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Network modeling links kidney
developmental programs and the cancer
type-specificity of VHL mutations

Check for updates

Xiaobao Dong 1,4 , Donglei Zhang2,4, Xian Zhang2, Yun Liu3 & Yuanyuan Liu1

Elucidating the molecular dependencies behind the cancer-type specificity of driver mutations may
reveal new therapeutic opportunities. We hypothesized that developmental programs would impact
the transduction of oncogenic signaling activated by a driver mutation and shape its cancer-type
specificity. Therefore,wedesigned acomputational analysis frameworkbycombining single-cell gene
expression profiles during fetal organ development, latent factor discovery, and information theory-
based differential network analysis to systematically identify transcription factors that selectively
respond to driver mutations under the influence of organ-specific developmental programs. After
applying this approach to VHL mutations, which are highly specific to clear cell renal cell carcinoma
(ccRCC), we revealed important regulators downstream of VHL mutations in ccRCC and used their
activities to cluster patients with ccRCC into three subtypes. This classification revealed a more
significant difference in prognosis than the previousmRNAprofile-basedmethod andwas validated in
an independent cohort. Moreover, we found that EP300, a key epigenetic factor maintaining the
regulatory network of the subtype with the worst prognosis, can be targeted by a small inhibitor,
suggesting a potential treatment option for a subset of patients with ccRCC. This work demonstrated
an intimate relationship between organ development and oncogenesis from the perspective of
systems biology, and the method can be generalized to study the influence of other biological
processes on cancer driver mutations.

The cancer-type specificity of driver mutations is a prevalent phenomenon
observed in cancergenomic studies1–3. These cancer-type-specificmutations
have high incidence rates in some cancers and are relatively rare in others,
such as VHL mutations in ccRCC, BRAF mutations in cutaneous mela-
noma, and NPM1mutations in myeloid leukemia. The presence of cancer-
type specificity suggests that cells with distinct developmental origins differ
in their responses to the insult of the same driver mutations; thus, the
developmental programs that eachcell inherits from its progenitor cellsmay
be important in interpreting the biological effects of driver mutations4,5.

Recently, several studies have confirmed the important impact of
developmental programs in shaping the specificity of cancer driver muta-
tions. For example, Baggiolini et al. reported that the developmental pro-
grams regulated by the chromatin-modifying gene ATAD2 and the
transcription factor (TF) SOX10 are responsible for the activation of cell
proliferation-associated pathways by BRAFV600E, which explains why the

BRAF V600E mutation specifically transforms normal cells only in mela-
nocyte progenitor cells6. Patel et al. used genetic screening techniques to
identify PAX8, a transcription factor associated with kidney development,
whichmediates oncogenic signaling downstream of VHL in ccRCC7.Weiss
et al. showed that transcriptional programs involved in limb development
are required for the CRKL mutation-driven growth of acral melanoma8.
These discoveries not only deepen our understanding of themechanisms of
cancer development but also provide biomarkers and therapeutic targets for
cancer prevention and treatment. However, as demonstrated in these stu-
dies, to study the cancer-type specificity of driver mutations, researchers
need to establish cellular or animal models harboring the same genetic
variants at different developmental stages or in different types of tissues and
conduct in-depth comparative studies to distinguish the effects of the same
driver events in multiple cellular contexts. These complex experimental
approaches tend to be expensive and time-consuming.
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Rapidly accumulating single-cell RNA sequencing data and analytical
approaches in network biology provide new opportunities for systematic
analysis of the relationships between driver mutations and developmental
programs. For example, single-cell atlases of mouse and human organ
development have been published9,10. The single-cell RNA sequencing
(scRNA-seq) data generated by these studies provide unprecedented reso-
lution and coverage for studying transcriptional programs during organo-
genesis, which involve more dynamic changes in cell differentiation
compared with data from adult tissues that are dominated by differentiated
cells. Moiso et al. used single-cell transcriptome data from normal mouse
organogenesis to construct an artificial neural network model that can
classify the origins of cancers with extreme accuracy11. Their work also
demonstrated that transcriptional programs during organogenesis are
equally conserved even in cells that have undergone malignant transfor-
mation. By statistically factorizing these single-cell transcriptomic data12–14,
it will be possible to systematically identify developmentally relevant tran-
scriptional programs and thus study their activity in different types of
cancers. This factorization-based technique has been successfully used to
delineate the mutational process in cancer15, to study the factors that
influence the responses of patients with cancer to immunotherapy16 and to
analyze themetastatic process of cancer17. As another example, the network
biology approach provides a flexible and powerful analytical tool for inte-
grating transcriptional programs and genetic variation data by abstracting
the complex functional relationships between genes into interconnected
nodes18. This approach has been used to rank driver mutations19, interpret
genetic risk loci of cancer20, localize biological pathways perturbed by cancer
mutations21, and predict patient response to anticancer therapy22. Differ-
ential network analysis techniques have also been developed to specifically
study changes in gene interactions in cells under different conditions23.
Therefore, a network biology approach may be a suitable framework for
systematically unraveling important downstream regulators in carcino-
genesis by associating transcriptional programs extracted from organ
development data with the specificity of cancer driver mutations.

In this study, we developed a computational pipeline based on
network biology and scRNA-seq data to analyze the links between
developmental programs and cancer-type-specific driver mutations.
We studied the impact of transcriptional programs during kidney
development on the oncogenic effects of renal cancer-specific VHL
mutations. We show that our approach can identify both previously
known and novel important developmental regulators that influence the
effects of VHL mutations. We utilized these regulators to create a more
accurate prognostic risk stratification model for patients with cancer
and to uncover new potential therapeutic targets for this highly
aggressive subtype.

Results
Overview of the methods
Currently, studies of organ development and cancer genomics are con-
ducted relatively independently of each other, and direct comparative
analysis of data generated in the two fields presents significant challenges
due to the large differences in underlying experimental assumptions and
subjects. Inspired by the work of Tamayo et al.24 and Stein-O’Brien et al.13,
we thought that it would be useful to decompose transcriptomic changes
during development into variations in the activities of a much smaller
number of biologically significant latent factors, which in turn would allow
us to transfer the data between the two fields by analyzing only the changes
in the activity of these factors in cancer cells. Themain steps of our approach
are shown in Fig. 1 (see “Methods” for details).

