PMR patients. While in EORAneg, 

IL-6 had positive correlation only with tryptophan and negative correlation with valine, 
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isovalerate and isoleucine (Figure 3). Different metabolites also correlated with CRP and 

ESR in both diseases suggesting different activated metabolic pathways associated to 

inflammation in these diseases.

Predictors of Classification to distinguish PMR from EORAneg

Of the 58 metabolites, it was observed that some metabolites differed between PMR and 

EORAneg such as acetate, lactate, taurine and o-Ach which were significantly elevated in 

EORAneg compared with PMR patients (Table S2 in supplementary material). Additionally, 

some metabolites almost reached significance, for instance glutamine, malate, succinate and 

SG3PC were higher in PMR than EORAneg (Table S2 in supplementary material).

Then, a binary logistic regression analysis was conducted, including the metabolites with 

p<0.10 in the univariate model between PMR and EORAneg (Table S2 in supplementary 

material) after adjusting by sex, and DM. The model showed that lactate, o-ACh, taurine, 

and sex (female) are predictors that classified and distinguished PMR from EORAneg. After 

removing the outliers from the model, the classification model showed a sensitivity of 90% 

and specificity of 92.3% with an AUC of 0.925 and a p<0.001 (Figure 4a). An additional 

logistic regression model was conducted using the same metabolites as well as oxylipins 

(which were recently described by our group in this cohort)(Coras et al., 2021) to determine 

whether or not the addition of these lipids would improve the prediction model. The new 

binary logistic regression analysis included lactate, o-ACh, taurine, and 16(17) EpDPE in 

the model. The ROC curve improved the sensitivity of the model by reaching 95% but 

decreasing the specificity to 88% with an AUC of 0.944 and a significance of p<0.001 

(Figure 4b). Low levels of lactate, o-ACh and taurine as well as high levels of 16(17)EpDPE 

were important factors to predict PMR.

Metabolomic profile between responders and non-responders in EORAneg

The EORAneg patients were classified in two categories: responders (good responders) and 

non-responders (moderate responders and null responders) according to EULAR response 

criteria using DAS28-ESR at 3 months posttreatment. 21 EORAneg patients were identified 

as responders (R), while 7 were classified as non-responders (NR). Characteristics of R 

and NR are summarized in Table S3 (See supplementary material). Of the R, 24% were 

females, while the NR were all females (p<0.001). Both groups had a similar age and BMI 

(76.00, SD 6.86 vs 79.00, SD 7.44 and 27.92, SD 3.08 vs 31.52, SD 7.66), respectively. 

Co-morbidities between groups did not reach statistical significance, but DM was more 

prevalent in the NR group (86% vs 43%). Of note, DM patients did not have worse disease 

status than non-DM patients at baseline (Table S4 in supplementary material). Of interest, 

tender joints count, and pain were lower in R than NR (7.76, SD 4.55 vs 13.14, SD 7.65, 

p=0.12 and 69.29, SD 17.91 vs 84.29, SD 12.72, p=0.05, respectively). DAS-ESR was also 

lower in R than in NR (6.04, SD 0.96 vs 7.11, SD 0.89, p=0.02). Similarly, DAS-CRP was 

also slightly lower in R than in NR (5.46, SD 1.00 vs 6.17, SD 0.79, p=0.10). Both groups 

had similar CRP levels mg/dL, but ESR levels were higher in NR than in R (70.43, SD 19.37 

vs 46.57, SD 27.14, p= 0.04). The cytokines levels were similar in both groups. Treatment 

in both groups was also similar, 28.6% of R and NR were on methotrexate. All the patients 
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were receiving corticoids and both groups received similar doses (8.95, SD 3.32 vs 9.14, SD 
3.02, ns) (Table S3 in supplementary material).

After comparing the metabolomic profile at baseline of both groups adjusted by sex and 

DM, 3-hydroxybutyrate, adenine, glucose, taurine, and TMAO, were statistically higher 

in the NR group, while glutamate was higher in R group (Table S5 in supplementary 

material). The OPLS-DA showed a clear separation between R and NR (Figure S3a, b in 

supplementary material). Furthermore, the VIP scores showed that several metabolites, with 

TMAO as an outstanding feature driving the separation with a VIP >3.5. Other metabolites 

including betaine, glycine, glutamate, lysine, n-acetylaspartate, acetone, dimethylamine, 

ornithine, threonine, proline, o-ACh, and tryptophan were also driving the separation 

between R from NR (Figure S3c in supplementary material). Additionally, we compared 

metabolites concentrations from R or NR vs control, and it was observed that 3-

hydroxybutyrate, acetate, glucose, lactate, pantothenate and taurine showed significantly 

higher concentrations in NR compared to control while glycine had lower levels in NR 

compared to control (Figure S3d and Table S6 in supplementary material).

