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ABayesiananalysisofheart ratevariability
changes over acute episodes of bipolar
disorder
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Bipolar disorder (BD) involves autonomic nervous system dysfunction, detectable through heart rate
variability (HRV). HRV is a promising biomarker, but its dynamics during acute mania or depression
episodes are poorly understood. Using a Bayesian approach, we developed a probabilistic model of
HRV changes in BD, measured by the natural logarithm of the Root Mean Square of Successive RR
interval Differences (lnRMSSD). Patients were assessed three to four times from episode onset to
euthymia. Unlike previous studies, which used only two assessments, our model allowed for more
accurate tracking of changes. Results showed strong evidence for a positive lnRMSSDchange during
symptom resolution (95.175% probability of positive direction), though the sample size limited the
precision of this effect (95% Highest Density Interval [−0.0366, 0.4706], with a Region of Practical
Equivalence: [-0.05; 0.05]). Episode polarity did not significantly influence lnRMSSD changes.

Bipolar disorder (BD) is a severe mental health condition affecting > 1% of
the global population1. With a population-level annual economic burden
estimate of £6.43billion in theUKalone2 and an all-causemortality rate 1.77
times higher than the general population3, BD has huge personal and
societal costs. Symptoms encompass disturbances in mood states, thought,
energy, and vegetative functions manifesting during episodes of (hypo)
mania and depression, the two polarities of BD.

Accumulating evidence4 indicates autonomic nervous system dysre-
gulation in BD, detectable through reduced vagally mediated heart rate
variability (HRV). This is a measure of the variation in time between con-
secutive heartbeats and can be computed from interbeat interval (IBI) data
collected via either electrocardiogram (ECG) or photoplethysmography
(PPG). With the widespread adoption of wearable devices recording IBI
data, HRV monitoring can be extended outside the doctor’s office to the
patient natural environment, in a near-continuous fashion, unlocking
unprecedented opportunities for health monitoring5. A number of metrics
have been developed to quantify HRV, grouped into time-domain, fre-
quency-domain, and non-linear measures. Among these, the Root Mean
Square of Successive RR interval Differences (RMSSD) has been suggested
as a robust indicator of vagal tone and parasympathetic activity6. RMSSD is
indeed the most commonly reported HRV output feature by a number of

both commercial7 and research-grade devices8. Modelling the natural
logarithm of RMSSD (lnRMSSD) is common practice, as the log-
transformation achieves an easier-to-use, quasi-Gaussian distribution9–12.

Meta-analyses13–16 found a reduced HRV across a range of psychiatric
conditions, not just BD, with psychotic disorders featuring the greatest
reduction. A reduced HRV is also a predictor of increased cardiovascular
risk in the general population17,18. As of today it has not yet been fully
investigated whether the resolution of symptoms over the course of a BD
episode translates into changes inHRV andwhethermania and depression,
the two polarities of BD, display different HRV trajectories. In this study
(Fig. 1) we fill this gap, leveraging the TIMEBASE/INTREPIBD study19, a
longitudinal cohort following up BD acute episodes.

Studying intra-individual HRV changes across affective states in BD is
a challenging and resource-intensive endeavour, especially as longitudinal
settings require patients to be followed up and assessed by a mental health
specialist multiple times. This is particularly demanding with manic epi-
sodes, undermining patients’ compliance to study instructions, such that
recruiting large cohorts in HRV studies on BD proves unfeasible and all
previous studies had only a couple dozen participants20–23.

A case inpoints is Stautland et al.20, limiting their analysis to a sample of
15 patients on a manic episode. A reduced RMSSD in mania relatively to
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euthymia was found. Participants were assessed only twice – mania and
euthymia – and paired two-tailed t-tests were used to test zero mean dif-
ference acrossmanic and euthymic states. Similarly,Wazen et al.21 recruited
19 patients with BD and showed a similar association between RMSSD and
mania-to-euthymia transition. Again, only one acute state and one euthy-
miameasurements were taken; a non-parametric (Wilcoxon’s signed-rank)
test was used, positing as null a zero median difference between paired
observations. On the other hand, Hage et al.22 found no significant HRV
changes after 8 weeks in 37 patients with bipolar depression randomized to
receive either escitalopram-celecoxib or escitalopram-placebo, regardless of
treatment response status. The authors opted for a frequency-domain fea-
ture, i.e. high frequency (HF-HRV), as their HRV metric and employed
repeated measures ANCOVA to evaluate differences between baseline and
week 8. Lastly, Faurholt-Jepsen et al.23 studied HRV changes in a sample of
16 patientswithBDobserved for a periodof 12weeks over asmanydifferent
affective states (euthymia, depression, mania/mixed state) as possible, using
a linear mixed-effect model. Investigators found an increased HRV during
mania in comparison to both euthymia (in contradiction with20,21) and
depression, but no significant difference across depression and euthymia.
The difference between the second-shortest and the second-longest IBI
collected during 30-second epochs was used a HRV measure.

All studies mentioned above20–23 collected only one sample per patient
per affective state (euthymia, mania/mixed state, depression) and thus did
not consider HRV trajectories as a BD acute episode resolves. Moreover,
while it is tempting to equate HRV increments/decrements between acute
state and euthymia20–22 to a process of positive/negative change in HRV,
statistical literature24,25 warns that two-time points are not sufficient to
accurately capture individual differences in trajectories of change and are
prone to confounding true change withmeasurement error. Aminimumof
three data points per subject is indeed recommended to investigate change
over time. Furthermore, as customary in psychiatry research20–23, all
embraced frequentist null hypothesis significance testing (NHST), failing to
propose a model explaining how HRV values are generated and which
dependencies among variable govern HRV longitudinal dynamics. Despite
its enduring popularity in psychiatry research, theNHST p-value has indeed
been the object of a growing chorus of criticism26,27. The p-value serves solely

for rejecting the nullH0 and lacks the capacity to assess the extent to which
the data supports H0 versus the alternative hypothesis H1. Moreover, it
measures the existence of an effect but not its magnitude; standardized
measures of effect size, sincepremisedona frequentist framework, inherit its
limitations. Further, by simply considering the distribution of a test statistic,
previous studies relying on NHST did not elaborate a model trying to
capture the data (HRV) generating process.