First, for a cancer-type-specific driver gene, we selected a protein‒
protein interaction (PPI) subnetwork centered on it to represent its func-
tional context (Fig. 1A). Previous studies have shown that functional genes
relevant to cancer biology are mainly genes that are one or two steps away
from canonical cancer genes25. In our study we selected the driver gene and
the genes that are within two steps away of it in the network as the driver
gene-centered subnetwork. By selecting this subnetwork, we were able to

focus our analysis on the biological pathways most relevant to the driver
gene to be studied26.

Second, we used non-negative matrix factorization (NMF)27 from
scRNA-seq data of fetal organ development to extract low-dimensional
latent factors that explain changes in the gene expression profiles of sub-
network members during development (Fig. 1B). These factors, which are
much smaller in number than the number of genes in the subnetwork,
represent the major transcriptional programs associated with driver genes
during development (also referred to as developmental programs in this
work). For each driver gene and corresponding cancer type, we selected the
organ of cancer origin for analysis and focused on scRNA-seq data from
cells of origin28 of this cancer type (see “Methods” formore details).We then
projected the pancancer transcriptome data of TCGA into the low-
dimensional space constituted by these transcriptional programs to obtain
the activity profile of each factor in each cancer type. This allowed us to
identify cancer-type-specific programs associated with the specifically
mutated driver gene for subsequent analysis.

Finally, we updated the weights of the PPI network using the identified
developmental program and analyzed the differences in communication
efficiency between the cancer-type-specific driver gene and downstream
TFs before and after the update. Here, we adopted the personalized
PageRank algorithm29 to update the network weights and search
information30 to measure the efficiency of communication between genes.
Inferring the functional relevance of genes through network proximity has
been shown to be a very effective strategy31,32. We postulated that genes that
are neighboring in the PPI network with genes that are highly weighted in
the developmental program are also functionally related with the program.
The personalized PageRank algorithm used highly weighted genes in a
developmental program as seeds to perform random walk on the PPI net-
work and assign higher weights to genes neighboring these seeds. Search
information (S) is an information entropy-based model that quantifies the
amount of information (in bits) required for a signal to reach the target node
after it is emitted from the source node when it travels along the shortest
path from the source to the target node. The lower the search information
between the network nodes is, the easier the signaling transmission is. The
difference in search information (ΔS) between weighted and unweighted
PPI networks was used to detect the impact of the developmental program.
By comparing the observedΔSwith those fromweighted networks updated
by random seeds, we calculated theP value of the change in communication
efficiency and obtained significant TFs. For convenience, we refer to these
genes as developmental program-sensitive TFs (dsTFs) in this manuscript.
These dsTFs are important transcriptional regulator candidates down-
stream of cancer-type-specific driver mutations and provide the basis for
interpreting the oncogenic effects of driver mutations.

A ccRCC-specific developmental program surrounding VHL
To illustrate the validity of our approach, we applied ourmethod to ccRCC-
specific VHL mutations, which can be found in 90% of ccRCCs33. The
inactivation of VHL,which is a key protein in the cellular sensing of oxygen,
can cause the accumulation of the hypoxia-inducible factors HIF1α and
HIF2α, which activate the expression of downstream cell proliferation-
related genes34. However, though activation of the hypoxia pathway is
widespread in many cancers, why VHL mutations are only specifically
found in ccRCC is not yet fully understood. By studying this specific
mutation type, we hope that our method can identify some previously
known regulators associated with it to demonstrate the validity of our
method and also aim to systematically identify more new regulators and
gain new insights into the treatment of ccRCC.

Weused scRNA-seq data generated from the fetal organ developmental
atlas9 to analyze changes in the expression profiles of 768 genes that are
members of theVHL-centered subnetwork during fetal kidney development.
These expression data originated from28 fetuses ranging from72 to 129days
in postconceptual age. Using the results of principal component analysis
(PCA) as a guide (Fig. 2A) and after balancing the tradeoff between the
stability and accuracy of theNMF results (Fig. 2B),we ultimately extracted 11
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developmental programs (P1–P11) from ~90,000 kidney cells (see Methods
fordetails). Somerepresentativehighlyweightedgenes ineachdevelopmental
program are shown in Fig. 2C (Supplementary Table 1). These genes can be
interpreted as having relatively high expression levels in the corresponding
programs. Gene Ontology enrichment analysis (Supplementary Fig. 1)
revealed that some of these genes are involved in cell differentiation and
apoptosis (P6, P7, and P10), while others are involved in biological pathways
that play important roles in cell proliferation (P2 and P4).

To identify ccRCC-specific programs, we analyzed program activities
in different cancer types. Batch effect corrected RNA-seq data from 6142
The Cancer Genome Atlas (TCGA) patient samples across 19 cancer
types35,36, including data from ccRCC and two other kidney cancer types
(papillary renal carcinoma and chromophobe renal carcinoma) that are not
typically associated with VHLmutations, were obtained33. Notably, ccRCC,
papillary renal carcinoma and chromophobe renal carcinoma were named
KIRC, KIRP, and KICH, respectively, in TCGA. We projected gene
expression profiles from patients with cancer into a low-dimensional space

consisting of 11 developmental programs and created a pancancer land-
scape of program activities (Fig. 2D). For each of the three kidney cancer
types, corresponding samples could be clustered together, a trend that was
not observed in the other types of cancer. More importantly, samples from
the three kidney cancer types were clearly separated from each other. This
pattern of separation of distinct cancer subtypes with the same organ was
further validated in lung cancers (Supplementary Fig. 2), suggesting that the
developmental programs extracted from single-cell data sensitively reflected
the subtle differences between cancers from the same organ.Many evidence
have shown that the cells of origin of different cancer types within the same
organ are different28. It may be the biological basis of this result. In addition,
we also observed that thePRADandTHCAsamples showa clear separation
compared to the other cancer types. According to the heatmap, this
separation shown by the two cancer types can be mainly attributed to the
higher activity levels of the program P1 and P4 in them. These develop-
mental programsmay be shared by kidney and the organs of origin of these
two cancer types.

