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Abstract

BackgroundQuestions persist aroundwhether and how to use race or geographic ancestry
in biomedical research andmedicine, but these forms of self-identification serve as a critical
tool to inform matching algorithms for human leukocyte antigen (HLA) of varying levels of
resolution for unrelated hematopoietic stem cell transplant in large donor registries.
Methods Here, we examined multiple self-reported measures of race and ancestry from a
survey of a cohort of over 100,000 U.S. volunteer bonemarrow donors alongside their high-
resolution HLA genotype data.
Results We find that these self-report measures are often non-overlapping, and that no
single self-reported measure alone provides a better fit to HLA genetic ancestry than a
combination including both race and geographic ancestry. We also found that patterns of
reporting for race and ancestry appear to be influenced by participation in direct-to-
consumer genetic ancestry testing.
Conclusions While these data are not used directly in matching for transplant, our results
demonstrate that there is a place for the language of both race and geographic ancestry in
the critical process of facilitating accurate prediction of HLA in the donor registry context.

While not used directly formatching donors and recipients, self-report data
regarding race and ancestry are a critical part of the bioinformatic algorithm
matching for human leukocyte antigen (HLA) of prospective donors with
patients in need of hematopoietic stem cell transplant. Modern genomic
methods may provide granular detail regarding ancestry, but genome-wide
data is not collected routinely in bone marrow donor registries. Given the
ongoing reliance on self-identification, how do we ensure that the methods
that we employ for this critical task are best-suited toward inclusion of
diverse populations? Beyond the transplant setting, these questions apply as

well to the next generation of genomic, biomarker, behavioral research,
clinical trials, and biobanks. Likewise, consideration of race continues to
play a part in medical practice1,2. Historically, self-identification using race
categories as definedby theUnited StatesOfficeofManagement andBudget
(OMB)3 has been standard; indeed, federally funded researchers are man-
dated to collect and report this information. Further complexity is added by
inconsistent use of the term “ethnicity,” which is often used to describe a
group sharing culture, language, or other features. However, many in the
biomedical community have sought to focus rather on identification
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Plain language summary

Self-identification with respect to race and
ancestry is an important component in the
process of finding amatching unrelated bone
marrow donor for a patient in large donor
registries. Here, we considered whether
termsspecific to either raceor thegeographic
ancestry of donors would be more useful in
the matching process. We found that rather
than using either of these terms alone, col-
lecting responses for both race and geo-
graphic ancestry from potential donors is
most likely to provide the information neces-
sary to find ageneticmatchamongmillions of
donors for a patient in need of a transplant.
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according to geographic ancestry4–7 It is argued that these measures better
reflect human history and aremore likely to represent biological differences
compared to race, which is understood to be a social construct8.Meanwhile,
there remains a need to incorporate some form of this information to
expedite the matching process for patients in search of an unrelated bone
marrow donor, where it is used to narrow the search space of possible
donors by facilitating identification of the most likely high-resolutionHLA
haplotypes in the donor pool.

HLA data for potential volunteer unrelated donors stored in registries
is of varying resolution; while HLA genotyping for donors recruited in the
last several years is typically very high resolution (generally from sequence-
based typing (SBT) methods) and complete with respect to loci genotyped,
this varies for a substantial number of donors whose data were collected up
to decades ago. Some data is incomplete with respect to theHLA loci typed
(for example, often missing data for HLA-C or HLA-DQB1) and/or is low
resolution (for example, was typed with serological methods ormuch lower
resolution molecular methods). In order to perform efficient searches for a
donormatch for a givenpatient, these lower resolutionHLA genotypesneed
to undergo algorithmic imputation to predict the most likely high-
resolution HLA genotypes for a given donor. Among the inputs for this
algorithm are known haplotypic associations in combination with known
patterns of variation based on ancestry9—this is the primary use for self-
identification data collected at the time of donor recruitment. Thus, while
donors and patients are not matched according to race and ancestry, they
are matched according to known or predicted high-resolution HLA geno-
type; the predicted genotypes having been informed, critically, by self-
identified race and ancestry.