An alternative framework that has been gaining recognition and
popularity inpsychiatry research isBayesian statistics,whichmitigates some
of the p values shortcomings28,29. The outputs of Bayesian methods are
probability distributions overmodel parameters, representing the degree of
beliefs about parameters’ values, conditional on data and assumptions (the
specified model and prior distribution over parameters). Posteriors can be
used to make directly interpretable statements about any model parameter
of interest, gaining insights into evidence equally forH0 as for the competing
H1. This is in contrast to frequentist p-values, which do not give the prob-
ability that a parameter value is compatible withH0. Bayesian methods are
particularly useful with small sample sizes, as it is the case for HRV studies
with BD. Indeed, they do not rely on the asymptotic properties of large
samples and, thanks to their principled way of handling uncertainty, they
yield graded evidence allowing us to gather more information from small
studies thatmay be otherwise underpowered to reach statistical significance.
As research into HRV (as well as other digital biomarkers) has the potential
for delivering clinical decision support tools, interpretability, i.e. being able
to clearly inspect and interrogate the data generating process, and a prin-
cipled quantificationof uncertainty in themodel output, are key features of a
Bayesiandata analysis, thatmake it particularly appealing in clinical settings.

In this work, using data from the TIMEBASE/INTREPIBD study19, we
investigate lnRMSSD changes in patients with BD on either mania or
depression as their symptoms’ severity, measured with the total score on
respectivelyYoungManiaRating Scale30 (YMRS) andHamiltonDepression
Rating Scale-1731 (HDRS) respectively, wanes, from acute state up to
euthymia,with at least three samples available per individual over the course
of their episode. Our main contributions are as follows:
– We are the first to the best of our knowledge to study changes in

lnRMSSD as an acute episode resolves across both mania and

Fig. 1 | Longitudinal data from patients with bipolar disorder recruited at the
onset of an acute episode is used to study the lnRMSSD trajectory as symptoms,
as measured with clinician-administered rating scales, improve. Patients with
bipolar disorder on either a manic (in red) or a depressive (in blue) episode are
assessed up to four times, t ∈ {0, 1, 2, 3}, as their symptoms subside. During each
assessment, lnRMSSD is collected with a smartwatch while symptoms'improvement
is measured by a mental health specialist with a hetero-administered rating scales,

the Young Mania Rating Scale30 (YMRS) for mania and the Hamilton Depression
Rating Scale-1731 (HDRS) for depression. A Bayesian Hierarchical Model is fitted to
the data to study the rate of change in lnRMSSD with respect to symptoms'
improvement. Twomodels are developed and comparedwhere the only difference is
that in one the trajectory of lnRMSSD through symptoms' improvement is allowed
to vary across polarities, to test whether a polarity-specific effect on lnRMSSD
dynamics exists.
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depression within the same cohort.
– We develop an interpretable probabilistic model that captures the

natural hierarchical structure in the data (HRV measurements are
nested within subjects, subjects on an acute BD episode can be seen as
themselves nested within mania and depression) and accounts for how
variables interact in generating lnRMSSD. Relatedly, we illustrate the
benefits of a Bayesian treatment overNHST, including a principledway
to quantify uncertainty and better suitability to small samples
than NSHT.

– We fit our model to the data from the TIMEBASE/INTREPIBD study
where a minimum of three-time points per individual per affective
episode is available. Unlike previous studies only using two-time points
(e.g. acute state vs euthymia), this allows us to better capture individual
differences in lnRMSSD trajectories. Data does not support the
existence of different HRV dynamics across BD polarities, i.e. mania
anddepression.Results indicate apositive rate of changeof lnRMSSDas
symptoms’ severity abates fromacute episode up to euthymia; however,
towards being able to claim that the magnitude of this effect has clinic
significance, more data is needed.

Methods
The TIMEBASE/INTREPIBD cohort
Unlike other existing cohort, the TIMEBASE/INTREPIBD study19 gathers
multiple longitudinal assessments perpatient over the course of an acuteBD
episode. This uniquely positions this cohort to investigate trajectories of
change in lnRMSSD as an acute episode resolves. TIMEBASE/INTREPIBD
is a prospective, exploratory, observational, single-center, longitudinal study
with a fully pragmatic design embedded into current real-world clinical
practice. A comprehensive description of the data collection campaign is
detailed in Anmella et al.19. For the purpose of this work, subjects with a
DSM-5 diagnosis of BD (equally type I and type II) were considered.
Exclusion criteria comprised: concomitant severe cardiovascular or neu-
rological medical conditions with a potential autonomic dysfunction,
ongoing cardiovascular arrhythmia, or pacemaker; comorbid current sub-
stance use disorder according to the DSM-5 criteria, excluding nicotine
substance use disorder; comorbid current psychiatric disorder with great
interference of symptoms (e.g., obsessive-compulsive disorder with ritua-
lized behaviours); ongoing pregnancy.