Postconceptual age: 72-129 days
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Fig. 1 | Overview of network analysis workflow. A Driver gene-centered subnet-
work and fetal scRNA-seq data were integrated to extract developmental programs
surrounding cancer-specific driver genes. NMF is non-negativematrix factorization.
B The activities of developmental programs in 19 cancer types were calculated via
projection analysis of TCGA RNA-seq data. A specifically activated gene (P9) was
identified, and its top-weighted genes were used as seeds to update the PPI network.
C The network communication efficiencies between driver genes and downstream
TFs were measured by search information (S) along the shortest paths. For each

driver gene–TF pair, the difference in S before (S) and (SW) after considering
developmental programs was calculated, and its statistical significance was deter-
mined by an empirical test. The observed difference between Sw and S were marked
with orange arrow. This value is compared with the random distribution
ofSW � S(gray), in which SW is generated from a network with shuffled gene weight
assignment. The images of the fetus and kidney in (A) were downloaded fromServier
Medical Art (https://smart.servier.com/) that is licensed under CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/deed.en).
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By further examining individual developmental programs, we
found that the activity of developmental program P9 was significantly
greater in ccRCC than in other cancer types and that it also had the
highest relative activity in ccRCC among all 11 developmental programs
(Fig. 2E, F and Supplementary Fig. 3). In addition, its activation was
significantly greater in VHL-mutated ccRCC samples than in non-

VHL-mutated ccRCC samples (Supplementary Fig. 3). Additional
analysis of gene expression profiles from patient-derived tumor
xenografts37 validated our observations (Supplementary Fig. 4). These
results suggested that P9 is closely related to the selectivity of VHL
mutations in ccRCC; therefore, in subsequent analyses, we focused on
the relationship between P9 and VHL mutations.
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By utilizing the cell-type markers provided by the PanglaoDB
database38 (Supplementary Table 2), we found that several highly weighted
genes in P9 are expressed in stem/progenitor cells, such as pluripotent stem
cells (RFC3, CENPF, ATAD5, SALL4, CHEK2 and DNA2), embryonic
stem cells (SALL4, PCGF2, KIT and LEF1) and kidney progenitor cells
(WT1, MAP1B and PCGF2). Consistent with this observation, the analysis
results of CytoTRACE39, a single-cell developmental potential analysis tool,
also showed that kidney cells with greater P9 activity had greater differ-
entiation potential (Fig. 2G). KEGG-based pathway analysis40 (Supple-
mentary Table 3) revealed that P9-related genes are involved mainly in
ribosomes (P = 1.61 × 10−14), pathways involved in cancer (P = 2.65 × 10−5)
and the Wnt signaling pathway (P = 8.96 × 10−5). After querying the
eukaryoteproteinorigindatabaseProteinHistorian41with the top100highly
weightedgenes inP9,we found that these geneswere significantly older than
the average age of all the genes in the human genome (Mann‒Whitney U
test, P = 2.19 × 10−10), with a significant proportion having appeared at the
timeof eukaryotest (Fig. 2H).Although cancer-type specificity reflects a trait
of multicellular organisms, our data suggest that these genes inherited from
the ancient single-cell era may still play an important role in this
phenomenon.

Network communication analysis identifies perturbated tran-
scription factors downstream of VHL
To identify transcriptional regulators downstream of the VHL signaling
pathway, which are affected by the P9 developmental program, we updated
the weights of the PPI network with the P9 program and calculated the
changes in the efficiency of communication between VHL and all TFs.
Twenty-nine TFs, including the subunit (ARNT) of the VHL mutation-
activated hypoxia-inducible factor and WT1, an important regulator of
kidney development, exhibited significant changes (adjustedP < 0.1, Fig. 3A
and Supplementary Table 4). In addition, all 29 of these dsTFs had negative
ΔS; in other words, the P9 programs improved the communication effi-
ciencies for all of them in ourmodel. For the other 1011 nonsignificant TFs,
both positive and negative values were observed.

However, we also noted that our approachmissedmultiple TFs known
to be associated with VHL specificity, such as EPAS1 and PAX8. Therefore,
these 29 dsTFs were further expanded using GeneMANIA42, a network
integration algorithm for predicting genes with functions similar to those of
the input gene list. Finally, we identified 49 dsTFs that may be related to
VHL mutations (Fig. 3B and Supplementary Table 5). We successfully
retrievedPAX8,HIF1A (HIF1α), EPAS1(HIF2α) andBHLHE41among the
20 expanded TFs (Supplementary Table 6). Their importance for effects of
VHL mutations and the pathophysiology of ccRCC has been well docu-
mented. HIF1α and HIF2α are the core effectors of the VHL mutation-
induced hypoxia response33. And PAX8 is a recently identified lineage TF
that directly affects the target selection of HIFα7. The difference of
BHLHE41 in population has been associated with variations in the risk of
renal cell carcinoma, and BHLHE41 genetic variants are selected during
hypoxic adaptation43,44. Although the links of other genes, such as PAX2, to
VHL are unclear, they are closely connected to known TFs in functional
networks, as are their important roles in kidney development and cancer45,
supporting their function in VHL-mutated ccRCC. To pursue the con-
nection between these 20 expanded TFs and the program P9, we compared

themwith the top 100 genes with the highest weights in P9, and found that
MEF2C was shared. In addition, the expanded dsTF MAML1 is homo-
logous toMAML2, the secondhighestweighted gene in the P9, and both are
involved in the NOTCH signaling pathway. These known TFs combined
with other new TFs identified here implicate an uncharacterized regulatory
network downstream of VHL in ccRCC.

