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Integrative metabolomics-genomics analysis identifies key
networks in a stem cell-based model of schizophrenia
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Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology
behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters,
such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted
neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder. In this study,
we aimed to explore a presumed correlation between the transcriptome and the metabolome in a SCZ model based on patient-
derived induced pluripotent stem cells (iPSCs). For this, iPSCs were differentiated towards cortical neurons and samples were
collected longitudinally at various developmental stages, reflecting neuroepithelial-like cells, radial glia, young and mature neurons.
The samples were analyzed by both RNA-sequencing and targeted metabolomics and the two modalities were used to construct
integrative networks in silico. This multi-omics analysis revealed significant perturbations in the polyamine and gamma-
aminobutyric acid (GABA) biosynthetic pathways during rosette maturation in SCZ lines. We particularly observed the
downregulation of the glutamate decarboxylase encoding genes GAD1 and GAD2, as well as their protein product GAD65/67 and
their biochemical product GABA in SCZ samples. Inhibition of ornithine decarboxylase resulted in further decrease of GABA levels
suggesting a compensatory activation of the ornithine/putrescine pathway as an alternative route for GABA production. These
findings indicate an imbalance of cortical excitatory/inhibitory dynamics occurring during early neurodevelopmental stages in SCZ.
Our study supports the hypothesis of disruption of inhibitory circuits to be causative for SCZ and establishes a novel in silico
approach that enables for integrative correlation of metabolic and transcriptomic data of psychiatric disease models.
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INTRODUCTION
Although schizophrenia (SCZ) is a detrimental neuropsychiatric
disorder affecting 0.32–1.0% of the global population [1], very
little is known about the pathological mechanisms underlying the
disease’s manifestation and progression. The predominant model
of SCZ depicts it as a neurodevelopmental disorder, involving
fundamental neurobiological alterations to occur prior to the
manifestations of symptoms, through the interplay of genetic
predispositions and environmental factors [2]. It has been
hypothesized that the pathology of the disease is associated
with a distorted regulation and response to dopamine and/or

glutamate [3, 4]. However, aberrant glutamatergic and dopami-
nergic neurotransmission alone fails to capture the complexity of
the disease’s etiology [5]. Metabolomics has emerged as a
promising novel tool for the identification of SCZ-associated
metabolites [6–9]. Recent studies revealed altered metabolic
profiles in blood serum and plasma from patients with SCZ when
compared to control individuals, including different metabolite
classes, like amino acids [10–12], phospholipids [13–16], and
neuropeptides [17, 18]. Though these observations may lead to
the improvement of the disease diagnosis and the discovery of
novel biomarkers, the assessment of a putative link between the
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dysregulated metabolic and transcriptomic profiles and a dis-
torted early human neurodevelopment remains challenging. This
is due to both the limited access to patients’ biomaterial and the
poor insights into the correlation of transcriptomic and metabo-
lomic data. Induced pluripotent stem cells (iPSCs) developed into a
powerful model to investigate early neurodevelopmental aberra-
tions in SCZ patients [19–22]. iPSCs can be derived by reprogram-
ming adult somatic cells from healthy individuals and patients with
SCZ [23]. Patient-specific iPSCs carrying the complex genetic
makeup of their donors can subsequently be differentiated into
appropriate neural models, as a source for transcriptome-wide
analysis and metabolic studies [24–26].
Our study aims at exploiting the iPSC technology to establish an

integrative network analysis of a presumed correlation between
transcriptomics and metabolomics, focusing on early neurodeve-
lopmental changes in SCZ. To this end, we differentiated iPSC lines
derived from SCZ patients and control individuals into cortical
neurons and examined six developmental stages along the
differentiation trajectory. We performed transcriptome-wide
analyses and targeted metabolomics and developed an in silico
approach to integrate gene expression data with metabolic
profiles in a network, offering a more holistic view of cellular
dysregulations. Our analysis revealed a distortion of the main γ-
aminobutyric acid (GABA) biosynthetic pathway, through the
downregulation of glutamate decarboxylation during the rosette
maturation stage. Moreover, we found the non-canonical GABA
biosynthetic route through putrescine upregulated in the SCZ
lines, presumably due to a compensatory mechanism. Our study
establishes a novel in silico approach of correlating metabolic and
transcriptomic data, unraveling an imbalance in cortical excita-
tory/inhibitory dynamics manifested during early neurodevelop-
mental stages in SCZ iPS cell lines.

MATERIALS AND METHODS
Cell culture
Eight human iPSC lines were employed in this study (Supplementary
Table S1). The cells were cultured using Corning® Matrigel® hESC-Qualified
Matrix (Corning, Cat. No. 354277) coated plates with the use of
StemMACS™ iPS Brew XF Medium (Miltenyi Biotec, Cat. No. 130-104-368)
or Essential 8™ medium (ThermoFisher Scientific, Cat. No. A157001), in
antibiotic-free conditions, and maintained at 37 °C, 5% CO2. iPSCs were
passaged every 3–5 days using either Accutase™ or 0.5 mM phosphate-
buffered saline (PBS)/EDTA. Briefly, when passaging the cells with
Accutase™, cells were firstly washed with DMEM, 1 ml of Accutase™ was
added per 6-well and the cells were incubated at 37 °C for 3–4min, to
ensure proper cell detachment. After the incubation an equal volume of
DMEM was added to the well and the cells were collected and centrifuged
at 1200 rpm for 3 min at 4 °C. For splitting with PBS/EDTA (ThermoFisher
Scientific, Cat. No. 15575020), cells were briefly washed with DMEM, 1ml
PBS/EDTA was added per 6-well and the cells were incubated until they
started to roughly dissociate. The EDTA was aspirated and the cells or the
cell pellet (when splitting using Accutase), were resuspended in fresh
medium supplemented with 10 μM ROCK inhibitor, Y-27632, (Miltenyi
Biotec, Cat. No. 130-106-538). The next day the medium was changed back
to iPSC medium without ROCK inhibitor. All cell lines were thoroughly
characterized for their pluripotency (Supplementary Fig. 1A, B) and were
tested frequently for mycoplasma contamination.