Patients were recruited at the onset of an acute BD episode, either
mania or major depression, and were assessed up to four times over the
course of their episode: acute phase, clinical response, remission, euthymia
(score ≤7 on the HAMD and YMRS for at least 8 weeks32). During each
assessment, patients were interviewed by a psychiatrist collecting clinical-
demographics, including age, sex, medications being administered, and
YMRS/HDRS. They were also required to wear the Empatica E4 device33 on
their non-dominant wrist until battery ran out (~48 hours). This wearable
records (sampling rate) 3D acceleration (ACC, 32Hz), blood volume
pressure (BVP, 64Hz), electrodermal activity (EDA, 4Hz), heart rate (HR,
1Hz), inter-beat intervals (IBI) and skin temperature (TEMP, 1Hz). Mixed
BD episodes were not included in the present analyses in order tominimise
diagnostic ambiguity and allow for an easier comparison between the two
extreme polarities of BD, also considering that only two such episodes were
available in the cohort at the time of this work. Hypomanic episode, on the
other hand, were not collected in the TIMEBASE/INTREPIBD study19.

HRV data extraction
During free-livingwear, subjectsmight remove their device or contact to the
wrist might be otherwise suboptimal; furthermore, PPG data is affected by
motion artefacts, so wake HRV may be unreliable34. Thus, we first per-
formed on-/off-body detection using discontinuity in EDA as a guide. In
particular, similarly to35,36, we considered measurements smaller than 0.05
μS as indicative of off-body status. Then, sleep/wake detection was carried
outonon-body recording sequencesusing the algorithmbyVanHees et al.37

which emerged as the best performing in a recent benchmark study on
sleep-wake detection38.

The RMSSD is arguably the most commonly used HRV metric7,8 and
reliably captures parasympathetic activity6. It is derived from RR intervals
(R) on either an ECG or a PPG reading and it is computed as follows:

RMSSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN�1

i¼1

Riþ1 � Ri

� �2
 !vuut ð1Þ

where Riþ1 � Ri

� �
is difference betweenneighbouringRR intervals andN is

the total number of RR intervals over which RMSSD is computed. Sleep
occurring at nighttime between 10 pm and 5 am from each recording
session was segmented with a sliding window of length and step size 5 and
1minute, respectively, fromwhich RMSSDwas derived with FLIRT39. This
is a popular open-access feature extractor toolkit compatible with E4 data,
handling IBI pre-processing and RMSSD computation. The average of all
valid 5-minute RMSSD values was taken as a measure for the full night’s
RMSSD. This approach to estimate RMSSD is implemented in commercial
devices40 and was used in previous research41. Five minutes is indeed a
conventional length for RMSSD estimation6. Considering motion artefacts
and circadian rhythms inHRV, nighttime sleep is a popular choice forHRV
extraction; averaging over multiple 5-minute RMSSD is more robust than
using just a random 5-minute RMSSDwhich would be susceptible to HRV
variations across sleep stages42. Recording sessions from the TIMEBASE/
INTREPIBD study stretched over 48 hours so, while two nights were
available for HRV extraction, only the first one was considered, since closer
to the time when HDRS/YMRS were taken. As standard practice9–12, we
modelled lnRMSSD, that is the natural logarithm of RMSSD, as this
transformation results in anmore convenient, quasi-Gaussian distribution.
While wristbands today allow for collecting RMSSD, they do not provide a
model explaining how features of the individual interact in generating
RMSSD values. In the section that follows, we build a Bayesian model
attempting to do just that.

Bayesian modeling
The goal of inference is to get to unobserved parameters (Θ), given the data.
The Bayesian approach aims for a full distribution over Θ, not just a single
value, which, especially when data is scarce, can be misleading, since it does
not consider uncertainty and tells only a part of the story (e.g. the mean or
the mode of the distribution). Our Bayesian analysis is particularly inter-
ested into the rate of change of lnRMSSD with respect to symptoms’
severity, so this will be a key parameter of interest. The Bayesian paradigm
commands to posit a process generating the data at hand governed by Θ,
referred to as likelihoodP(Data∣Θ), aswell as a startinghypothesis as towhat
values Θ can credibly take, in advance of seeing any data, referred to as the
priorP(Θ). The output of Bayesian inference is a posteriorP(Θ∣Data),where
the prior beliefs about the values of Θ have been updated in light of the
observed data.

As a running example to illustrate Bayesian methods, we temporarily
assume here that the observed lnRMSSD values are sampled from a
Gaussian distribution with mean μ and variance σ2, the latter we assume
given and equal to 1. As with ordinary regression, parameters can be
modelled as a function of relevant covariates. For example, we might have
reasons to believe that μ linearly depends on the symptoms’ severity (V) of
the individuals: μ = θ0+ θ1Vi, where i indexes the subjects in the study. The
parameters of ourmodel are thus θ0 and θ1 and our interestmight be into θ1,
expressing the dependency of lnRMSSDonV. The likelihoodP(Data∣Θ) is a
function of the parameters, expressing the probability of observing the given
data under particular values ofΘ, in our example, how well different values
of θ0 and θ1 explain the data.

The other key ingredient of a Bayesianmodel, further to the likelihood,
is the prior probability over the parameters P(Θ), representing our beliefs
about the parameters before seeing any data. The choice of prior can be
informed by previous research. Alternatively, in case of lack of previous
evidence or when the analyst does not want to favour one hypothesis over
others, a non-committal prior can used, assigning equal credibility to
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competing hypotheses. In the running example we might opt for θ0 �
N 0; 1ð Þ and θ0 � U �1; 1ð Þ, i.e. a standard Gaussian for the intercept θ0,
favouring values around zero but not giving anypreference to either positive
or negative values, and a uniform distribution for the slope θ1, assigning
equal credibility to all values in the interval [-1,1].

