TABLE 1.
Detailed formulas for disproportionality analysis.
| Methods | Formula | Signal standard |
|---|---|---|
| ROR | ROR = ad/bc ROR 95%CI = eln (ROR)±1.96 (1/a+1/b+1/c+1/d)0.5 |
a≥3 lower limit of ROR 95%CI > 1 |
| MHRA | PRR = a (c + d)/c (a+b) PRR 95%CI = eln (PRR)±1.96 (1/a-1/(a+b)+1/c-1/(c + d))0.5 |
a≥3 lower limit of PRR 95%CI > 1 |
| BCPNN | IC = log2 [a (a+b + c + d)]/[(a+b) (a+c)] γ = γij [(N+α) (N+β)]/[(a+b+αi) (a+c+βj)] E (IC) = log2 [(a+γij) (N+α) (N+β)]/[(N+γ) (a+b+αi) (a+c+βj)] V(IC)=(log2)−2{(N-a+γ-γij)/[(a+γij) (1 + N+γ)] + (N-a-b+α-αi)/[(a+b+αi) (1 + N+α)] + (N-a-c+β-βi)/[(a+b+βi) (1 + N+β)]} SD = 2(V(IC))0.5 IC-2SD = E (IC)-2SD |
a≥3 IC-2SD > 0 |
| MGPS | EBGM = a (a+b + c + d)/[(a+c) (b + d)] EBGM05 = eln (EBGM)±1.96 (1/a+1/b+1/c+1/d)0.5 |
a>0 EBGM05 > 2 |
Note: γ, γij are the Dicichlet distribution parameter; αi, α, βj, β are Beta distribution parameter; SD, is the standard deviation; IC-2SD, is the lower limit of IC, 95% CI; hypothesis α = β = 2, γij = βj = αi = 1; ROR: reporting odds ratio; MHRA:medicines healthcare products regulatory agency; PRR: proportional reporting ratio; BCPNN: bayesian confidence propagation neural network; MGPS: Multi-Item Gamma Poisson Shrinker; EBGM: empirical bayesian geometric mean; EBGM05: lower limit of EBGM, 95%CI., 95% CI: 95% Confidence Interval.