DISCUSSION

Prior studies have tried to differentiate EORA and PMR. One study described the use 

of physical exam paired with blood tests such as alanine aminotransferase, alkaline 

phosphatase, and glutamyl transferase, but the study was unable to fully separate 

and properly diagnose all enrolled participants(Caporali et al., 2001). Cytokine level 

measurements such as TNF, IL-1Ra and IL-6 along with steroidal hormone level 

measurements were also used to distinguish the two diseases(Cutolo et al., 2006). In 

this study, cytokine and steroidal hormone patterns suggested that patients with PMR 

and those with EORA with PMR-like onset had higher levels of cytokines and overall 

inflammation(Cutolo et al., 2006). Another way that researchers have tried to distinguish 

these diseases is using Fluorodeoxyglucose (FDG) Positron Emission Tomography (PET), 

which evaluates glucose metabolism in organs and tissues. Of interest, FDG accumulation 

was much higher in PMR patients at the 9 study sites compared to EORA and suggested that 

enthesitis in addition to bursitis was more present in PMR(Wakura et al., 2016).

In our study, we have described different metabolomic profiles between PMR and EORAneg 

that might be useful to better understand and classify these 2 diseases. Several metabolites 

were significantly different or almost reached significance between diseases suggesting 

that metabolomics can be a useful tool to understand their pathobiology and help in 

biomarker identification. For instance, concentrations of amino acids such as glycine and 

phenylalanine were different in the PMR group compared to the control, whereas some 

glucose-related metabolites were different in the EORAneg group compared to the control. 

Of note, in addition to the metabolites detected by NMR, we also included oxylipins from 

our previous study(Coras et al., 2021), which helped improve the classification of PMR from 

EORAneg patients. Our results suggest that the combination of multiple biomarkers may 

lead to promising results to understand the pathobiology of different rheumatic diseases and 

improve diagnosis.
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O-ACh is recognized to be a neurotransmitter but also can be secreted by several immune 

cells, which helps maintain cell function through proliferation and differentiation, among 

others(Wessler & Kirkpatrick, 2008). In addition, o-ACh can modify immune responses 

and it was described to have an important role in the production of antibodies(Wessler 

& Kirkpatrick, 2008). O-ACh is also released by macrophages(Wang et al., 2004) and T 

cells(Rosas-Ballina et al., 2011) and has an anti-inflammatory effect. In our study, serum 

concentration of o-ACh in EORAneg and control were remarkably similar, but lower in 

PMR. Given that several stimuli are responsible for an increase of o-ACh receptor in 

cells(Chiba et al., 2019), one possible explanation is that it is consumed locally, due 

to the higher expression of their receptors. Of interest, glycine also appears to play an 

anti-inflammatory role and maintains homeostasis of the immune system(Zhong et al., 

2003). PMR patients had also significantly lower levels of glycine compared to controls and 

EORAneg patients.

Acetate, which was significantly higher in EORAneg patients when compared to PMR 

and control, regulates inflammation in the body. Abnormal levels of acetate can lead to 

many inflammatory disorders, such as inflammatory bowel disease, Crohn’s disease, and 

ulcerative colitis(Parada Venegas et al., 2019; Xu et al., 2019). Acetate, together with 

other significant metabolites such as pyruvate, glucose and lactate are related to glycolysis, 

which has been associated with inflammatory diseases including RA(Biniecka et al., 2016; 

Bustamante et al., 2018; de Oliveira et al., 2019; Falconer et al., 2018; Garcia-Carbonell 

et al., 2016). Although another study suggested that in the presence of inflammation, 

glucose levels drop while lactate levels increase(Holmberg et al., 2017), in our study both 

metabolites were elevated, especially in EORAneg patients. 3-hydroxybutyrate was another 

metabolite that had a higher concentration in the EORAneg group than controls and PMR 

patients. Based on previous studies, this metabolite has been known to be elevated in RA 

patients (11, 35). Phenylalanine was increased in PMR. Some studies have found that 

phenylalanine is effective in treating chronic pain and inflammation in diseases such as 

arthritis which can explain why in this study, phenylalanine is increased in patients with 

PMR when compared to the controls, suggesting a compensatory increased in order to 

regulate the inflammation(Ehrenpreis, 1982).