Based on the above results, we analyzed the regulatory network
composed of these dsTFs using gene regulatory relationships collected
from the literature by NetAct46. This network included 672 genes and
929 interactions involving 38 dsTFs (including 22 dsTFs directly
derived from network communication analysis and 16 expanded TFs,
Supplementary Table 7) and their targets (Supplementary Fig. 5A).
Enrichment analysis with hallmark gene sets47 showed that genes
commonly regulated by at least two dsTFs were involved in apoptosis,
hypoxia and TNF-alpha signaling (Fig. 3C), which was consistent with
previously reported effects of VHL mutations in ccRCC. According to
the KEGG pathway analysis, many of these targets were members of
pathways involved in cancer, including the renal cell carcinoma path-
way. Eight genes were regulated by five or more dsTFs, including JUN,
EP300, CCND1, AR, VEGFA, TP53, CREBBP, and BCL2. Among these
factors, the selective expression of CCND1 in ccRCChas been suggested
to be responsible for the cancer-type specificity of VHL mutations48.
There was also mutual regulation between these dsTFs. We observed
that 63% (24/38) of the dsTFs could directly regulate other dsTFs
(Supplementary Fig. 5B). These genes form a core regulatory network
centered on EGR, and the three main branches of the network corre-
spond to TFs in the NOTCH signaling pathway, represented by
MAML1 and RBPJ; TFs in the HIF signaling pathway, represented by
HIF1A, EPAS1, and ARNT; and TFs in the renal development pathway,
represented by PAX2, PAX8, and WT1.

To determine whether the states of dsTFs were able to discriminate
between ccRCC and other types of cancer, we conducted a single-sample
gene set analysis49 using the expression levels of dsTF target genes as a
proxy to infer the activation of dsTF activities in clinical cancer samples.
Only 17 dsTFs having at least 10 tagets were considered for stability of the
result. PCA analysis showed that these dsTF activity profiles were clearly
different between ccRCC, normal kidney cells, and other cancers
(Fig. 3E), and there was clear separation between ccRCC, normal kidney
cells, and other cancers (i.e., breast and colon cancers). Moreover, this
separation did not exist between other cancers, suggesting that the state of
this regulatory network was specific to ccRCC. We analyzed the con-
tribution of individual dsTFs to this discrepancy revealed by PCAanalysis
(Fig. 3F and Supplementary Fig. 6), and we found that although both are
members of the HIF1A family, EPAS1 activity was stronger in ccRCC,
and conversely, HIF1A activity was stronger in other types of cancer,
supporting that HIF1A is a kidney cancer suppressor gene50. We also
found that PAX8 activity was attenuated in ccRCC cells compared with
normal kidney cells, implying that the functional state of PAX8 was not
the same even though this lineage-expressed TF can promote the acti-
vation of some key downstream targets of VHL mutations and promote
ccRCC according to previous work. These results provide insight for
further study and understanding of the biological effects of VHL in
ccRCC and illustrate the value of our method.

Fig. 2 | Identification of the VHL mutation-associated kidney developmental
program.A,BThe optimal number (K) of developmental programswas determined
through PCA analysis and stability analysis. The first 15 principal components
extracted from gene weight matrix fromNMF are shown. The dashed linemarks the
position corresponding to the optimal K. C Heatmap of gene weights in each pro-
gram. Representative genes for each program are labeled. D Heatmap of the
developmental program activities in more than 6000 cancer samples. E The dis-
tribution of P9 activity in 19 cancer types. F The distribution of activities of 11
programs in 19 patients with ccRCC (named KIRC in TCGA). G The correlation
between P9 activity and the differential potential estimated by CytoTRACE using
fetal scRNA-seq data. H The evolutionary age distribution of the top 100 weighted

genes in P9. The significant difference between input genes and background genes in
each group were marked with asterisk (Fisher’s exact test). *P < 0.05, ***P < 0.001.
HNSC head and neck cancer, THCA thyroid cancer, LUAD lung adenocarcinoma,
LUSC lung squamous cell carcinoma, ESCA esophageal carcinoma, STAD stomach
adenocarcinoma, CHOLcholangiocarcinoma, LIHC liver hepatocellular carcinoma,
COAD colon adenocarcinoma, READ rectum adenocarcinoma, KIRC kidney renal
clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, KICH kidney
chromophobe, BLCA bladder urothelial carcinoma, PRAD prostate adenocarci-
noma, BRCA breast invasive carcinoma, CESC cervical squamous cell carcinoma
and endocervical adenocarcinoma, UCEC uterine corpus endometrial carcinoma,
UCS uterine carcinosarcoma.
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Regulator activity clustering reveals three ccRCC subtypes with
different prognoses
We further investigated the clinical significance of the dsTFs by analyzing
their activity and prognosis in patients with ccRCC in TCGA (KIRC).
Using the activities of the 17 dsTFs as features, a sample–sample similarity
network was constructed for ccRCC. After applying the network clus-
tering algorithm51, we obtained three highly stable clusters (named C0,
C1, and C2; Fig. 4A and Supplementary Fig. 7). A heatmap of regulatory
activities showed that genes were enriched in each cluster (Fig. 4B). The
samples in C0 had relatively higher activity of the dsTFs RBPJL, GATA4,
HIF1A, WT1, PAX5, and LEF1. The activated dsTFs in C1 included
SNAI2, MEF2C, EGR1, RBPJ, ARNT, CREB1, SRF, and EPAS1. More-
over, the activities of three dsTFs, PAX8, RARB, andAHR, were higher in
C2 than in others. Survival analysis showed that patients in these three
clusters had significantly different prognoses (Fig. 4C, P < 2 × 10−8, log-
rank test). Specifically, patients in the C0 group had the worst prognosis,
those in the C1 group had the best prognosis, and those in the C2 group
had a prognosis between those of the other two groups. These differences
remained significant even after accounting for patient sex, age, and cancer
stage (P < 0.01, Cox proportional hazard test, Fig. 4D). It is worth noting
that our classification results were different from those of the TCGA
ccRCC subtypes established using the whole mRNA transcriptome and
more significantly different for patient survival (P < 3 × 10−6 in TCGA).
The relatively even distribution of VHL mutations in the three clusters
suggested that the states of these dsTFs were also influenced by other
factors.