Cortical neuronal differentiation
The generation of cortical progenitors and neurons was performed as
described before [27, 28] with minor modifications. Briefly, iPSCs from five
6-wells were collected with Accutase™ and seeded onto an ES-Matrigel
coated 12-well. When 100% confluency was reached, StemMACS™ iPS
Brew XF Medium was replaced by neural induction medium (NIM; DMEM/
F12 Glutamax, Neurobasal, 100 mM L-Glutamine, 0.5 × N-2, 0.5 × B-
27+ Vitamin A, 50 μM Non-Essential Amino Acids, 50 μM 2-mercaptoetha-
nol, 2.5 μg/ml insulin, 1 μM dorsomorphine, 10 μM SB431542). The medium
was changed every day until the appearance of a tightly packed
neuroepithelial sheet (NES). NES was passaged with 0.5 mM EDTA in a
ratio of 1:2 or 1:3 to Corning® Matrigel® Growth Factor Reduced (GFR)

Basement Membrane Matrix (GFR-Matrigel; Corning, Cat. No. 354230)
coated plates. The next day, the medium was switched to neural
maintenance medium (NMM; DMEM/F12 Glutamax, Neurobasal, 100mM
L-Glutamine, 0.5 × N-2, 0.5 × B-27+ Vitamin A, 50 μM Non-Essential Amino
Acids, 50 μM 2-mercaptoethanol, 2.5 μg/ml insulin) and was changed every
other day. Upon the appearance of rosettes, 20 ng/ml FGF2 (Peprotech,
Cat. No. 100-18C) were added to the medium for four days. On the fourth
day of FGF2 treatment, the cells were split again with 0.5 mM EDTA in a
ratio of 1:2 to 1:3 onto GFR-Matrigel coated plates. The medium was
switched back to NMM and the cortical progenitors were maintained for
about 5–10 days until neurons accumulated outside of the rosettes. At this
point, cells were passaged with Accutase™, and 50,000 cells/cm² were
seeded on poly-L-ornithin/Laminin coated plates for further neuronal
differentiation. Alternatively, 2–4 million cells/ml were frozen with neural
freezing medium. Neurons differentiated further with half medium
changes every two to three days. Samples were harvested at day (d) 0,
7, 16, 27, 50, and 100.
For the DFMO treatment, adherent cell cultures were treated daily with

10 μM DFMO (difluoromethylornithine hydrochloride hydrate; Merck, Cat.
No. D193) starting from the first day of differentiation until the collection of
cellular pellet and supernatant for mass spectrometry analysis or fixation
for subsequent immunocytochemistry (ICC).

Immunocytochemistry
Cells were fixed in 4% paraformaldehyde (PFA; Sigma, Cat. No. 158127-
500G) in PBS solution for 20min at room temperature (RT). The non-
specific binding was blocked with incubation with blocking buffer (3%
bovine serum albumin (BSA), 0.2% Triton ×100 in PBS) for 1 h at RT. The
primary antibody (Ab) was diluted in the blocking buffer in the
recommended concentration and the Ab solution was applied overnight
at 4 °C. The following primary Abs were used in the following
concentrations: AFP 1:400 (Dako, Cat. No. A000829-2), GAD65/67 1:100
(Abcam, Cat. No. AB183999), GFAP 1:400 (Sigma, Cat. No. G3893-.2 ML),
Ki67-VioR667 1:200 (Miltenyi, Cat. No.130-120-422), MAP2 1:1,000 (Synap-
ticSystems, Cat. No.188006), NEUN 1:500 (Sigma, Cat. No. ABN78), OCT3/4
1:200 (Szabo-Scandic, Cat. No. GTX101497-100), PAX6 1:500 (Invitrogen,
Cat. No. 42-6600), S100b 1:750 (Abcam, Cat. No. ab52642), SMA 1:500
(Abcam, Cat. No. ab7817), SOX1 1:200 (R&D Systems, Cat. No. AF3369),
SOX2 1:500 (R&D Systems, Cat. No. MAB2018), TAU 1:200 (Cell Signaling
Technology, Cat. No. 4019), TUBB3 1:1,000 (BioLegend, Cat. No. 801202 and
Abcam, Cat.No. ab52623), vGLUT 1:100 (SynapticSystems, Cat. No. 135311).
The secondary Ab was diluted 1:500 in 1.5% BSA, 0,2% Triton ×100 in PBS,
and the solution was applied for 2 h at RT. The secondary Abs used in this
study were: donkey anti-rabbit Alexa FluorTM 488 (ThermoFisher Scientific,
Cat. No. A-21206), donkey anti-rabbit Alexa FluorTM 546 (ThermoFisher
Scientific, Cat. No. A-10040), donkey anti-mouse Alexa FluorTM 594
(ThermoFisher Scientific, Cat. No. A-21203), donkey anti-mouse Alexa
FluorTM 647 (ThermoFisher Scientific, Cat. No. A-31571), donkey anti-goat
Alexa FluorTM 594 (ThermoFisher Scientific, Cat. No. A-11058), goat anti-
chicken Alexa FluorTM 594 (ThermoFisher Scientific, Cat. No. A32759).
Finally, the nuclei were counterstained using 4’,6-diamidino-2-phenylin-
dole (DAPI; ThermoFisher Scientific, Cat. No. D21490) in PBS in 1:5000
dilution for 5 min at RT. The coverslips were mounted using Aqua-Poly/
Mount mounting medium (PolySciences, Cat. No. 18606-20).

Microscopy, image acquisition and image analysis
Fluorescent pictures were acquired with the Zeiss Axio Observer Z1
inverted fluorescent microscope and the Leica DMi8 inverted microscope.
The image acquisition was performed under the same exposure and laser
intensity settings for each set of analyses. For each sample, ten random
fields of view were acquired, with a minimum of 20 z-stacks collected per
field to ensure proper signal coverage. Further image processing was
carried out using the ImageJ software. For quantitative fluorescence
intensity analysis, maximum intensity projection was applied and the mean
fluorescence intensity values were calculated after background noise
subtraction. These values were then normalized to the DAPI+ nuclear area
to account for variations in cell density in the different fields of view.