Through Bayes’ theorem, the prior is updated in light of the observed
data toyield aposteriorprobability distributionP(Θ∣Data): this encapsulates
the refined beliefs about the parameters, incorporating both prior knowl-
edge and the information conveyedby theobserveddata. Inour example,we
might move from a flat prior over θ1 to a distribution where the over-
whelming majority of the probability density is concentrated on positive
values. This posterior, P(θ1∣Data), can be directly and naturally interpreted
as our beliefs about values of θ1, condition on the observed data and the
posited model. This is arguably more intuitive for clinicians to use than a
p-value, the probability of obtaining under the null hypothesis (H0) and
under the assumed sampling intention a result equal to or more extreme
than the one observed from the data, and can be directly used to make
statements about both the existence and the magnitude of an effect.

The only extra layer of complexity in Bayesian hierarchical models, on
top of the vanilla Bayesian machinery we introduced above, is that para-
meters depend on other parameters too, referred to as hyperparameters,
introducing dependencies between parameters at different hierarchical
levels. This is particularly convenient as it allows us to model lnRMSSD
observations as nested into subjects and subjects themselves as nested into
episode polarity π. In our running example, we can modify the model to
reflect that the relation between V and lnRMSSD might differ across

polarities as follows: θ1 � N ζπ½i�; 1
� �

and ζπ � Uð�1; 1Þ. This is now
saying that the intercept θ1 is sampled from a Gaussian whose mean is
controlled by another parameter ζπwith a uniformprior on [-1,1]. There are
Π parameters ζ, one for each polarity and all sampled from the same uni-
form distribution. The notation π[i] denotes the parameter ζ that corre-
sponds to thepolarityπ towhich the ith individual’s episodebelongs to. It can
be seen how hierarchical models provide a powerful framework for nested
data: in our study, each patient (level-1) generates multiple lnRMSSD
measures since patients are indeed assessed at multiple time points as their
symptomatology improves; secondly, from each BD polarity (level-2)
multiple patients are drawn. Hyperparameters enables sharing of infor-
mation across level groups, while allowing for within-group variability.
Conceptually, a hierarchical model provides a middle ground (partial
pooling) between aggregating groups at a given level of the hierarchy
(complete pooling), thusoverlookingpotential differences across groups, and
treating them as completely independent (no pooling).

Variables preprocessing
We wanted to model how lnRMSSD changes as symptoms’severity, mea-
sured with the total score on either YMRS (manic episode) or HDRS
(depressive episode), abates during the resolution of an acute BD episode.
Each ith individual of theN included in the analyses was sampled up to four
times along their trajectory of symptoms’ improvement, starting from
episode onset t = 0. For the ith individual, their improvement along this
trajectory at time t ∈ {0, 1, 2, 3} was expressed as
Ii;t ¼ ðscoreπ½i�;t¼0 � scoreπ½i�;tÞ=ðscoreπ½i�;t¼0Þ, where the notation π[i]
means that the total score on YMRS (HDRS) was used if the episode’s
polarity π of the ith individual was manic (depressive). I therefore takes
values in [0, 1], patients have a value of 0 at episode onset, i.e. study
recruitment, and reach a value of 1 if their total score goes down to 0;
intermediary values express fractional improvement with respect to epi-
sode’s onset severity. For a given subject, successive recording sessions were
required to have a strictly monotonic decrease in the relevant scale’s
total score.

A number of factors further to changes in symptoms’ severity can
influence HRV.We therefore controlled for relevant covariates available in
our dataset, i.e. sex S (females = 1,males = 0), ageA, andmedicationsM. Age
(in years) was standardized and treated as constant across different

recording sessions for a given individual. Data for a number of drug classes
known to affect HRVwas recorded in the INTREPIBD/TIMEBASE dataset
as boolean: lithium, selective serotonin reuptake inhibitors, serotonin and
norepinephrine reuptake inhibitors, tricyclics, monoamine oxidase inhibi-
tors, other antidepressants, typical antipsychotic, atypical antipsychotic,
anticonvulsants, beta-blockers, opioids, amphetamines, antihistamines,
antiarrhythmic agents, other anticholinergicmedications, benzodiazepines.
Mi,t is simply the total number of suchmedications the ith individual was on
at time t. Lastly, as previous research in cross-sectional samples suggested
that HRV is negatively correlated with symptoms’ severity43, we accounted
for baseline severity Bi ¼ scoreπ½i�;t¼0=maxðqÞ where the denominator is
the maximum value by design on either the YMRS or HDRS rating scale,
depending on whether the episode’s polarity of the ith subject was mania or
depression.

Regression models
We developed two hierarchical linear models, which we nicknamed two-
polarities-model and one-disease-model, illustrated in Fig. 2, where the only
difference is that the former allows the lnRMSSD rate of changewith respect
to symptoms’ improvement tovary acrosspolarities (manic anddepressive),
letting us test whether a specific polarity effect is supported by the data.

In the two-polarities-model, we assumed that lnRMSSD for the ith

subject at time t is drawn from a Gaussian N whose mean is a linear
combination of the intercept β0,i, symptoms’ improvement Ii,t, and medi-
cationsMi,t:

lnRMSSDi;t � N β0;i þ β1;iIi;t þ β2Mi;t; σ i

� �
ð2Þ

The subscripts denote that while β2 does not vary across either indi-
viduals or time, each individual has their own intercept term β0,i and
coefficient β1,i. This allows each individual to have their own intercept and
rate of change with respect to I but crucially these parameters are drawn
from a common distribution, as shown below. As regards β0,i, i.e. the
expected value lnRMSSD takeswhen Ii,t= 0 (episode onset) andMi,t= 0 (no
medications with a known effect on HRV), wemodelled it as drawn from a
Gaussian with a standard deviation fixed to 0.5 but whose mean linearly
depends on sex Si, age Ai, baseline severity Bi plus the intercept α0:

β0;i � N α0 þ α1Ai þ α2Si þ α3Bi; 0:5
� �

ð3Þ

As for β1,i, i.e. the rate of change of lnRMSSD with respect to symp-
toms’ improvement, subjects on different episode polarities draw their slope
β1,i from Gaussian distributions centred at different values:

β1;i � N ðγπ½i�; 0:1Þ ð4Þ

Here π[i] indeed signifies the mean γ corresponding to the group
(polarity π) to which the ith individual’s ongoing episode belongs. We
defined subject-specific lnRMSSD standard deviation σi as drawn from an
inverse gamma distribution. The inverse gamma distribution is a con-
venient choice here, as it is the conjugate prior of a normal distribution with
unknownmean and variance. Conjugacy speeds up inference by enabling a
closed-form solution to (part of) the posterior:

σ i � IG 3; 0:5ð Þ ð5Þ

The prior for α0 is a Gaussian centred at the sample average lnRMSSD,
i.e. μlnRMSSD:

α0 � N μlnRMSSD; 0:1
� � ð6Þ

α1, α2, α3, and β2 all had aGaussian priorwithmean -0.1 and standard
deviation 0.1, informed by previous research showing that female sex, older
age, greater symptoms’ severity at onset, and the medications mentioned
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above are associated with a lower HRV43–45:

α0; α1; α2; β2 � N �0:1; 0:1ð Þ ð7Þ

On the other hand, wemade a non-committal choice for the prior over
γπ, i.e. a uniformdistribution assigning equal probability density to values in
the zero-centered interval [-1, 1]:

γπ � U �1; 1ð Þ ð8Þ

In other words, we start from a sceptical position and in advance of
seeing any data we do not favour any value for the polarity-specificmean of
the Gaussian from which β1,i is drawn.

The one-disease-model only differs by the lack of dependency of β1,i on
the episode’s polarity. Here, the prior on β1,i is a non-committal uniform:

β1;i � U �1; 1ð Þ ð9Þ

Consequently, the one-disease-modelpools subjects together regardless
of polarity but, as with the two-polarities-model, β0,i and β1,i can still vary
across subjects while being sampled from the same distribution.

There are different approaches to Bayesian inference. For example,
simple models relying on exponential family distributions and conjugacy
admit analytical solutions. Often times, however, with more complex
models, as it is the case with our hierarchical models, different approaches
are required, e.g. sampling-based solutions or variational inference. We
adopted the Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler
(NUTS)46, as state of the art inference algorithm and default choice across a
numberof probabilistic programming libraries47,48. Inparticular,we ran four
parallel chains of 2000 tuning steps, 2000 samples, and a target acceptance
probability of 0.99 was used for Bayesian inference in both models.

As explained above, the two-polarities-model and one-disease-model
encapsulate different assumptions about the data-generating process. In

particular, the former allows the rate of change of lnRMSSDwith respect to
symptoms’ severity to vary across episode’s polarity,while the latter doesnot
account for episode polarity. Towards model comparison, i.e. to assess
which of the two models betters explains our data, we used the Widely
Applicable Bayesian Information Criterion (WAIC)49. WAIC calculates an
estimate of the out-of-sample log-likelihood and adjusts for the effective
number of parameters, providing a more accurate measure of a model’s fit
and predictive ability. The value ofWAIC lacks inherent meaning and only
becomesmeaningfulwhen comparing it across differentmodelsfitted to the
same data. LowerWAIC values suggest a better fit of the model to the data.
We chose WAIC over other criteria for its Bayesian consistency, effective-
nesswith complexmodels, incorporation of uncertainty, focus onpredictive
accuracy, applicability to hierarchical structures, and bias correction,
offering a robust approach. The Bayesian factor, comparing model like-
lihoods based on observed data, is another tool for selecting betweenmodels
but faces criticism for its sensitivity to the prior specification, even when
different priors lead to minor differences in the posterior50.

We plotted samples from the posterior distributions over the para-
meter(s) relevant to our investigation into RMSSD changes with respect to
symptoms’ improvement (potentially varying across polarities). Towards
summarizing the posterior, we computed the Probability of Direction
(PD)51. This is an index of effect existence, robust to the scale of both the
response variable and the predictors. It ranges from 50% to 100%, repre-
senting the certaintywithwhichaneffect goes in aparticular direction (i.e., is
positive or negative), and ismathematically defined as the proportion of the
posterior distribution that is of the median’s sign. We also computed the
95% highest density interval (HDI-95), i.e. the 95%most plausible values in
a parameter’s posterior. This is more suited than the PD to measure the
magnitude of an effect by comparing its overlap with a Regional of Practical
Equivalence (ROPE); this is a range of values considered negligible or too
small to be of any practical relevance for the use case in question51,52. Unlike
PD, HDI and ROPE are sensitive to the parameter’s scale. For the posterior
over β1, obtained by pooling together samples from all individuals’ β1,i to

Fig. 2 | lnRMSSD data generating process assumed in the regression models.
Grey-shaded nodes represent observed variables, while white nodes represent the
model’s parameters. Arrows define conditional dependencies in the model graph,
while lines connecting parameters to their covariates do not define any probabilistic
dependency but are shown simply to clarify which covariate a parameter refers to.
The plate notation is used for observed variables and parameters that are repeated,
where the letter indicates the number of repetitions; in other words, it indicates the
nested structure in the data and in themodel. For example, lnRMSSD is contained in