Genetically, C0 exhibited an increased frequency of BAP1 mutations
(Fig. 4E and Supplementary Fig. 8), which has been linked to poor prognosis
in patients with ccRCC. However, these mutations were only observed in
17% of patients in the C0 group. For most of these patients, the prognosis
could not be attributed to a single genetic mutation. To verify the validity of
our classification on other data, we trained a support vector machine
(SVM)-based multiclass classifier using dsTF activity as features and three
clusters as labels. This model achieved 97% accuracy in fivefold cross-
validation species (Fig. 4E). We applied the SVMmodel to an independent
dataset of 106 patients with ccRCC from Asia (Tokyo-ccRCC). The results
showed that there was still a significant difference in prognosis among the
three predictive groups of patients, and the trends were fully consistent with
our TCGA data (Fig. 4G).

We analyzed the contributions of different dsTFs for classification
using the SHapley Additive exPlanations (SHAP) algorithm52. The SHAP
algorithm provides an additive explanation for the contributions of indi-
vidual features to a machine learning prediction result via a game theory
approach. For samples predicted to be in the C0 group, the three most
important features were PAX5, EGR1, and RBPJL activity (Supplementary
Fig. 9A). For samples predicted to be in the C1 group, the most important
features were MEF2C, RBPJL and EGR1 activity (Supplementary Fig. 9B).
For samples in the C2 group, themost important features were the activities
of MEF2C, PAX8 and PAX5 (Supplementary Fig. 9C). An example of the
prediction results from the Tokyo-ccRCC data is shown in Fig. 4C. The
predicted outcome group for this patient (ccRCC-16) was C1. The lower
activity of PAX8 andRBPJ, as well as the higher activity ofARNT, positively
contributed to the prediction results, even though the lower activity levels of
other dsTFs, such as SRF, led the SVM model to consider this sample
somewhat different from the C0 samples in the training set. Therefore, the
type of each sample is the result of the combinatorial regulation of multiple
dsTFs rather than a single gene. This finding also illustrates the importance
of systematically identifying downstream regulated genes to accurately
understand the role of VHL in ccRCC.

Epigenetic regulatorEP300asa therapeutic target for theccRCC
subtype with the worst prognosis
The core regulatory network composed of key transcription factors is not
only involved inmaintaining aberrant tumor cell proliferation butmay also
be a potential therapeutic target. According to our findings, the C0 group

had the worst prognosis; therefore, we focused our analysis and explored
strategies that could disable the C0 group-associated regulatory network.
Transcription factors generally bind poorly to small-molecule compounds,
and there are fewer drugs that directly target them. However, they are often
dependent on specific epigenetic factors for their function53. Therefore, we
analyzed the epigenetic factors that functionally interacted with the six
dsTFs (i.e., RBPJL, GATA4, HIF1A,WT1, PAX5, and LEF1) that exhibited
relatively high activity in the C0 group. Network analysis revealed that the
histone acetyltransferase EP300 had the highest degree in the PPI subnet-
work comprising these dsTFs (Fig. 5A) and that five of these six dsTFs
interacted with it directly, suggesting that EP300 may be critical for main-
taining the C0-associated core regulatory network.

To test our hypothesis from a functional point of view, we analyzed the
genetic screening data of 16 ccRCC cell lines in the DepMap database54. Of
these 16 cell lines, 15 were predicted to be part of the C0 group by our SVM
model. Taking KMRC-20 as an example, we can see that PAX5, GATA4,
WT1, and HIF1A among the 6 dsTFs associated with C0 all contributed
significantly to the prediction results (Fig. 5B). In line with our expectation,
we observed that 13 of these 15 C0 cell lines showed some degree of growth
inhibition after EP300 knockdown, and three of them showed strong
inhibition, with Chronos scores55 of less than−0.5 (Fig. 5C). Furthermore,
we analyzed the inhibitory effect of A-485, a small-molecule inhibitor of
EP300, on ccRCC cell lines. A-485 is a potent, highly selective, and drug-like
inhibitor that can bind to the catalytic active site of p300 (the protein
produced by EP300)56. Of the 13 cell lines with drug responses and data, 12
were predicted to be in the C0 group (Fig. 5D). The growth of eight of these
cell lineswas inhibited by the addition ofA-485,five ofwhich (VMRC-RCZ,
KMRC-20, A498, and UO31) exhibited strong inhibition (log2(FC) <− 1).
Taken together, our analysis of the dsTF regulatory network suggested that
the epigenetic regulator EP300 may be a potential therapeutic target
for ccRCC.

Discussion
The cancer-type specificity exhibited by driver mutations has been found to
be one of the most obvious patterns in accumulated cancer genomics data.
To address this problem, researchers need to compare the functions of
mutations amongmany different cancer types, improving the time and cost
of experimental studies. As a result, the underlying molecular mechanisms
are still unclear in most cases. Harnessing the big data in developmental
biology offered by single-cell sequencing technology, we designed a com-
putational biology approach based on network analysis to overcome this
challenge and study the impact of kidney developmental programs on
ccRCC-specific VHL mutations. We successfully recapitulated many
important transcriptional regulators downstream of VHL mutations and
discovered anewtherapeutic target basedon the core regulatorynetworkwe
identified, demonstrating the usefulness of our approach.

The innovativeness of our approach can be summarized in the fol-
lowing aspects. First, we linked normal developmental programs to
abnormal tumor states by latent variable analysis. While single-cell data
offer unprecedented resolution and sample size compared to bulk data, they
are also noisier and more unstable. By compressing the transcriptional
profiles of single cells into low-dimensional latent variables, our approach
improves the stability and interpretability of results obtained when ana-
lyzing transcriptional patterns across platforms. Second, we designed an
information theory-based network modeling approach to study the impact
of developmental programs on the communication of cancer driver genes.
Because only the developmental program and the topology of themolecular
network need to be considered in each analysis, our model is simpler and
avoids the interference of the presence of other driver mutations in our
analysis. Finally, this approach provides a framework for analyzing the
interactions between cellular context and driver mutations, and with some
minor modifications of the data types, the method could also be used to
study other factors (such as wound healing, chronic inflammation or aging)
thatmay influence the effects of drivermutations only if suitable scRNA-seq
data are available.
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Fig. 4 | Cluster analysis of ccRCC based on dsTF activity. A Sample–sample
similarity network and network clustering results. Each dot represents a patient
sample of ccRCC, and the edges indicate similarities in their dsTF activities
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The PPI network we used in this study is an integrated functional
network that encompasses as much knowledge as possible about interac-
tions between genes without considering their biological context. Never-
theless, we actually filtered the genes in the subnetwork for functional
relevance in subsequent analyses, including filtering out genes with low
variability using organ-specific scRNA-seq data, assigning weights to genes
by NMF analysis, and excluding components that are weakly related to the
target cancer type by comparing the activities of the developmental program
across 19 cancer types. Therefore contextual information about different
organs and cancer types is captured in our results.