Reverse transcription quantitative PCR
Total RNA was extracted from cells using TRI Reagent® (Merck, Cat. No.
T9424), according to the manufacturer’s instructions. Genomic DNA was
removed through treatment with DNase I (Sigma-Aldrich, Cat. No. AMPD1).
Subsequently, 1 μg of purified RNA was reverse transcribed into cDNA
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using the RevertAid RT Reverse Transcription Kit (ThermoFisher Scientific,
Cat. No. K1691), following the manufacturer’s guidelines. The expression
levels of specific target genes at the mRNA level were quantified via
reverse transcription quantitative PCR (RT-qPCR) using the 5× HOT FIREPol
EvaGreen qPCR Mix Plus (no ROX) (Solis BioDyne, Cat. No. 08-25-00001-10).
Samples were analyzed in technical triplicates to ensure data reliability.
Non-template controls (NTCs) were included for each primer pair in every
assay to monitor for reagent contamination and primer-dimer formation.
To confirm the absence of genomic DNA contamination, random RNA
samples were evaluated through gel electrophoresis. The RT-qPCR assays
were conducted on the CFX Connect Real-Time PCR Detection System (Bio-
Rad). Gene expression levels were normalized to the housekeeping gene
ACTB. Relative expression changes were calculated employing the ΔΔCt
method [29]. The list of the primers used for RT-qPCR assays is shown in
Table 1.

Bulk RNA sample collection, quality control, library
preparation, and bulk RNA sequencing
Total RNA was isolated from cells at six time points during the cortical
differentiation and was prepared for paired-end mRNA sequencing. RNA
extraction was performed using the TRI Reagent® (Merck, Cat. No. T9424)
according to the manufacturer’s guidelines. Genomic DNA digest was
performed with the use of the TURBO DNA-free™ Kit (ThermoFisher
Scientific, Cat. No. AM2238). For the library preparation, the Illumina TruSeq
RNA Library Prep Kit v2 was used (Illumina, Cat. No. RS-122-2001, RS-122-
2002). Quality, as well as concentration of RNA were assessed employing
the Agilent RNA 6000 Pico kit (Agilent, cat. no. 5067-1513), Nanodrop, the
NEBNext® Library Quant Kit for Illumina® (New England Biolabs, Cat. No.
E7630S) and the Qubit RNA Integrity and Quality (IQ) Assay Kit (Thermo-
Fisher Scientific, Cat. No. Q33222). All the kits were used according to the
manufacturer’s guidelines. Paired-end sequencing was performed with the
NextSeq 500/550 v2 Kit (150 cycles) (Illumina).

Transcriptomic data pre-processing, heatmap generation, and
differential gene expression analysis
Low-quality ends and adapter sequences were trimmed using the wrapper
Trim Galore!. Reads were mapped to the human reference genome
(GRCh38) using the open-source software STAR [30]. The raw counts were
generated with the Hypergeometric Optimization of Motif EnRichment
(HOMER) suite [31]. All the subsequent analysis was performed using R
[32]. Differential gene expression analysis was performed using the DESeq2
package [33]. Raw counts were normalized using the median of ratios
(variance stabilization transformation; vst) [34]. Heatmaps were generated
with the ClustVis [35] tool, using the z-score of the vst transcriptomic data
for every gene. Gene ontology (GO) enrichment analysis was performed
using the ShinyGO 0.76 online tool [36].
A likelihood ratio test (LRT) was used to identify the differentially

expressed genes (DEGs) of SCZ and control (CTRL) across the multiple time
points of neuronal differentiation [32]. The LRT compared the full model
containing the covariates ‘sex’, ‘batch’, ‘time point’, and ‘disease’ with a
model reducing the covariates ‘sex’, ‘batch’, and ‘time point’. Statistical
values were corrected for FDR using the Benjamini-Hochberg method.

Weighted gene correlation network analysis (WGCNA) and
module-traits relationships
Weighted Gene Correlation Network Analysis (WGCNA) allows the
generation of modules that include genes that are co-expressed in the
same manner. The vst counts were used to build a co-expression network
using the WGCNA [37] package in R [32]. The data were corrected for sex

and batch effects using the ComBat function that is implemented in the
sva package [38]. The topological overlap measure was calculated using
the adjacency matrix. The DynamicTree Cut algorithm, implemented in the
WGCNA package, was used to identify the different modules. The gray
module contains all the genes that were not assigned to any of the other
modules. The module eigengene were calculated. Pearson’s correlation
was used to compare modules to each other and to the traits SCZ and the
differentiation time points in the adjacency matrix. The top 25% of genes
with the highest module membership (MM) were identified as hub genes.

Gene ontology annotation
Functional enrichment analysis was performed with an input gene ID list
using the tool g:GOSt from the g:Profiler [39] R package. Statistical
significance was computed and the g:SCS-threshold was corrected at
p < 0.05.

Targeted metabolomics, sample collection, and data
processing
The cells were washed with 1ml sterile 1x PBS for 60 s. After the wash, the
cells were scraped using 1ml PBS and the suspension was collected and
centrifuged at 4000 rpm for 5min, at RT. The cell pellets were kept
constantly on dry ice and stored at −80 °C until further processing. The cell
supernatant was collected after a 24-h incubation, centrifuged at 4000 rpm
for 10min, immediately placed on dry ice and stored at −80 °C. Samples
were analyzed using the biocrates MxP® Quant 500 (biocrates life sciences
AG, Cat. No. 21094.12). Liquid chromatography-tandem mass spectrometry
(LC-MS/MS) was employed to analyze small molecules, including analyte
classes such as amino acids, biogenic amines, carboxylic acids, and amino
acid-related molecules [40]. Lipid species were measured using flow
injection analysis tandem mass spectrometry (FIA–MS/MS). Small mole-
cules were quantified with external 7-point calibrations and internal
standards and lipids were quantified by internal standards [41]. The raw
data were processed by applying a modified 80% rule to reduce the false
positive measurements [42]. The actual missing values, i.e., the values over
the level of detection (LOD) for one time point but not for another time
point, were uniformly at random imputed with a non-zero value between
LOD/2 and LOD. Missing values within one class (i.e., time points and
metabolites) were imputed using the arithmetic mean of the class. Batch
effects were corrected by centering the data within the groups (i.e., time
points) and batches. The performance of the normalization was assessed
by plotting the row standard deviations versus the row means and the
principal component analysis (PCA). In addition, variancePartition analysis
was performed to evaluate the contribution of each individual component
of the study design (i.e., time point, batch, and condition), to the measured
variation of each metabolite [43].
For metabolite extraction, cell pellets were resuspended in 500 μL ice-