In our study, we also determined metabolites associated to response. Several studies 

have succeeded in identifying metabolites associated to response in RA(Cuppen et al., 

2016; Murillo-Saich et al., 2021; Sweeney et al., 2016; Tatar et al., 2016). Since all 

the PMR patients tend to respond on prednisone, we focused on EORAneg patients. 

3-hydroxybutyrate, adenine glucose, glutamate, TMAO, and taurine were the significant 

metabolites between R and NR, although some other metabolites almost reached 

significance such as acetate or citrate (Table S5). Of interest, the proportion of DM was 

elevated in NR. The association between DM and response may be critical in older adults, 

since prior studies did not described a worse response in young RA patients with DM, in 

fact, one study suggested that methotrexate may decrease the risk of developing DM in RA 

patients(Baghdadi, 2020), yet, the same proportion of R and NR were taking methotrexate in 

this cohort.
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This study suggests that some distinct metabolic pathways can be involved in the 

pathogenesis of EORAneg and PMR, that can be used to differentiate between these 

clinically similar diseases. Although our findings are promising, this study is not without 

its limitations. Since this is an exploratory study, the size of the cohort is small, and we lack 

validation cohort, which limits the generalization of our findings. The use of non-fasting 

samples is another limitation of our study, since diet can affect the concentrations of serum 

metabolites. It would also be of interest to study local metabolic changes in the inflamed 

synovial and periarticular tissue to evaluate the relation between local and circulating 

metabolites.

CONCLUSION

This exploratory study yielded very promising and significant results to help understand 

these diseases’ pathobiology in these geriatric populations. In this study, we identified three 

metabolites that helped to predict PMR from EORAneg patients. The use of 1D 1H-NMR 

can be a promising tool to distinguished between EORA and PMR.
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LIST OF ABBREVIATION

PMR Polymyalgia Rheumatica

EORAneg Seronegative Elderly Onset Rheumatoid Arthritis

TMAO Trimethylamine N-Oxide

SG3PC Sn-Glycero-3-Phosphocholine

R Responder

NR Non-Responder

DM Diabetes Mellitus

HTA Hypertension

DLP Dyslipidemia
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BMI Body Mass Index

ESR Erythrocyte Sedimentation Rate

CRP C-Reactive protein

IL-6 Interleukin-6

CRP C-Reactive Protein

NSAIDs Non-Steroidal Anti-Inflammatory Drugs

HAQ Health Assessment Questionnaire

ANOVA Analysis of Variance

O-PLSDA Orthogonal Partial Least-Squares Discriminant Analysis

VIP Variable Importance in Projection

AUC Area Under the Curve

1H-NMR Hydrogen-Nuclear Magnetic Resonance
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Fig. 1. Polar metabolites’ profiling in control, PMR and EORAneg samples.
a) Shows a component analysis with a total variance of 41.9% between the 3 groups, b) 
PLS-DA showing PMR and control as the most different groups; c) Variance of important 

projection of metabolites based in component 2 (11.3%) that identified o-ACh as the 

most important metabolite follow by hydroxy-acetone to separate PMR from control and 

EORAneg. Note: o-ACh: o-acetylcholine
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Fig. 2. Metabolite concentrations in control, PMR, and EORAneg samples.
a) Comparison of concentrations of significant metabolites identified by 1H-NMR between 

control, EORAneg, PMR at baseline adjusted by DM and sex using Tukey HSD as post-hoc 

analysis. The overall ANOVA p-value is below the metabolite name, while the p-values for 

the post-hoc analysis are located between groups. b) Map of metabolic pathways showing 

metabolites with a p<0.10 obtained from Tukey HSD analysis. Metabolites different in PMR 

compared to controls are highlighted in blue. Metabolites different in EORAneg compared 

to controls are highlighted in orange. Arrows indicate whether the metabolite concentration 

was higher or lower than in the control group. SG3PC: Sn-Glycero-3-Phosphocholine
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Fig. 3. Correlation between inflammatory markers and metabolites adjusted by age, sex, DM, 
and BMI at baseline.
a) The strength of association of each pair of PMR were used to form a cluster heatmap to 

lend inside which cytokine were correlated with which group of metabolites in serum using 

Pearson correlation; b) The strength of association of each pair of EORAneg were used to 

form a cluster heatmap to lend inside which cytokine were correlated with which group of 

metabolites in serum using Pearson correlation. Red color indicate positive correlation while 

blue negative correlation. The number on each cell refers the p-value of each pair of each 

group.
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Fig. 4. Metabolomic prediction model for PMR classification.
PMR was considered the principal outcome. The logistic model used metabolites that had a 

p value <0.10 in the binary comparison between EORAneg and PMR. a) The model showed 

an area under curve of 0.925 with a sensibility= 90% and specificity= 92.3%; p<0.001. b) 
The model showed an area under curve of 0.944 with a sensibility= 95% and specificity= 

88%; p<0.001, when the oxylipins were included in the model
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Table 1.