We showed that the kidney developmental program P9 was selectively
activated in ccRCC. Unexpectedly, a significant fraction of the genes with

high weights in P9 originated early in eukaryotic evolution. Enrichment
analysis of gene functions revealed that themost abundant genes in P9were
those encoding ribosomal proteins. Traditionally, the composition of
ribosomes, which act as protein translation machines, has been thought to
be highly similar in cells of all tissues. However, recent studies have shown
that the situation ismuchmore complicated.The specificproteins thatmake
up the ribosome may differ considerably in different tissues and develop-
mental stages, which is also known as ribosome heterogeneity57,58. The
preferential translation of mRNAs by ribosomes with different
compositions59 may lead to different translation efficiencies of the same
mRNAs in different cells, resulting in cell-type-specific posttranslational
regulatory mechanisms. In this way, these ancient genes may also make
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important contributions to the cancer specificity of mutations. Although
our data do not provide any direct evidence for this possibility, they do
provide a potential explanation for the presence ofmultiple ribosomal genes
in P9 and warrant further analysis in future work.

By interacting with DNA, transcription factors directly control the
expression of target genes in the nucleus and are therefore key factors in
bridging upstream cellular signaling and downstream cellular responses60.
With this in mind, we focused on the identification of developmental
programs impacting TFs downstream of VHLmutations. The 49 dsTFs we
identified included multiple well-established VHL-dependent factors, such
as HIF1A, EPAS1 and PAX8. Inevitably, some of these findings will be
determined to be false-positive predictions, but many genes (including
PAX2, WT1, RARB, BHLHE41, and others) regulate kidney development
or participate in the HIF pathway, which supports a role in VHLmutation-
related ccRCC. In addition, some previously known VHL-dependent fac-
tors, such as EZH1, ZHX2, and ZNF395, were still missed by our
methods61–63. EZH1 is not a TF and has not been considered in network
communication analysis. We did not observe significant changes in the ΔS
of ZHX2 or ZNF395.

Based on the identified dsTFs and the resulting gene regulatory net-
work, we developed a prognostic classification model for patients with
ccRCC and suggested that EP300 may be critical for maintaining dsTF
activity in patients with a poor prognosis. The EP300-encoded protein p300
generally forms a complexwith CREB-binding protein (CBP) that activates
gene transcription by working in concert with other transcription factors64.
p300/CBP can interact with HIFα to promote its activation of downstream
target genes, and some pioneering works have reported the effectiveness of
p300/CBP inhibitors (including CSC646, HBS1, and CPTH2) for the
treatment of ccRCC65. However, the poor potency and selectivity of these
p300/CBP inhibitors have prevented their clinical application. In fact, we
found that CSC464 did not have a strong inhibitory effect on ccRCC cells in
the C0 group. However, when we analyzed the experimental data of A-485,
which has good selectivity and potency, we observed growth inhibition in
several ccRCC cell lines. Combining dsTF activity analysis and next-
generation p300/CBP inhibitors56,66 may help to further develop more sui-
table therapeutic regimens for patients with ccRCC.

Our approach rests on several basic assumptions; although this makes
our analysis more efficient, some key factors have been ignored that may
affect cancer specificity. First, we only considered the possible effects of
normal developmental programsondrivermutations.However, as noted in
some studies, the activated developmental programs in tumor cells and the
programs during normal development may be very different67. Second, we
ignored interactions betweenmutations.When a driver genemutated, there
may already have existed one or more driver mutations on the genome of
tumor cells, and these early mutations may play important roles in shaping
the fitness landscape of later mutations. Fortunately, at least for VHL, it is
generally considered to be the first mutated driver gene in ccRCC68; there-
fore, the impact of this issue on our conclusions may not be obvious. Third,
search information-based analysis of network communication assumes that
oncogene signals are propagated along the shortest paths in the network, an
assumption that may oversimplify the signaling process in the cell.

Finally, the pipeline presented in the manuscript can be further
improved. For example, more powerful latent variable analysis models than
NMF have been proposed69,70 that can improve the accuracy and inter-
pretability of the results. Gene interaction network reconstruction algo-
rithms based on single-cell multiomics data are also developing rapidly71,72.
The gene networks derived from these methods have better cell specificity
and can be used as an alternative to the PPI network used here for more
accurate analysis.

In conclusion, our approach provides a flexible solution for ana-
lyzing interactions between mutations and cellular contexts. With the
accumulation of single-cell, molecular interaction, and cancer genomic
data, we hope that these findings will play more roles in resolving the
biological effects of cancer driver mutations and can complement genetic
screening approaches.

Methods
Single-cell RNA-seq datasets and preprocessing
Human fetal kidney scRNA-seq data (raw gene count matrix) and asso-
ciated cell annotations were downloaded from https://descartes.
brotmanbaty.org/9. The cells of origin of ccRCC have been identified as
from proximal tubule73,74 that is developed from fetal metanephric cells75.
For these reasons, only expression data from cells annotated with “Kidney-
Metanephric cells” and protein-coding genes were retained. We used the
Bioconductor package Seurat76 for data quality control and normalization.
Specifically, we filtered cells that had feature counts greater than 7500 or less
than 200. There were no cells with mitochondrial counts >5%. Gene
expression data were normalized using “LogNormalize” method, and the
scale factor was set to 10,000. The top 5000 highly variable genes were
identified through the Seurat function FindVariableFeatures (selection.-
method = “vst”). Finally, we obtained a scRNA-seq gene expression matrix
of 5000 genes and 89,714 metanephric cells for further analysis.