Although previous investigations have examined the relationship
between singlemeasures of self-identification and genetic ancestry10–13, here
we expand on our earlier work considering self-identification for donors
registered with the National Marrow Donor Program (NMDP)14 with an
approach that differs from other studies in several important ways. We
directly incorporate findings from the social sciences15 to perform a large-
scale study comparing multiple measures of self-identification simulta-
neously withHLA genetic ancestry in the same cohort. Here, we specifically
leverage genetic information for HLA to facilitate comparison between
measures and understand whether some are more closely related to genetic
ancestry in this region than others. We do so in a larger and more diverse
sample of the U.S. adult population than previously examined, considering
how both self-identified race and ancestry can be used to best describe
human diversity, with a focus on the relevance for donor-patient matching
algorithms16. In the National Marrow Donor Program Registry there are
nearly 7million volunteer bonemarrow donors, themajority of which have
missing or ambiguous typing at loci that are critical for matching. Popula-
tion specific haplotype frequency data is used tomake predictions but these
predictions are only as good as the accuracy of the assignment of an indi-
vidual to a population17,18. Finally, we consider the role that direct-to-
consumer genetic testing may play in shifting patterns of self-identity, and
the extent to which this may provide potential advantage in the registry
context.

Methods
We collected multiple self-reported measures of race and ancestry from a
cohort of more than 100,000 U.S. adults who also provided genetic data for
HLA as potential donors registered with the National Marrow Donor
Program (NMDP). To ascertain genetic ancestry, we used the registry’s data
for the human leukocyte antigen (HLA) complex on the short arm of
chromosome 6, which is critical to matching in tissue transplant. TheHLA
loci exhibit extreme levels of variability and differentiation among human
populations and the region is relatively well-maintained during gameto-
genesis, and thus can be used as ancestry informative markers19–22. Our
survey of potential NMDP donors, conducted for this study in spring 2015,
includedquestions about racial self-identification andmultiple (geographic)
ancestry items. All participants provided informed consent (available in
Supplementary files) and this study was approved by the Institutional

Review Board at the University of California San Francisco (study
#14-13977).

Survey questions
For self-reported ancestry, we included three measurement approaches: (1)
personal ancestry (PA), a check-all-that-apply option using a series of
geographic categories; (2) personal ancestry salience (PAS), a measure that
asked people to “weight” their ancestry self-reports on a 100-point scale; and
3) family ancestry (FA), check-all-that-apply ancestry questions about
specificbiological relatives, such as grandparents. Inorder to fully exploit the
FA responses, we also computed a summary family fractional ancestry
(FFA) value from the family responses based on the number of ancestry
selections per parent or grandparent (SupplementaryMethods). In addition
to asking respondents to describe themselves using official racial categories
(RC), we also asked that they tell us how they think other Americans would
classify them using the same categories, which we term “reflected race”
(RR)23; we were interested in this measure as a proxy for race coding that
might be contributed by a third party, such as a clinical provider. The
complete survey is provided in the Supplementary Material.

Assignment of HLA haplotype ancestry
To understand how thesemeasures of self-reported race and ancestry relate
to genetic ancestry, we employed a Bayesian classifier to assign the most
probable geographic origin for subjects’ HLA haplotypes (Supplementary
Table S1). Our previous work had shown that population-level HLA hap-
lotype ancestry assignments using this method are equivalent to ancestry
proportions derived fromawell-characterizedpanel of ancestry informative
markers14. To further validate the classifier, we examined prediction of the
HLA-based ancestry classifications from ancestry proportions derived from
over 700,000 single nucleotide polymorphism (SNP) markers for an inde-
pendent dataset of 1983 individuals, with cross-validation revealing accu-
racy approaching 85% (Supplementary Fig. S1).

Data analysis
We tested thefit of all self-reported race and ancestry responses alone and in
specific combinations as predictors of genetic (HLAhaplotype) ancestry in a
multinomial logistic regressionmodel, including covariates for age, sex, and
educational attainment (Detailed in Supplementary Methods). Our survey
methodology included randomly switching the order in which the race vs.
ancestry sections were presented, which yielded some variation in the
number of responses for each section, and thus we adjusted for this feature.
Likewise, we adjusted for the email outreach recruiting participants, the
specific language of which varied (Supplementary Fig. S2). To test for
genetic differences between groups of respondents, we calculated Edward’s
genetic distance and tested for significance using a permutation procedure
(Detailed in Supplementary Methods).

Statistics and reproducibility
All data analysis was performed in the R environment for statistical com-
puting. All analysis is reproducible using the code linked below in “Code
availability24.”