Demographic and clinical characteristics between control group, PMR and EORAneg at baseline

Variable Control
N=18

PMR
N=20

EORAneg

N=28
p

Female, n (%) 11(61) 17(85) 12(43) *** 0.01

Age, years 75.39±6.04 76.40±4.99 76.75±6.99 0.76

BMI, kg/m2 28.84±5.56 27.27±4.32 28.82±4.76 0.50

DM, n (%) 3(16) * 5(25) 15(54) *** 0.02

HBP, n (%) 11(61) 17(85) 20(71) 0.25

DL, n (%) 9(50) 12(60) 19(67) 0.48

CRP mg/dL 4.10±6.78* 31.56±28.27 41.57±52.14 0.02

ESR mm/h 17.93±17.03* 57.80±21.50** 52.54±27.20 <0.001

TNF (pg/mL) 15.05±19.86 13.60±6.12 13.86±6.68 0.93

IL-6 (pg/mL) 1.04±1.43* 11.25±23.92 19.93±29.45 0.03

Fatigue, n (%) 14 (70) 20 (71.4) 0.92

Weight loss, n (%) 8 (40) 10 (36) 0.76

Anorexia, n (%) 7 (35) 14 (50) 0.30

Stiffness, n (%) 19 (95) 27 (96) 0.81

Shoulder pain, n (%) 20 (100) 21 (75) 0.02

Pelvis pain, n (%) 18 (90) 13 (64) <0.001

Tender Joints 2.70 ± 0.98 9.11 ± 5.83 <0.001

Swollen Joints 0.25 ± 0.64 11.46 ± 5.89 <0.001

Pain 81.25 ± 17.46 73.04 ± 17.81 0.12

HAQ 1.50 ± 0.57 1.77 ± 0.80 0.18

DAS-CRP 5.64±0.99

DAS-ESR 6.21±1.00

NSAIDs mg 520.00 ± 44.72 450.00 ± 216.35 0.35

NSAIDs, n (%) 5 (25) 11 (39.3) 0.36

Continuous variables expressed in mean ± standard deviation; Categorical variables expressed as percentages. Quantitative variables between three 
groups were analyzed using ANOVA (Scheffe post-hoc). Student t-test was used to compare quantitative variables between variables present only 

in EORAneg and PMR. Chi-square analysis was used to determine the significance between groups for qualitative variables. Note. BMI: Body 
mass index; DM: Diabetes mellitus; HBP: high blood pressure; DL: Dyslipidemia; ESR: Erythrocyte sedimentation rate; CRP: C-reactive protein; 
TNF: Tumor necrosis factor; IL-6: Interleukin 6.

*
p<0.05 Control vs EORAneg

**
p<0.05 Control vs PMR

***
p<0.05 EORAneg vs PMR
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Table 2:

Concentration of metabolites between controls, EORAneg and PMR patients.

Metabolite Control
N=18

PMR
N=20

EORAneg

N=28
P Adj.