Protein‒protein interaction network
The functional protein‒protein interaction (PPI) network was downloaded
fromSTRING77 database v11.5 (https://string-db.org/).We considered only
interactions with high confidence (interaction scores greater than 750).
Then, the largest connected component of the PPI networkwas retained for
analysis, resulting in a network with 15,193 genes and 210,014 interactions
between them. To determine the functional context surrounding VHL, we
further selected VHL and its first and secondary network neighbors in the
PPI network according toQing et al.’s work25 showing that functional genes
biologically relevant to cancer are predominantly distributed within
this range.

We also tested the inclusion of more distant genes in the VHL sub-
network, but this resulted in an over-inflated subnetwork that was not
specific to VHL. For example, if genes three steps away from VHL were
included in the subnetwork, the size of the subnetwork would includemore
than 10,000 genes. The distribution of distances between genes and VHL is
also shown inSupplementaryFig. 10.Wenamedthe selected genes and their
interactions the VHL-centered subnetwork, which included 2785 genes.

Extraction of developmental programs
We used the expression data of 768 genes that were shared between the
scRNA-seq gene expression matrix and VHL-centered network to extract
developmental programs. To do this, the single-cell gene expression profiles
of the 768 genes were decomposed with non-negative matrix factorization
(NMF) algorithm27 provided by Scikit-learn78 package. To minimize the
influence of batch effects and differences in gene expression profiling
platforms, we transformed the expression levels of genes into ranks in a cell
using the SciPy79 function scipy.stats.rankdata (method = ‘min’) before
NMF decomposition. For the gene expression profile matrix X 2 Rn × p,
where n is the number of cells and p is the number of genes, the NMF
algorithm decomposes the gene into two non-negative matricesW 2 Rn× k

and H 2 Rk × p:

X � WH ð1Þ

Suppose n > k, p > k.W is the transformed gene expression data. And
H is the component matrix, representing the weight of each gene in each
component. The k components are also called developmental programs in
this manuscript. We determined the value of k using the method of Kotliar
et al14. Briefly, we first estimated an appropriate range of k according to the
proportion of variance explained by components via principal component
analysis (PCA). We observed that when k≥ 11, the ability of more com-
ponents to explain variation no longer changes significantly (Fig. 2A),
suggesting that gene expression matrix can be effectively represented in a
space consisting of about 11 independent components. Second, we mea-
sured the quality of the matrix decomposition using Frobenius norm error
(kX �WHk). The lower theFrobeniusnormerror, the smaller the loss after
matrix decomposition. We observed that Frobenius norm error is
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decreasing as k increases. However, larger k may also lead to overfitting of
the results. Hence, we further calculated the silhouette score to test the
stability of the solution. For each k, we repeated the NMF analysis 10 times
with different random seeds. The component matrices (H) obtained from
these 10 matrix decompositions were then clustered with K-means clus-
tering (K ¼ k), and the quality of the clustering was measured with a sil-
houette score. The closer the silhouette score is to 1 the more reliable and
stable the NMF results are. As illustrated in Fig. 2B, the silhouette score
decreases rapidly when k is greater than 11. According to these results, we
chose k = 11.

Functional annotation of developmental programs
For each program, the top 50 genes with the highest weights were sub-
mitted to Enrichr80 webserver for functional enrichment analysis. We
used gene sets of KEGG pathways, GO terms and PanglaoDB. A false
discovery rate (FDR)-adjusted P < 0.05 was considered to indicate sig-
nificant enrichment.

Calculation of the activities of developmental programs in TCGA
samples
We downloaded batch effect-corrected RNA-seq data36. The normalized
TCGA tumor gene expression data in FPKM format were used for analysis.
The data included 6142 gene expression profiles across 19 cancer types.
After picking genes that overlapped with the 768 genes used in the devel-
opmental programs, we transformed the expression levels of genes into
ranks in a tumor sample. The TCGA gene expression data were projected
into the space of developmental programs through the Moore–Penrose
pseudoinverse24:

Ŵ ¼ YH�1 ð2Þ

whereY is the rank-normalized TCGA tumor gene expressionmatrix,H�1

is the pseudoinverse of H, which was extracted from scRNA-seq data, and
Ŵ is the matrix, in which the values represent the activities of the
developmental programs in TCGA samples.

We also downloaded the VHLmutation states of these TCGA samples
from cBioPortal81. A sample was deemed VHL mutated when at least one
putative driver mutation (according to the annotations provided by cBio-
Portal) of VHL was identified.

Search information
The search information30 (S) is a measurement that quantifies the infor-
mation one needs to go from source node s to target node t along possible
shortest paths in a network. In an unweighted network can be expressed as:

Sðs ! tÞ ¼ �log2
XN

i

1
ks

Y

j

1
kj � 1

 !

ð3Þ

whereN is thenumber of shortest paths from s to t, i is an index for a specific
shortest path,ks is thedegreeof s, j is the indexof eachnode (other than s and
t) along path i, and kj is the degree of node j. Search information is an
entropy-based method for measuring the uncertainty for s to t. The unit is
bits. A high S means that more information is needed if one wants to
efficiently send a specific signal from s to t. In a weighted network, the
possibility of a signal transmitting from one node j to another specific
neighbor node jþ 1 can be replaced by the proportion of the edgeweight in
the sumof theweights of all possible edges in the next step from j, indicating
that an edge with a higher weight is more likely to be chosen as an exit link.
One can obtain weighted network-based search information Sw.

To model the influence of a developmental program on oncogenic
signal transduction, we tested the difference in search information from
driver genes (such as VHL) to downstream transcription factors (TFs) with
or without imposing the developmental program on the network. Specifi-
cally,wefirst computed the search information S using the driver gene as the

source node and a specific TF as the target node in the unweighted PPI
network; then, we computed a Sw on the developmental program-weighted
PPI network. Finally, we compared the difference between Sw and S:

ΔS ¼ SW � S ð4Þ

If ΔS < 0, means developmental program improves the communica-
tion efficiency between the driver gene and the specific downstream TF.
Note that thePPI networkusedhere includes all edgeswithhigh confidence.