two plates: the outer one indicating that samples are drawn at the subjects' level
where N is the total number of subjects, the inner one indicating that within each of
theN individuals, samples are taken atT times. The node for γ and its outgoing arrow
are in red to mark that this node, and thus the dependency of its descendants on
episode’s polarity where there are Π = 2 polarities (mania and depression), is only
present in the two-polarities-model into which the one-disease-model, differing only
by the lack of this node, is nested. A: age; S: sex; B: baseline symptoms' severity; I:
symptoms' improvement; M: medications.
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study the overall effect across individuals, we set a ROPE of [-0.05, 0.05]. As
we aremodelling lnRMSSD, for a given sample β̂1;i ofβ1,i a unit change in Ii,t
(i.e., 100% improvement in symptoms over baseline severity) translates into
a change of β̂1;i in lnRMSSD for fixed values of other predictors in Equation
(2). This is the standard interpretation of regression coefficients. When
mapping back onto the original scale of RMSSD, if β̂1;i equals an arbitrary
value c, RMSSD changes with respect to its baseline value by a multiplicate
factor of ec, where e is the base of the natural logarithm. In fact, by the
properties of logarithms, if ln(Yt=T)− ln(Yt=0) = c, then Yt=T = Yt=0 × ec for
any arbitrary c. Thus, the ROPE of our choice considers negligible any
multiplicate effect of a complete resolution of symptoms on RMSSD
between e−0.05 = 0.951 and e0.05 = 1.051, in other words, a decrease (increase)
of 4.9% (5.1%).

Ethical approval statement
The TIMEBASE/INTREPIBD study was conducted in accordance with the
ethical principles of the Declaration of Helsinki and Good Clinical Practice
and the Hospital Clinic Ethics and Research Board (HCB/2021/104). All
participants provided written informed consent prior to their inclusion in
the study. All data were collected anonymously and stored encrypted in
servers complying with all General Data Protection Regulation regulations.

Results
Study sample
At the time of this study, a total of 67 patients with BD had been recruited at
the onset of a mood episode (29 depression, 38 mania) in the TIMEBASE/
INTREPIBDstudy.Ultimately, a sample of 23patientswere available for this
study: 41 dropped out before providing a minimum of three assessments,
while 3 did not have a strictly monotonic decrease in their symptoms’
severity, thus preventing the use of improvement on symptoms’ severity to
clock time in our model of change. 9 (resp. 14) individuals were recruited at
the onset of a major depressive (resp. manic) episode. 17 (resp. 6) subjects
had3 (resp. 4) follow-up assessments. Themedian (resp. interquartile range)
time (in years) since illness onset was 5 (resp. 17.5). Clinical-demographics
are given in Table 1. Figures for the sleep time during the 10 pm to 5 am
interval fromwhichRMSSDwas extracted are given inSupplementaryTable
1. The median percentage of 5-minute sliding windows over sleep time not
passing quality control with FLIRT, thus outputting a nan value, was 9.05
(interquartile range 1.95-25.32). Such segments were discarded from ana-
lyses and thus not considered in the computation of the night RMSSD.

Prior predictive checks
As customary in a Bayesian data analysis, before model fitting, we ran a
series of checks, referred to as prior predictive checks, whose purpose is to
assess the soundness of themodel assumptions. This is particularly useful in
hierarchical models, where the effect of hyperparameters might propagate
downstream in the data-generating process in hard-to-predict ways. Spe-
cifically, we verified that, as desirable, in advance of seeing any data the
implied distribution over lnRMSSD, i.e. the distribution obtained sampling

fromthemodel prior andgenerating synthetic lnRMSSDvalues, covered the
sampledistributionof lnRMSSDandhad thebulkof thedensity lyingwithin
physiologically plausible values. Secondly, we verified that, before seeing the
data, the model did not favour either positive or negative values for the
lnRMSSD rate of change with respect to symptoms’ improvement.

The top rowofFig. 3 shows thepriordistributionover lnRMSSDacross
both the two-polarities-model (left) and the one-disease-model (right)
against the one observed in the data. The two models have similar prior
lnRMSSD distributions, which contain the observed data. However, prob-
ability is spread over a range of lnRMSSD values slightly broader than the
one in the data, whist still keeping within physiologically plausible values.
The 0.05, 0.5, and 0.95 quantiles (q0.05, q0.50, q0.95) were respectively 1.88,
3.21, and 4.51 (1.89, 3.21, and 4.50) for the two-polarities-model (one-
disease-model). The Kullback-Leibler divergence for the prior distribution
over lnRMSSD from the two-polarities-model to the one-disease-model, a
measure of “distance” between distributions taking values in [0,+∞], was
0.00006.On the other hand, q0.05, q0.50, q0.95 were respectively 3.08, 3.60, and
4.18 for the sample lnRMSSD.

ThebottomrowofFig. 3 shows the implieddistributionover lineswithin
a subject (shown as away of example), each line representing a hypothesis, i.e.
a sample from the prior, about the expected lnRMSSD value as a function of
symptoms’ improvement upon onset severity. In both models the subject’s
true values lie with the array of lines in bothmodel, the lines’ origin is centred
roughly around the sample average lnRMSSD and, as a result of the non-
informative prior, a broad range of slopes is credible under the prior with no
preference for either positive or negative values (positive or negative rate of
change of lnRMSSD with respect to symptoms’ improvement).

Model convergence and comparison
In order to infer the posterior distribution over the model parameters, we
resorted to Markov Chain Monte Carlo (MCMC) methods, in particular
NUTS46, as ourmodels didnot admit an exact, closed-formsolution.MCMC
involves generating a sequence of random samples, known as chains, which
approximate the posterior distribution. However, convergence to the true
posterior distribution is not guaranteed, so it’s crucial to assess the con-
vergence and mixing properties of the chains. This is typically done using
diagnostics such as the Effective Sample Size (ESS), Gelman-Rubin con-
vergence diagnostic (R̂), and Bayesian Fractions of Missing Information
(BFMIs). In both the two-polarities-model and the one-disease-model the
chains mixed well with all ESS > 1000, all R̂ ¼ 1, and all BFMIs ≥0.75.