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
The relationship between measures of self-reported race and
ancestry is complex and non-redundant
Respondent demographics detailed by sex and age with respect to place of
birth and response to RC are shown in Tables 1 and 2, respectively. Despite
oftenbeing treated interchangeably,we found thatmeasuresof self-reported
race and ancestry are often non-overlapping, even when administered
simultaneously in the same cohort.On the surface, responses forRC andPA
might seem to provide redundant information, with many respondents
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identifying as White and also reporting PA from Western Europe, for
example.However, cross-tabulating themeasures with one another showed
they are not as interchangeable as they might appear at first glance. When
comparing racial self-identification and PA, every possible PA was con-
nected to every possible RC in our sample (Fig. 1A), yielding a total of 3,582
different RC/PA combinations (Supplementary Table S2). Nearly 60% of
the sample self-reported two or more PA responses, and close to 12%
provided two or more RC responses. Even when we restrict to individuals
who selected a single PA and single RC response to describe themselves
(39% of our sample), much of the complexity between ancestry and race
reporting remains (Fig. 1B).

Combining self-identification responses for race and ancestry
provides the best fit to HLA variation
We found that no single self-reported measure of race or ancestry alone
provides a better fit to HLA genetic ancestry classification than com-
bined measures (Fig. 2). When examining single measures, PA provided
the bestmodel fit, lending support to the notion that geographic ancestry
serves as a better proxy for genetic ancestry than self-identified race.
However, RC provided a better fit than any of our other single measures,
including FA, while RR fit very poorly, with the lowestR2 of anymeasure.
Our quantitative measures, PAS and FFA, were highly correlated
(Supplementary Table S3), but had the highest misclassification rates of
any single measure we examined, diminishing the overall model fit.
Although PA provided better fit than the RC response alone, fit to HLA

genetic ancestry was significantly improved by incorporating the RC
response with any of the ancestry measures, with the most significant
improvements noted for combinations including PA and FA. Strikingly,
the best-fitting model predicting genetic ancestry classification included
a combination of RC self-identification and PA. This combinedmeasure
showed marked improvement in model fit compared to the PA single
measure (p < 0.001).

Specific examples from our data illustrate why combining race and
ancestry responses serves to better represent genetic variation than single
measures of self-identification. For instance, complexity in reporting
American Indian race and ancestry is well documented in demographic
studies25,26. American Indian PA is reported frequently in our sample (15%
of individuals), and is most often seen in combination with Western Eur-
opean PA (N = 5709). Despite the fact that “American Indian” is also
provided as an option for the RC response, many individuals reporting this
PA combination report only theWhite RC.We computed theHLA genetic
distance between individuals reporting the specific combination ofWestern
Europe andAmerican Indian PAwith onlyWhite RC (80%) and those who
reported the same PA (Western Europe and American Indian) withWhite
RC plus American Indian RC (17%) or only American Indian RC (1.6%);
using a permutation procedure, we found that the White-only RC and
White RC plus American Indian RC groups are not significantly divergent
(p = 0.15). However, the American Indian-only RC group is significantly
divergent from the White-only RC group (p < 0.001) and from the White
RC plus American Indian RC group (p = 0.03), showing the added value of

Table 1 | Survey respondent demographics (gender and age groups) separated by place of birth

Total Female Male [18–24] [25–34] [35–44] [45–54] [55–64] [65+]

All respondents 103348 82226 21121 13576 35487 27804 18105 8313 9

Respondent US born

Yes 95770 80.1% 19.9% 13.3% 34.5% 26.6% 17.4% 8.2% 0%

No 7487 72.7% 27.3% 11.4% 32.8% 31.1% 18.5% 6.1% 0%

Parents US born

Neither 11107 73.8% 26.2% 16.7% 35.6% 27.4% 15.4% 4.9% 0%

One 8190 80.7% 19.3% 17.2% 35.9% 26.2% 14.5% 6.2% 0%

Both 84012 80.2% 19.8% 12.3% 34.0% 26.9% 18.1% 8.6% 0%

Grandparents US born

None 15319 74.7% 25.3% 14.8% 31.7% 25.6% 18.7% 9.1% 0%

One 3031 79.8% 20.2% 12.9% 27.6% 25.1% 22.3% 12.1% 0%

Two 13639 80.6% 19.4% 13.6% 31.7% 25.1% 19.5% 10.1% 0%

Three 9939 81.8% 18.2% 12.9% 34.8% 26.1% 17.7% 8.6% 0%

Four 61365 80.2% 19.8% 12.7% 35.9% 27.9% 16.5% 7.0% 0%

Gender andage groupweremissing for 1 and63 individuals, respectively. Placeof birthwasmissing for 91 individuals, parents place of birthwasmissing for 39 individuals.Grand-parents placeof birthwas
missing for 235 individuals.