3-Hydroxybutyrate 15.61±7.60** 24.27±21.86 36.40±28.26 0.006

3-Hydroxyisobutyrate 8.92±4.53 10.37±3.04 9.41±3.03 0.38

3-Phenyllactate 12.38±5.47 14.73±5.10 12.62±4.38 0.29

Acetate 23.63±5.52** 25.53±6.35 31.48±8.67*** <0.001

Acetoacetate 2.79±1.80 4.78±6.08 6.28±12.89 0.42

Acetone 1.37±1.09 3.03±5.60 1.63±2.44 0.30

Adenine 12.63±2.72 12.43±3.99 11.60±3.22 0.36

Alanine 130.05±31.56 118.65±32.44 134.09±36.30 0.27

Arginine 41.98±20.04 43.36±15.48 49.13±23.20 0.34

Asparagine 18.03±6.80 16.25±7.31 16.20±5.10 0.65

Betaine 9.11±6.04 10.90±7.70 10.68±6.08 0.70

Butyrate 9.49±2.68 8.79±2.78 8.26±2.23 0.19

Choline 12.19±2.91 10.71±2.58 10.93±2.15 0.09

Citrate 8.96±2.22 8.99±2.58 9.30±2.23 0.90

Creatine 12.21±3.84 11.35±3.85 11.81±4.48 0.81

Creatine Phosphate 9.00±2.68 11.77±6.75 9.85±3.34 0.12

Creatinine 6.54±3.84 6.27±3.83 6.23±2.74 0.93

Dimethylamine 2.18±1.31 1.70±.80 1.72±0.95 0.29

Formate 13.26±4.06 14.35±6.14 12.85±3.81 0.50

Fumarate 2.71±1.15 2.84±1.70 2.62±1.10 0.83

Glucose 1142.19±273.30** 1321.01±357.16 1561.20±643.18 0.007

Glutamate 111.29±36.57 123.99±35.21 127.46±38.66 0.28

Glutamine 23.14±6.62 27.05±9.22 22.35±8.02 0.14

Glycine 74.28±22.06 54.29±22.56* 61.40±14.69 0.008

Glycolate 7.61±3.47 7.63±4.70 7.81±4.14 0.96

Hydroxyacetone 3.92±1.86 3.28±2.23 3.73±1.76 0.51

Isobutyrate 4.46±2.25 4.83±4.37 4.75±2.93 0.94

Isoleucine 27.86±7.07 28.44±5.65 31.14±8.28 0.24

Isovalerate 10.31±2.60 9.65±2.97 10.02±3.87 0.79

Lactate 697.53±199.29** 710.61±153.32 894.90±256.11*** 0.002

Leucine 39.26±13.96 44.07±10.89 45.15±18.82 0.47

Lysine 38.53±10.28 39.89±10.09 41.64±16.29 0.75

Malate 19.93±5.61 20.71±8.85 16.67±6.06 0.12

Methionine 2.03±1.13 1.95±1.14 2.24±1.18 0.61

Methylamine 2.87±1.32 4.00±5.65 2.55±0.91 0.32

Methylsuccinate 5.94±2.61 4.89±2.09 4.88±2.42 0.30

N,N-Dimethylglycine 1.16±.67 1.27±.81 1.25±0.51 0.86

N-Acetylaspartate 4.86±1.56 4.11±3.37 4.02±1.79 0.54
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Metabolite Control
N=18

PMR
N=20

EORAneg

N=28
P Adj.

N-Phenylacetylglycine 8.06±3.69 9.13±6.03 8.44±5.79 0.81

O-Acetylcholine 4.23±2.65 2.36±1.59* 4.18±2.70*** 0.03

O-Phosphocholine 18.06±6.00 19.16±6.29 20.81±5.95 0.31

Ornithine 24.90±9.84 27.60±9.15 27.10±7.03 0.58

Pantothenate 4.51±2.58** 6.07±3.05 7.06±4.07 0.05

Phenylalanine 12.53±3.21 15.68±4.49* 14.27±4.10 0.06

Proline 46.99±19.09 58.42±38.03 56.74±18.34 0.37

Pyruvate 6.84±3.69 4.80±2.07 6.04±3.33 0.13

Sarcosine 6.34±3.33 5.65±1.67 5.33±2.51 0.61

Serine 42.07±15.79 49.85±13.48 46.41±14.70 0.28

SG3PC 106.86±39.32 135.18±43.97 113.23±44.72 0.08

Succinate 4.07±1.15 4.09±1.01 3.68±0.71 0.20

Taurine 49.31±33.76 33.44±21.42 54.95±33.14 0.06

Threonine 34.29±10.66 27.73±8.48 29.61±7.45 0.06

Trimethylamine 0.73±.39 0.69±.46 0.64±0.31 0.65

TMAO 3.21±2.92 4.91±6.55 4.08±4.93 0.58

Tryptophan 16.92±4.78 16.25±6.83 17.65±5.38 0.71

Tyrosine 21.64±5.19 24.10±5.39 23.21±4.90 0.36

Valine 84.84±16.07 91.27±17.29 92.96±21.40 0.35

t-Methylhistidine 8.87±2.26 9.92±3.30 9.89±5.74 0.69

Variables expressed in mean ± standard deviation. ANOVA (adjusted by DM and sex, with Tukey HSD post-hoc analysis) was used to determine 
the significance of metabolites between groups. Concentration expressed in μM. Note. TMAO: Trimethylamine N-Oxide, SG3PC: Sn-Glycero-3-
Phosphocholine. P adj: P adjusted.

*
P<0.05 control vs PMR

**
p<0.05 control vs EORAneg

***
p<0.05 PMR vs EORAneg
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