To weight PPI network with a developmental program, we performed
personalizedPageRank29 analysiswith the top100 genes and theirweights in
the developmental program as the “personalization vector”. As a result, all
genes were assigned scores reflecting their relative activity under the influ-
ence of the developmental program.We also tested personalized PageRank
analysis using top 50, 150, or 200 genes. The results were very similar with
that of using top 100 genes (Supplementary Fig. 11). We assumed that a
more activated gene more readily received signals from other genes. Thus,
we used the PageRank score of node jþ 1 as the edge weight in computing
Sw. Personalized PageRank analysis was performed with pagerank function
in NetworkX82.

To control the false-positive rate, we also randomly selected a subset of
genesof the same sizeas in the above “personalizationvector” to assign them
gene weights in the developmental program and computed ΔSr . This pro-
cedure was repeated 1000 times. Then, an empirical P value of ΔS was
calculated through fitting a normal distribution of ΔSr with the R package
fitdistrplus.

The names of 1639 TFs were downloaded from http://humantfs.ccbr.
utoronto.ca/83. A total of 1040 TFs that could be found in the PPI network
were used for analysis. For a specific developmental program and a driver
gene, TFs were analyzed one by one. Each TF was set as the target node in
neach time. The P values of all the TFs were adjusted using the Benjamini‒
Hochberg method provided in p.adjust function in R. For convenience, we
refer to TFs with significant ΔS (adjusted P < 0.1) values as developmental
program-sensitive TFs (dsTFs) in this manuscript.

Expanded dsTF list with GeneMANIA
The dsTFs were submitted to the GeneMANIA webserver42 to explore
additional TFs that have functions similar to these but were missed by the
search information analysis. All types of protein‒protein interaction data
were used. The 20 most similar genes recommended by GeneMANIA with
default settingswere added to the input TFs to obtain an expandeddsTF list.

Regulatory network analysis
TF–target information was retrieved from the human gene regulatory
network (hDB.rdata) in the NetAct46 package. These data included 875 TFs
and 16,364 high-quality literature-based TF–target relationships complied
from multiple gene regulation databases. We filtered out TF–target rela-
tionships showing only weak gene expression correlations (defined as an
absolute Pearson’s correlation coefficient (PCC) < 0.03, suggested by SCE-
NIC’s protocol84) in the TCGA-KIRC gene expression profiles, which are
unlikely to be functional in this disease. We defined retained TF–target
relationships as activation when the PCC was >0 or as inhibition when the
PCC was ≤0. All target genes of one TF combined with TCGA-KIRC
expression profiles were subjected to single-sample gene set scoring to
compute the regulatory activity of the TF in every TCGA sample. A dsTF
was excluded if it was not included in theNetAct human regulatory network
or if it had fewer than 10 target genes. Single-sample gene set scoring was
also applied to the gene expressionprofiles of theTCGA-BRCAandTCGA-
COAD cohorts. DAVID85 and Enrichr were used to perform functional
enrichment analysis on the targets coregulated by at least two dsTFs. A false
discovery rate (FDR)-adjusted P value < 0.05 indicated a significant
enrichment. PCA of the regulatory activities of the dsTFs in the cancer
samples was conducted using the R function prcomp and the R package
factoextra.
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Clustering of ccRCC samples
The TF regulatory activity matrix X 2 Rn× p was used to cluster TCGA-
KIRC samples into three clusters, where n is the number of samples and
p is the number of TFs. To do this, we first conducted data standardi-
zation and computed the PCCs between samples. Two samples were
connected if their PCC≥cutoff to construct a sample–sample similarity
network. Next, we used the Louvain community detection algorithm51

to cluster network nodes into modules (i.e., sample clusters). We tested
different cutoffs and evaluated the clustering results with the silhouette
coefficient, the Calinski–Harabasz index and the coverage of clusters
and identified 0.4 as the best cutoff value, corresponding to three clus-
ters covering all samples.

To apply the clustering results to new samples, we trained a multiclass
support vector machine (SVM) model using TF regulatory activities in
TCGA-KIRC as features and cluster indices obtained in the above step as
labels. Its accuracy was evaluated using fivefold cross-validation. We used
the SHAP algorithm52 to analyze the contribution of each feature to the
prediction.

We used the louvain_communities function from the NetworkX
package to perform sample–sample network clustering and the svm.SVC
function from Scikit-learn to construct the SVM model. SHAP analyses
were conducted with the Python package shap.

Survival analysis
Clinical data from the TCGA-KIRC cohort were downloaded using the
Bioconductor package TCGAbiolinks. Clinical data and preprocessedRNA
microarray data for patients in the Tokyo-ccRCC cohort were obtained
from the supplementary data of the corresponding article86. Survival ana-
lyses, including Kaplan‒Meier analysis, log-rank test and Cox proportional
hazards model construction, were performed using the R packages survival
and survminer.

Therapeutic target analysis
Six Cluster C0-related TFs (RBPJL, GATA4, HIF1A, WT1, PAX5 and
LEF1) were submitted to STRINGwebserver, and an expanded subnetwork
was identified using default settings. Gene dependency data54 for EP300 and
drug sensitivity data87 for an EP300 inhibitor (A-485) were obtained by
querying the DepMap database (https://depmap.org/portal/). Gene
expression data for the cell lines were downloaded from Cell Model
Passports88 (https://cellmodelpassports.sanger.ac.uk/).

Statistical analysis and data visualization
All the statistical analyses that were not specified were conducted in R 4.2.3
or 4.3.2. The figures were generated with the R packages ggplot2, ggpubr,
pheatmap,ComplexHeatmap, viridis,maftools, cowplot, survminer and the
Python packages Scikit-learn and shap. The networks were visualized with
Cytoscape89.

Data availability
The scRNA-seq data for fetal development are available at https://descartes.
brotmanbaty.org/. Human PPI data are available at the STRING website
(https://cn.string-db.org/). Batch effect-corrected TCGA RNA-seq data are
provided on figshare at https://figshare.com/articles/dataset/Data_record_
3/5330593. The humanTF list is available at http://humantfs.ccbr.utoronto.
ca/. The human gene regulatory relationships reported in the literature can
be found in the hDB.rdata file of NetAct at https://github.com/
lusystemsbio/NetAct. There are no new experimental data generated in
this work.

Code availability
Thefinalmodel scripts, files, and information are available at https://github.
com/NeoDong/OncoNicheDev.
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