cold methanol. Metabolites from supernatants (50 μL) were extracted using
450 μL 8:1 methanol:water. Fully 13C, 15N labeled amino acid standard
(Cambridge Isotope Laboratories, Cat. No. MSK-CAA-1) and 6D-gamma
hydroxybutyrate (Sigma-Aldrich, Cat. No. 615587) were spiked into samples
at the first step of the extraction. After simultaneous proteo-metabolome
liquid-liquid extraction [44], protein content was determined from
extracted cellular interphases using a Pierce Micro BCA Protein Assay Kit
(Thermo Fisher Scientific, Cat. No. 23235). Dried metabolite samples from
cell pellets were dissolved in 20 μL 0.1% formic acid (FA) or 50 μL 0.1% FA
for the analysis from the supernatant samples. The sample (1 μL) was
injected on an Atlantis Premier BEH C18 AX column (1.7 μm, 2.1 × 150mm,
Waters, 186009361) equilibrated at 40 °C using an Acquity Premier UPLC
system (Waters). A gradient was run at a flowrate of 0.4 mL/min with
mobile phase A (0.1% FA in water) and mobile phase B (0.1% FA in

Table 1. Primers used for qPCR.

Name Sequence Source

ACTB Fwd GCTACGAGCTGCCTGACG [64]

ACTB Rev GGCTGGAAGAGTGCCTCA [64]

GAD1 FWD GCGGACCCCAATACCACTAAC Harvard Primer bank

GAD1 REV CACAAGGCGACTCTTCTCTTC Harvard Primer bank

GAD2 FWD TTTTGGTCTTTCGGGTCGGAA Harvard Primer bank

GAD2 REV TTCTCGGCGTCTCCGTAGAG Harvard Primer bank
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acetonitrile) as follows: 1 min at 1% B, to 40% B in 1 min, 40% B to 99% B in
0.5 min, hold at 99% B for 1.1 min, 99% B to 1% B in 0.1 min followed
by 1.8 min of re-equilibration at 1% B. GABA and Glutamate (Glu) were
detected using a Xevo-TQ XS Mass spectrometer (Waters) equipped with
an electrospray ionization source running in positive mode. The transitions

104–>69 (endogenous GABA), 110–>73 (labeled GABA), 148–>102
(endogenous Glu) and 154–>107 (labeled Glu) were used for quantifica-
tion. The raw files were processed using MS Quan in waters connect
(Waters, V1.7.0.7). The data was further analyzed in R and normalized to the
protein content.
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Short time-series expression miner (STEM) analysis of
metabolomic and transcriptomic data
To analyze time-related cluster dynamics, the non-parametric clustering
algorithm of Short Time-series Expression Miner (STEM) was used [45].
STEM is an online tool that assigns genes or metabolites to significant
temporal expression profiles. The Maximum Number of Model Profiles and
the Maximum Unit Change in Model Profiles between time points were set
to 50 and 2, respectively. Data were normalized to d0. Integrated into the
STEM tool is a GO enrichment analysis. All annotations (Biological Process
(BP), Molecular Function (MF), and Cellular Component (CC)) were selected
and applied. Statistical significance was computed and FDR-corrected at
p < 0.05.

Network analysis
The network establishment was based on the gene expression and
metabolite level changes across the five successive time point comparisons,
along the cortical differentiation. The connectivity information for the initial
network was acquired from the publicly available recon3D stoichiometric
model data set (available at https://www.vmh.life/#downloadview, retrieved
in September 2020) [46]. Ultimately, 51 metabolites and 1135 genes were
matched with their corresponding IDs.
Briefly, the construction of the network was performed based on the

following steps. Initially, all the reactions associated with any of the target
genes were extracted. The metabolites associated with these reactions were
identified and the educt-product stoichiometry was applied for every
metabolite involved in the network. Subsequently, the reaction data were
filtered to extract and proceed only with the genes and metabolites
measured in our dataset. The network was further enriched with protein-
protein interaction information, derived using the signor database (available
at https://signor.uniroma2.it/downloads.php, retrieved in September 2020)
[47]. Finally, the network vertices were constructed after examining the
unique metabolites and genes, existing in the edge dataset and were further
enriched with vertex attributes, such as the vertex type (i.e., gene/
metabolite). Log2 fold changes (log2FC) were converted to a color gradient
scale, ranging from blue (indicating a downregulation compared to the
previous time point) to red (indicating upregulation).
Extraction of subnetworks from the parental network, was based on

assigning membership to the pathways, as defined by the KEGG pathway
database, and selecting the subnetwork that included the highest number
of differentially expressed genes and metabolites, with the closest degree
distribution of the vertices. Pie charts with five equal fractions were used in
order to visualize the fold changes occurring across a single metabolite or
gene, corresponding to the transitions between two succeeding time
points. Additionally, ellipses were used for visualizing the metabolites,
while the genes were visualized with circles.
Metabolites that were needed as substantial interconnections between

measured metabolites, but were not measured in our dataset, were
visualized as small dots. The position for every node was provided as
coordinates on a 2D plane. Network visualizations were performed using
the R igraph package [48].

RESULTS
In vitro cortical differentiation of SCZ and control iPSC lines
and sampling
The reprogramming of adult somatic cells from affected patients
into iPSCs allows various approaches for disease modeling [23, 49].

In this study, we subjected iPSCs to a cortical differentiation
protocol previously reported by Shi et al. [28] that yields mature
cortical neurons in a stepwise manner and particularly reflects
very early stages of neurodevelopment (Fig. 1A). We extracted
samples from six time points along the neuronal differentiation. At
iPSC stage (day 0; d0), cells expressed pluripotency markers,
exhibited iPSC characteristic morphology and had the ability to
differentiate into the three germinal layers (Fig. 1A, B, Supple-
mentary Fig. 1). Subsequently, the cells were directed to form a
tightly packed neuroepithelial sheet (NES)-like structure through
the exposure to a neural induction medium (NIM), containing
small molecules that modulate the WNT and TGFβ pathway. The
neural progenitor cells (NPCs) present at that stage expressed
SOX1 and SOX2 (d7) and subsequently traversed through a rosette
formation stage (d12). A short treatment with FGF2 yielded in the
expansion of the NPC population, expressing the proliferation
marker Ki67 and the neural stem cell marker PAX6 (Fig. 1B). Finally,
TUBB3+ neurons appeared and started migrating out of the
rosettes, observed at around d27, and further differentiated into
young and mature neurons (Fig. 1B–D). During the later
differentiation time points (d50–100), GFAP+/S100β+ astrocytes
appeared in the adherent cultures (Fig. 1B, D). Interestingly, the
neurons observed between d50–100 were positive for both the
glutamatergic marker vesicular glutamate transporter 1 (vGLUT1),
as well as the glutamate decarboxylase 65/67 (GAD65/67) (Fig. 1E),
correlating with the recently published finding that certain classes
of neurons co-express glutamate and GABA machinery [50].