The WAIS for the two-polarities-model and the one-disease-model was
respectively -92.94 and -98.90, indicating that, conditional on our data, the
latter model, not positing the lnRMSSD rate of change with respect to
symptoms’ improvement asdependenton theepisode’spolarity, is abetterfit.

lnRMSSD rate of change with respect to symptoms’
improvement
Further to investigating possible differences across the episode’s polarities, a
central question in our investigation was how lnRMSSD changed across the

Table 1 | Clinical-demographic features of the study sample

AGE FEMALES MEDICATIONS # BASELINE SYMPTOMS’ SEVERITY

MEAN (STD) N (PERCENTAGE) MEAN (STD) MEAN (STD)

MANIA 42.14 (12.81) 5 (35.71%) 2.86 (1.30) YMRS

N=14 25.64 (5.09)

DEPRESSION 44.34.56 (13.03) 6 (66.67%) 3.78 (0.63) HDRS

N=9 19.11 (3.21)

“Medications #” refers to the number of drugs recorded in our cohort with a known influence onHRV,which subjectswere taking at themoment of study admittance; further details onmedications are given
inSupplementary Table 2.We report clinical-demographic features for the 44patients not included in thepresent analyses asnot providing aminimumof threeHRVsamples inSupplementary Table 3. Total
score on YoungMania Rating Scale (YMRS) and Hamilton Depression Rating Scale-17 (HDRS) was used to track symptoms’ severity in manic and depressive episodes, respectively. The figures herewith
shown refer to the first assessment (acute episode onset). Note that, as YMRSandHDRSdo not share the same range ([0-60] and [0-52], respectively), the percentageof improvementwith respect to onset
total score was used to clock time across polarities in the regression model.
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trajectory of symptoms’ improvement, from episode onset up to euthymia.
As the one-disease-model came out on top in model comparison, we col-
lected and pulled together posterior samples from β1,i across the N = 23
individuals in our analyses, in order to study the overall effect β1 regardless
of the specific subject.

Figure 4 a illustrates the prior distribution, defined in Equation (9), for
β1. It can be seen how the prior is non-committal and vague, as it does not
favour any value in the interval [-1,1] and admits a broad variability in the
effect that Ii,t can have on lnRMSSD, from -1 to 1 (the scale is logarithmic).

Figure 4b illustrates the posterior distribution over β1. Bayesian
inference reassigned credibility so that relatively strong effects of β1 on
lnRMSSDhave very little probability densities, i.e. values below (above) -0.5

(0.5), while hypotheses compatible with the data now have higher density.
Contrast how, upon conditioning on the data, the distribution on β1
changed from Fig. 4a to b. We calculated commonly used statistics and
decision rules on the posterior. The median (dashed red line) lies at 0.208.
The PD indicates that β1 is strictly positive with high probability, i.e.
95.175%. It can indeed be seen that samples from the posterior over-
whelmingly favour positive values. The HDI-95, i.e. the narrowest interval
containing 95% of the posterior probability density, spans
[-0.03662–0.47061], thus overlapping but not containing the rope [-0.05,
0.05]. As per52 recommendations, the HDI-95-based decision rule is
therefore to withhold decision and collect more data to increase the preci-
sion of the estimates.

Fig. 3 | Prior predictive checks across the two regression models. The left column
refers to the two-polarities-model while the right column to the one-disease-model.
The (normalized) histograms in the top row show the observed lnRMSSD dis-
tribution against the lnRMSSD distribution implied by the prior. It can be seen that
the observed lnRMSSD (pink) is tightly concentrated over a narrow range in com-
parison to the prior lnRMSSD (green), which puts some probability density on
values at the boundaries of the physiologically plausible range. However, the bulk of
the prior lnRMSSD contains the observed lnRMSSD. The three red crosses in each

bottom row plot shows lnRMSSD measures at different stages of symptoms'
improvement for a subject from our dataset, chosen as a way of example and
assigned the dummy subject-id a. Superimposed are one hundred lines, each
showing the expected lnRMSSD value for different draws from the prior. As a result
of a vague and non-committal prior, lines can have a variety of slopes with no
preference for either positive or negative values. The dashed green line represents the
average across the one hundred black lines.
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Figure 4 c lastly shows the posterior for the same individual reported in
prior predictive checks, bottom-right of Fig. 3, to whom the dummy iden-
tifier a was assigned. The distribution over lines now span only a narrow
range of possible values, with a tendency for positive values. The posterior
distribution for other subjects in the study canbe seen in SupplementaryFig.
2 and overall confirms the positive trend in β1 values.

The posterior over the co-variates’ coefficients, i.e. age, sex, onset
symptoms’ severity, and number of medications with an influence onHRV,
can also been seen in Supplementary Fig. 5. In general, the posterior did not
differmuch from the prior distribution in either shapeor direction; however,
for β2, i.e. the coefficient associated with the number of medications known
to affect HRV, the posterior sharpened and its HDI-95 excluded the 0 value.

Discussion
In this work, we studied how lnRMSSD changes as the symptoms’ severity
subsides over the course of an acute BD episode. Our findings do not
support a specific effect of polarity, i.e.maniaordepression, on thedynamics
of change in lnRMSSD. To the best of our knowledge, only the work by
Faurholt-Jepsen et al.23 considered HRV across the full BD spectrum but
only took one HRV sample per episode across patients, thus not investi-
gating within-episode dynamics and limiting comparability with this study.
The lack of a polarity-specific component to HRV trajectories in our study
suggests that within-episode HRV changes may not be useful to distinguish
between manic and depressive phases. On the other hand, our findings
support with high confidence the existence of a positive rate of change of
lnRMSSD with respect to symptoms’ improvement over the course of an
acute BD episode. However, our data did not show that the HDI-95 com-
pletely excludes the ROPE. This is likely related to the sample size, as
sensitivity analyses (Supplementary Note 1) showed that increasing either
the number of recruited subjects or the number of observations per subject
led to a higher chance of a model fit where the HDI-95 completely excludes
the ROPE, assuming a data generating process where the HDI-95 on the
distribution for the lnRMSSD slope (β1) does exclude the ROPE.While the
Bayesian approach commands to consider the entire distribution, the HDI-
95 summary and the ROPE-partial-overlap rule52 suggests withholding
decision and collectmore data before developing an intervention thatmight
depend on the parameter of interest completely excluding the ROPE.