Transcriptomic analysis indicates extracellular matrix
component abnormalities in SCZ samples
In order to investigate the potential dysregulations in SCZ during
cortical differentiation at a transcriptional level, we performed
bulk RNA sequencing (RNA-seq) of SCZ and CTRL samples derived
from distinct time points along the differentiation process
(Supplementary Table S2). PCA revealed distinct clustering of all
lines at the iPSC stage, followed by a clustering along a
developmental trajectory for the subsequent developmental
differentiation time points (d0 to d100; Fig. 2A). The largest
component of variability (principal component 1, PC1) represents
neurogenesis that effectively distinguished the six developmental
time points. PC2 (13.3% of explained variance) further separated
samples in the iPSC stage from the NPCs and the neural rosettes
samples in d7, d16, and d27, and the neuronal cell samples of d50
and d100.
To analyze the genes that are differentially expressed between

the CTRL and SCZ lines, DEG analysis was performed revealing 28
genes, all of which were significantly upregulated in SCZ over CTRL
(Table 2). Interestingly, trajectory analysis showed the most
pronounced DEGs at d16, where 61.2% of the DEGs were
upregulated in SCZ as compared to the CTRL group (Fig. 2B).
Subsequent analysis of the DEGs revealed that the majority of the
upregulated SCZ genes (Fig. 2C) are related to GO terms associated
with nervous system development (Fig. 2D) and extracellular matrix

Fig. 1 In vitro cortical differentiation of SCZ and CTRL iPSC lines. A Schematic presentation of the cortical differentiation protocol (top
panel), originally developed by Shi et al. [27] and representative brightfield images (bottom panel) corresponding to the key developmental
time points during the cortical differentiation process. Scalebars, 100 μm. B Representative immunocytochemistry (ICC) stainings of cell stage-
specific markers at day (d)0, 7, 16, 27, 50 and 100 (as depicted in A). Cells at d0 express the pluripotency markers SOX2 (red) and OCT4 (green).
Cells on d7 are expressing the neural stem cell markers SOX1 (red) and SOX2 (green). On d16, characteristic rosette structures are formed and
the neural progenitors express the proliferation marker KI67 (red) and the neural stem cell marker PAX6 (green). At d27 PAX6+ (green) neural
stem cells are still present together with TUBB3+ (red) young neurons. At d50 GFAP+ astrocytes (red) appear together with TUBB3+ (green)
neurons. Finally, at d100 mature MAP2+ (red)/ vGLUT1+ (green) neurons are present. Scalebars, 100 µm. C ICC analysis showing mature TAU+
(red)/NeuN+ (green) neurons present in culture in the later developmental stages (d100) of neuronal differentiation. Nuclei are
counterstained with DAPI. Scalebar, 50 µm. D ICC analysis of differentiated cultures at d75 showing S100β+ (green) astrocytes together with
MAP2+ (red) mature neurons. Nuclei are counterstained with DAPI. Scalebar, 100 µm. E Double-positive GAD65/67 (magenta) and vGLUT1
(green) mature MAP2+ (red) neurons are present in d100 neuronal cultures. Scalebar, 20 µm. iPSC m. induced pluripotent stem cell medium,
NIM neural induction medium, NMM neural maturation medium, bFGF basic fibroblast growth factor, d day in vitro.
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(ECM) components (Fig. 2E, F), including genes of the collagen
superfamily, as well as fibronectin 1 (FN1), and genes related to DNA-
binding-transcription activator activity (Fig. 2C, F). Taken together,
transcriptomic analysis indicates upregulated gene transcription
associated, among others, with ECM components during SCZ iPSC
neural differentiation at all the developmental time points
investigated, with a distinct peak at the rosette stage (d16).

WGCNA reveals gene modules correlated to the SCZ trait at
rosette stage
Next, we performed a weighted correlation network analysis
(WGCNA) on the bulk transcriptomic data of the two conditions
to gain more insights into the biological networks underlying the
pathological developmental mechanisms. This analysis identified
eleven modules in total, including the gray module (Fig. 3A, B).
When the module eigengenes (ME) were compared to the disease
trait, the red module was found to be correlated to the SCZ trait
(p-value= 0.04) (Fig. 3A). Comparison of the six subsequent
differentiation time points revealed that the red module is

correlated to the rosette stages (d16–27) (Fig. 3B). Dendrogram
plots further supported the correlation of the MEred module with
the SCZ trait and the d27 timepoint (Fig. 3C). The comparison of the
red module membership with the SCZ trait (p-value= 1.7e–05;
Fig. 3D) and the d27 (p-value= 4.1e–06; Fig. 3E) revealed a
correlation of 0.3 and 0.32, respectively. Further analysis of the
MEred module with all the time points of SCZ vs CTRL supported a
significant correlation of the module with the disease trait (p-
value= 0.0402; Fig. 3F) and the d27 rosette stage (p-value= 0.0353;
Fig. 3G). Taken together, the WGCNA analysis revealed that the red
module hub genes are significantly correlated to the SCZ trait, and
to d27, which corresponds to the developmental stage where
young neurons are formed and are migrating out of the neural
rosettes. Intrigued by the correlation of the redmodule with the SCZ
trait, we sought to determine the GO terms of the red module
genes. The red module gene subset was correlated to ECM-
associated terms (Fig. 3H), including collagen-associated functions
(Fig. 3I). By that, complementary bioinformatics approaches
consistently reveal a group of potent gene candidates that are

Fig. 2 Gene expression analysis of SCZ and CTRL lines during in vitro cortical differentiation. A Plot of principal components PC1 and PC2,
obtained from the PCA of transcriptomic data from all SCZ and CTRL lines of six time points during cortical differentiation. Each dot represents
a cell line, colored by the respective time point. B Trajectory analysis of all differentially expressed genes (DEGs) from d0 to 100. Black line,
CTRL group; red line, SCZ group. Data are represented as arithmetic mean ± SEM. C Heatmap visualization showing the most significant SCZ
DEGs. Rows: DEGs; columns: CTRL (CTRL 1 and CTRL 2) and schizophrenia (SCZ 1 and SCZ 2) samples in d0, 7, 16, 27, 50, and 100. GO analysis
highlighting the biological processes (D), molecular functions (E) and cellular components (F) of the DEGs. GO terms were generated with the
ShinyGO 0.80 graphical gene-set enrichment tool [36]. d day in vitro, CTRL control, SCZ schizophrenia.
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upregulated in the SCZ cell lines and are strongly related with ECM
processes, at the late rosette developmental time point (d27).

Integrative transcriptomic-metabolic in silico analysis allows
the generation of system-wide networks
To assess a presumed SCZ-dependent metabolic aberration, we
subjected the samples from the cortical differentiation (Fig. 1A) to a
quantitative targeted metabolomics analysis. For that, we harvested
both the cell supernatants and the cell pellets and analyzed them
employing the MxP® Quant 500 kit (Table S3). This targeted
metabolomics approach allows the identification and quantification
of 630 metabolites, belonging to 26 analyte classes, including lipids
and several small molecules (Table S4). To assess the metabolomic
dynamics during the cortical differentiation, a short time-series
expression miner (STEM) pattern temporal analysis was performed
[45]. STEM analysis revealed three significant profiles, #8, #24, and
#44, with p-value= 8.9E–4; 4.1E–4, and 9.9E–5, respectively (Fig. 4).
These profiles revealed a total of 25 metabolites that were enriched
in the SCZ samples. The group of metabolites assigned to profile #8
were two amino acids (AA), asparagine (Asn) and cysteine (Cys), one
AA-related metabolite, 5-amino valeric acid (5-AVA), three lyso-
phosphatidylcholines (Lyso-PC), Lyso-PC a C16:0, Lyso-PC a C16:1,
and Lyso-PC a C18:1, and two phosphatidylcholines (PC), PC ae
C36:0, and PC ae C38:5. Profile #8 showed a steadily decreasing
trajectory during the neuronal differentiation. Metabolites assigned
to profiles #24 and #44 were all PCs with zero to three double
bonds in their fatty acid (FA) chain and one ceramide (Cer), Cer
(d18:1/18:0). Metabolites assigned to profile #24 increased from d16

to d27 and decreased again at d50. Profile #44 was enriched with
metabolite levels increasing from d0 to d7 and stayed rela-
tively stable at later time points (d27 to 100). Taken together, the
STEM pattern analysis of metabolites during cortical differentiation
revealed a significant enrichment of decreasing trajectories (profile
#8) in the CTRL and SCZ groups. Moreover, the analysis revealed
1.64-fold more PCs in the SCZ profiles compared to the CTRL ones.
Next, we aimed to obtain an integrative view of the SCZ

pathophysiology by transcriptomic and metabolomic analyses and
employed Recon3D [46], a metabolic network model for
reconstructing networks based on the combination of transcrip-
tomic and metabolomic data. By that, we could investigate the
global molecular changes in the different developmental stages of
the cortical differentiation, based on the determined alterations in
gene expression levels and metabolic abundance. To reconstruct
the network, we started with the comparison of DEGs and
metabolites between each two subsequent time points of
neuronal differentiation yielding five comparisons, as depicted in
Table 3 and Fig. 5A. We further compared the identified genes and
metabolites to the human metabolome database (HMDB), an
electronic database from where we retrieved information about
metabolites and genes related to the human metabolism. These
results are shown in Table 3 in the row marked as “identified in
HMBD”. Next, we reconstructed an initial network where the
edges are based on the openly available recon3D stochiometric
dataset. 51 metabolites and 1135 genes were retrieved with
corresponding IDs. Initially, all the reactions associated with the
target genes were extracted. The metabolites associated with

Table 2. Differentially expressed genes in SCZ.

Gene Log2FC padj. Function description

BCO1 1.61 3.32E–03 Beta-carotene oxygenase 1

BMP5 1.49 3.70E–02 Bone morphogenetic protein 5

CA10 1.33 2.53E–02 Carbonic anhydrase 10

CACHD1 0.99 2.11E–02 Cache domain containing 1

CCDC80 1.39 4.93E–02 Coiled-coil domain containing 80

CEMIP 1.29 2.71E–02 Cell migration-inducing hyaluronan-binding protein

CFH 1.95 2.40E–03 Complement factor H

COL12A1 1.34 4.80E–02 Collagen type XII alpha 1 chain

COL3A1 2.27 1.46E–03 Collagen type III alpha 1 chain

EDIL3 1.35 3.70E–02 EGF like repeats and discoidin domains 3

EDNRA 1.67 1.12E–02 Endothelin receptor type A

FIBIN 1.43 4.93E–02 Fin bud initiation factor homolog

FN1 1.41 1.84E–02 Fibronectin 1

FOXC1 1.88 1.56E–03 Forkhead box C1

GCNT1 1.68 1.96E–04 Glucosaminyl (N-acetyl) transferase 1, core 2

GDF10 1.52 7.71E–03 Growth differentiation factor 10

LINC01239 1.27 2.53E–02 Long intergenic non-protein coding RNA 1239

MITF 1.27 1.47E–02 Melanocyte inducing transcription factor

NPR3 1.59 2.71E–02 Natriuretic peptide receptor 3

RASSF9 1.86 2.05E–04 Ras association domain family member 9

SEMA3C 1.27 3.72E–02 Semaphorin 3C

SIX1 1.54 1.47E–02 SIX homeobox 1

SLCO1A2 1.16 7.71E–03 Solute carrier organic anion transporter family member 1A2

TBX18 1.78 3.32E–03 T-box 18

TFAP2A 1.58 4.93E–02 Transcription factor AP-2 alpha

TFAP2C 1.58 1.56E–03 Transcription factor AP-2 gamma

TM4SF1 2.14 1.71E–04 Transmembrane 4 L six family member 1

ZIC1 1.24 2.71E–02 Zic family member 1
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the reactions were extracted and the stoichiometry matrix data
were applied to add the educt-product information. The
reactions that were not associated with genes or metabolites
measured in our dataset were removed from the network
reconstruction. Finally, the network was enriched with informa-
tion about protein-protein interactions, obtained from the
Signor dataset, resulting in a parental network including 5798
nodes and 42,614 edges (Fig. 5A). Ultimately, here we combined
metabolomic with gene expression data generating a parental
integrative network that allows the study of global molecular
changes that occur during the different in vitro developmental
stages of cortical neurogenesis.