Sample size is indeed a limitation of this and previous studies into
intraindividual HRV changes in BD, since collecting longitudinal data from
patients with BD, especially when on a manic episode, is a resource-
intensive endeavour. The inherent limitation of sample size hinders the
frequentist approach53 used in previous studies. We thus opted for a
Bayesian approach in our work, as it is more suitable to small samples and
capable of quantifying uncertainty in a principled manner, a desirably
property when data is used to inform decision-making in potentially high-

risk environments such as healthcare. Furthermore, wewent beyond simply
assessing the distribution of a test statistic and proposed an explainable
probabilistic model that attempts to explain how lnRMSSD values are
generated across successive observations within-subjects and how different
clinical-demographic covariates interact in this process.

Consistently with our results, the majority of previous studies inves-
tigating intra-individual HRV changes frommania to euthymia, while only
collecting two samples per patient, found a positive difference20,21. Previous
cross-sectional studies comparing patients on a manic episode to healthy
controls also found a reduced HRV in mania54. Of importance, HRV in
euthymic BD remains lower than in healthy controls despite full clinical
remission, even though at least part of this difference is likely due to
medications55. As regards studies into bipolar depression, one22, taking only
a sample from acute state and one from euthymia, did not find any sig-
nificant difference in HRV across acute state and euthymia. However, a
cross-sectional study43 found a negative association between symptoms’
severity andHRV.The inconsistency offindings in the literaturemay inpart
be a result of the sample size used in this type of studies and the frequentist
approach. The Bayesian approach we herewith adopted is arguably better
suited as it yields graded evidence, suggesting when collecting more data is
likely to be fruitful. Secondly, we note that studies differ in theHRVmetrics
they employed and, more importantly, the device used for IBI data collec-
tion and the algorithms for IBI pre-processing. This could also explain
inconsistency in findings. For the sake of transparency and reproducibility,
we release the codebase we developed for these analyses.

The results of this study need to be balanced against some limitations.
1) We could not include BMI, alcohol, and nicotine intake as covariates in
our models since these HRV confounders were not collected in the
TIMEBASE/INTREPIBD study. Similarly, while unlike some previous
studies (e.g.16) we includedmedications, we did not account for their plasma
concentration, receptor profile, or interactions but only considered the total
number of known interfering drugs. 2) We took one step beyond previous
studies and fitted amodel of change with at least three samples available per
subject per episode, however the lack of a higher number of intra-individual
observations constrained us to fit a linear model since non-linear patterns
maynotbe identifiablewithonly three datapoints.However,wedonot have
reasons to exclude a non-linear trajectory. 3) The limited sample size likely
prevented us from asserting the magnitude of the rate of change in
lnRMSSD with respect to symptoms’ improvement in a way to exclude a
region of practical equivalence, and further research in this sense is needed.

In conclusion, previous converging evidence indicated an HRV
reduction in BD relatively to healthy controls, pointing to an impairment in
the autonomous nervous system. This study, the first to the best of our
knowledge to include a minimum of three observations per patient per
episode across both polarities of BD, suggests that an improvement in

Fig. 4 | Prior and Posterior distributions over β1. a: prior distribution over β1.
b: posterior distribution over β1 along with median (red, dashed line), 95% Highest
Density Interval (HDI-95) spanning [-0.03662-0.47061] and Region of Practical
Equivalence (ROPE) at [-0.05, 0.05]. c: posterior distribution over expected
lnRMSSD values as a function of symptoms' improvement for a subject recruited at
the onset of a manic episode, identified with the dummy subject-id a. The posterior
for the other subjects is available in Supplementary Fig. 2. Each black line (a total of

one hundred is herewith displayed to avoid clutter) represents a single draw from the
posterior, while the dashed green line is the average across all black lines sampled
from the posterior. This illustrates how the Bayesian framework naturally incor-
porates uncertainty in its outputs, as in this plot we indeed have a distribution over
lines and not just a single line. This notion of uncertainty enables better-informed
decisions in a clinical setting, e.g. the confidence in a given positive trend in
lnRMSSD is higher when lines are tightly packed around the average value.
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symptoms’ severity upon an acute episode is paralleled by a positive change
inHRV. However, the pattern of HRV change does differ across mania and
depression, the two polarities of BD. Thus, our findings suggest that HRV,
thanks to an increasing adoption of wearable devices, may have a role in
monitoring the course of an episode in clinical settings, acting as a mea-
surable biological signal, which can complement clinical assessments;
however, it may be not useful towards distinguishing polarities in BD.
Studies of HRV in BDhave been dogged by limited sample size, a limitation
inherent to this type of studies. Crucially, unlike frequentist statitics, the
Bayesian framework we herewith adopted, allowed for a fine-grained
appreciation of the evidence, inspecting posterior distributions conditioned
on the data (and the posited model), and the formulation of a generative,
interpretable probabilistic model accounting for how different variables
interact in generating HRV values within patients over the course of a BD
episode.

Data availability
The data used for the present study can be made available through rea-
sonable requests to the corresponding author due to data sharing restrictions

Code availability
The codebase developed for this work is available at https://github.com/
april-tools/bayesian-hrv. Python 3.10 programming language was used,
with Bayesian statistical modelling implemented in PyMC48 and ArviZ56.
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