Integrative transcriptomic-metabolomic network reveals an
altered GABA biosynthetic pathway in SCZ
We sought to further examine the combined transcriptional/
metabolic pathways, by extracting sub-networks, based on the

most converging candidate metabolites and genes in the same
pathway, as defined by the HMDB database. Network analysis of
the closest connected metabolites and genes pointed towards the
polyamine biosynthetic pathway, including dysregulations of
putrescine-associated pathways, with distortions of aldehyde
dehydrogenase 1 family member A1 (ALDH1A1), as well as the
metabolite GABA, in SCZ lines at time points d16–27 (Fig. 5B).
GABA is the main inhibitory neurotransmitter in the adult central
nervous system (CNS) and its main biosynthetic route occurs
through the decarboxylation of glutamate via GAD65/67 [51].
However, the ornithine/putrescine pathway is known to be a non-
canonical route for GABA biosynthesis [52]. Along this pathway,
ornithine gets decarboxylated to putrescine by ornithine dec-
arboxylase (ODC1; Fig. 5B). Subsequently, putrescine is converted
into GABA either by oxidation through AOC2/DAO2, with
4-Aminobutanal as an intermediate, or via an acetyltransferase
SAT1- and ALDH1A1-dependent pathway.

Fig. 3 Results of weighted gene correlation network analysis (WGCNA) and module-trait relationships. Module eigengene (ME)
comparison of each module with the disease trait (A) and the six subsequent time points (B), based on Pearson’s correlation. Columns
correspond to the different traits; rows correspond to the ME of each module. Upper value in each cell corresponds to Pearson’s correlation;
bottom value, p-value; right panel, color scale according to correlation. C Hierarchical clustering of ME and the SCZ trait reveals higher
correlation of the red cluster with SCZ and d27. Scatter plots depicting the gene significance-module membership (MM) correlation for the
SCZ trait (D) and for d27 (E). Box and whiskers plots showing the relationship between the red module and the disease trait (p-value= 0.0402;
F) and the timepoint d27 (p-value= 0.0353; G). GO analysis highlighting the biological processes (H) and cellular components (I) of the red
module genes. GO terms were generated with the ShinyGO 0.80 graphical gene-set enrichment tool [36]. d day in vitro, CTRL control, SCZ
schizophrenia, ME module eigengene. *p < 0.05.
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Thus, we explored more comprehensively a putative dysregula-
tion of GABA in SCZ samples by targeted LC-MS analyses (Fig. 6).
In addition, to investigate the role of putrescine in SCZ GABA
biosynthesis we performed a cellular treatment using difluor-
omethylornithine (DFMO). DFMO is an ODC1 inhibitor that
interferes with putrescine biosynthesis [53]. We observed only
slightly reduced GABA levels in the SCZ lines compared to the
controls. However, DFMO treatment resulted in significantly
decreased GABA levels in the SCZ samples in both the cell pellet
(Fig. 6A; p-value= 0.0363) and the supernatant (Fig. 6B;
p-value= 0.0494) while the control lines were not affected. This
result indicates a stronger reliance of the SCZ lines on the non-
canonical putrescine pathway for their GABA biosynthesis. To
further investigate this hypothesis, we also analyzed the levels of
glutamate, as it is the canonical substrate for GABA production.
Indeed, we found glutamate strongly reduced in CTRL lines as
compared to SCZ samples, independent from the DFMO treat-
ment (Fig. 6C). Further analysis of the canonical GABA biosynthetic
pathway demonstrates that both GAD1 and GAD2 mRNA levels are
significantly decreased in SCZ lines (Fig. 6D–I), in both d27-mature
rosette stage, as well as in d100 neurons. Next, we aimed to
further confirm this observation at protein level and performed
ICC stainings on d27 samples with both CTRL and SCZ cellular
cultures. Indeed, we found GAD65/67 significantly decreased in
SCZ samples as compared to the controls (Fig. 6J, K). From these
data, we conclude that SCZ cell lines exhibit a distortion of the
GAD1/2-dependent GABA production in early neurodevelopmen-
tal stages, i.e., neural rosette stage, that correlates to neural tube
formation in vivo.

DISCUSSION
Despite collective efforts in the field, pathological mechanisms
underlying SCZ pathology remain elusive. The prevalent model
depicts SCZ as a neurodevelopmental disorder, involving
fundamental neurobiological alterations occurring prior to the

manifestations of symptoms, through the interplay of genetic
predispositions and environmental factors [2]. At a molecular
level, the SCZ pathology is known to be associated with a
distorted response to neurotransmitters, including glutamate
and dopamine [3]. However, aberrant glutamatergic and
dopaminergic neurotransmission alone fails to capture the
complexity of the disease’s etiology [4]. Recently, metabolomic
studies have proven invaluable in biomarker discovery and in
elucidating complex molecular mechanisms. In fact, the meta-
bolome reflects more complex genetic and environmental
interactions [54]. For instance, studies in the cancer biology
field have successfully employed metabolomic approaches
for studying ECM abnormalities [55, 56]. Our integrative
transcriptomics-metabolomics study employing SCZ patient-
derived iPSCs reveals a GABA distortion in the early rosette
maturation stage. GABA is the main inhibitory neurotransmitter,
primarily synthesized by decarboxylation of glutamate by
GAD56/67 and released by GABAergic interneurons in the adult
CNS. Here, we validated our finding by demonstrating a
significant reduction of GAD both at RNA and protein levels in
SCZ samples. We additionally report a significant reduction of
GABA levels in both cellular pellets and supernatants of SCZ
samples, indicating deficient GABA biosynthesis in cells derived
from SCZ patients. These observations are in line with studies in
mice, where GAD1 neuronal knock-down elicited emotional
neuropsychiatric-like abnormalities, as well as in post-mortem
brain studies from childhood-onset SCZ patients [57, 58]. More-
over, it has been reported that GABA is involved in neural stem/
progenitor cell proliferation and differentiation and that it might
even exhibit an excitatory function during early development
[59–61]. However, GABA dysregulation has not been demon-
strated at the early rosette-stage timepoint in human SCZ iPSC-
derived cells thus far.
Moreover, our study demonstrates further reduction of GABA

levels in DMFO-treated cultures of SCZ iPSC-derived neural cells.
Since DMFO inhibits ornithine decarboxylase and by that impacts
putrescine biosynthesis, we hypothesize that SCZ cultures partly
compensate for the loss of glutamate-based GABA biosynthesis
through induction of the non-canonical putrescine pathway. This
hypothesis is supported by our integrative network analyses,
which underscore SCZ-dependent dysregulations of various
enzymes and metabolites of the putrescine/GABA sub-network.
We conclude from our data that distorted inhibitory/excitatory
imbalances during neurodevelopment of SCZ cells result in partial
disruption of the inhibitory circuit formation that is insufficiently
compensated at later stages of CNS maturation. In fact, post-
mortem studies also indicate an imbalance in the excitatory/
inhibitory circuits in SCZ patients [62]. Our findings support the
hypothesis that specific defects in the development and function
of interneuron progenitors may play a key role in the etiology of
psychiatric disorders including SCZ, autism, and intellectual
disabilities [62], and assigns GABA a key function in SCZ in this
respect.

Table 3. Total number of differentially expressed genes and
metabolites between two subsequent time points along the cortical
differentiation.

d0 vs
d7

d7 vs
d16

d16 vs
d27

d27 vs
d50

d50 vs
d100

Genes

(padj < 0.1) 5330 2068 571 446 275

Idenitified in
HMBD

585 515 82 98 47

Metabolites

(padj < 0.1) 70 49 33 46 70

Identified in
HMBD

24 14 9 6 30

Fig. 4 Metabolomic temporal dynamics of SCZ lines during in vitro cortical differentiation. Short time-series expression miner (STEM) plots
of significantly enriched temporal profiles obtained from the pre-processed and filtered final metabolomic data set, containing 112 metabolites.
All data were normalized against d0. P-value, FDR adjusted at p < 0.05; y-axis normalized concentration; data are represented as arithmetic
mean ± SEM per metabolite from d0–100. d day in vitro, 5-AVA 5-aminovaleric acid, Asn asparagine, Cys cysteine, Lyso-PC lyso-phosphatidylcholine,
PC phosphatidylcholine, Cer ceramide.
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Finally, we established a new combinatorial transcriptomic-
metabolomic network analysis workflow, in order to investigate
pathophysiological mechanisms in an integrative, more universal
manner. Recently, Wang et al. applied a similar metabolomic-
transcriptomic integrative network approach, using data obtained
from patient-derived blood samples, in order to identify SCZ
biomarkers and to develop a more precise disease diagnosis [63].
In our study, we established a parental integrative network,
employing in vitro-derived metabolomic and transcriptomic data.
Subsequently, we further elaborated on biologically relevant sub-
networks. These approaches can be further used for modeling a
vast variety of diseases, including neuropsychiatric disorders.

In conclusion, here we employed an iPSC-based neuronal
differentiationmodel for studying early neurodevelopmental defects
in SCZ pathology. Assessment of the metabolome at distinct stages
revealed a distortion in the GABA biosynthetic pathways in SCZ lines,
a dysregulation observed from the early rosette formation and
maturation stages. Therefore, our study elucidates the involvement
of GABA dysregulations and compensatorymechanisms during early
in vitro neurodevelopment, implying an early imbalance in
excitatory/inhibitory circuits. Ultimately, our findings together with
the in silico analytical pipeline will contribute to deepen our
understanding of SCZ and other psychiatric disorders and potentially
build a basis for the development of new therapeutic interventions.

Fig. 5 Transcriptomic-metabolomic integrative network reconstruction across neuronal differentiation reveals an interesting subnet-
work of polyamine metabolism. A Schematic flowchart of the transcriptomic-metabolomic integrative network construction. Transcriptomic
and metabolomic data were obtained from the six consecutive time points (see Fig. 1). Five comparisons between every two subsequent time
points were performed and the statistical p-values and fold change (FC) were calculated. The pathways associated with the measured genes
were extracted. The associated metabolites were identified and the product/educt information for each reaction was added. Only the
pathways related to the measured genes and metabolites were kept for the network reconstruction. Finally, the parental network was
enriched with protein-protein information, extracted from the Signor database and the subnetworks of interest were extracted for further
analysis. B Polyamine metabolism subnetwork. The global changes in metabolite abundance and gene expression levels, across five
consecutive time point comparisons are shown for the subnetwork of the polyamine metabolism. Network nodes depict differentially
expressed genes (circles) and metabolites (ellipses), as well as not measured metabolites (small gray dots). Network edges depict individual
reactions and the associated genes. Log2FC are converted to a color gradient scale, ranging from blue (indicating downregulation to the
previous time point) to red (indicating upregulation). The genes and metabolites with no significant change within a certain comparison are
depicted in gray. Starting in the upper pie section, the comparison between iPSCs and d7 is depicted, continuing in a clockwise direction for
all subsequent comparisons. The genes and metabolites marked with an asterisk are altered in the SCZ condition. FC fold change, lfc log fold
change, LRT likelihood ratio test, d day in vitro.
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Fig. 6 Altered GABA biosynthetic pathways in SCZ samples. Targeted mass spectrometry analysis of GABA levels in cellular pellets (A) and
supernatants (B), as well as glutamate (C) from d27 samples, with and without DFMO treatment. Errors bars represent mean ± S.E.M. GAD1 RNA
levels from the bulk RNA-seq data (D) and qRT-PCR analyses at d27 (E) and d100 (F). GAD2 RNA levels from the bulk RNA-seq data (G) and qRT-
PCR analyses at d27 (H) and d100 (I). Errors bars represent mean ± S.D. J Representative ICC staining of SCZ and CTRL lines at d27 for the stem
cell marker SOX2 (green) and glutamate decarboxylase 65/67 (GAD65/67, magenta). Scalebars, 50 μm. K Intensity quantification of GAD65/67.
The intensity measurements were normalized against the DAPI+/nuclear area. conc. concentration, n.s. not significant, d day in vitro, CTRL
control, SCZ schizophrenia, S.E.M standard error, S.D. standard deviation. *p < 0.05, **p < 0.005, ***p < 0.0001.
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