Table 2 | Survey respondents demographics (gender and age groups) separated by race

Total Female Male [18–24] [25–34] [35–44] [45–54] [55–64] [65+]

All respondents 103348 82226 21121 13576 35487 27804 18105 8313 9

American Indian 279 80.6% 19.4% 10.4% 22.9% 35.8% 24.0% 6.8% 0%

Asian 3461 67.6% 32.4% 18.2% 42.1% 25.1% 11.2% 3.4% 0%

Black 3044 84.3% 15.7% 14.1% 30.7% 29.1% 18.4% 7.7% 0%

Hispanic 4889 80.6% 19.4% 21.5% 34.9% 27.5% 12.4% 3.7% 0%

Native Hawaiian or Pacific Islander 129 76.7% 23.3% 10.1% 34.9% 36.4% 12.4% 6.2% 0%

White 78489 79.8% 20.2% 11.5% 33.4% 27.0% 18.9% 9.1% 0%

Other 1146 66.8% 33.2% 11.2% 34.9% 28.4% 17.0% 8.5% 0%

Multi-race 11903 81.4% 18.6% 18.9% 39.2% 25.4% 11.9% 4.5% 0%

Gender and age group were missing for 1 and 63 individuals, respectively.
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combining race and ancestry responses in more accurately imputing high-
resolution HLA for transplant matching.

Whereas incorporation of salience values (PAS) did not improve
the overall fit of our models, they do provide important insights into the
underlying dynamics in ancestry identification. Although frequently
reported, American Indian PA yields the lowest mean PAS value (16.8)
of any PA response (Fig. 3). Even among individuals who report
American Indian FA for all four of their biological grandparents, their
mean American Indian PAS value is only 49; in comparison, individuals
who report four South Asian grandparents FA report South Asian mean
PAS of 99 (p < 0.001). These results may also explain why PA provided
better overall model fit to HLA variation than FA. Notably, individuals
who identify with American Indian RC report significantly higher
American Indian PAS than those who did not (mean 26 vs.
14; p < 0.001).

Likewise, we observed complexity comparing racial self-
identification as Black with sub-Saharan African PA, furthering sup-
port for combining measures of self-identified race and ancestry in the
matching algorithms designed to improve resolution forHLA variation.
Although tracing ancestry to the original peoples of sub-Saharan Africa
is the official definition of the “Black or African American” racial
category in the U.S.3, we offered both “Sub-Saharan Africa” and
“African American” categories among our ancestry responses. Among
respondents who identified RC as Black alone (N = 3038), 67% reported
African American PA, compared to 17% who reported Sub-Saharan
African PA.We analyzed theHLA genetic distance between individuals
who identified as Black RC alone and who reported African American
ancestry only and those who reported Sub-Saharan African ancestry
only and found significant divergence (p < 0.001). One explanation for
these observations may be found in respondents’ nativity: among

Fig. 1 | Sankey diagram of connection between
racial categories and geographic ancestries selec-
ted by respondents. A Considering all respondents.
B Only respondents who selected a single race
category and a single geographic ancestry were
considered.
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respondents who identified as Black RC alone, respondents who
reported sub-Saharan African ancestry were significantly less likely to
have been born in the U.S. than those who did not report this ancestry
(84% and 93% respectively; p < 0.001). Foreign-born Black RC
respondents who reported sub-Saharan African PA also reported a
mean sub-Saharan African PAS value of 82, compared to 45 for their
U.S.-born counterparts who selected the same RC and PA respon-
ses (p < 0.001).

Participation in direct-to-consumer ancestry testing changes
patterns of self-identification
Finally, we found that self-identification reporting patterns may be
transformed by participation in direct-to-consumer genetic ancestry
testing (GAT). Approximately 5% of our respondents reported having
taken a GAT27. Overall, these individuals gave more responses for
ancestry (mean responses 2.3 vs 1.9; p < 0.001) as well as distinctive
combinations of race and ancestry reporting compared to those who did
not useGAT.Among respondentswho identified as BlackRC alone, 62%
reported sub-Saharan African PA if they had taken a GAT compared to
14% who have never taken a GAT (p < 0.001). In contrast, these groups
reported African American PA nearly equivalently at 70% and 66%,
respectively. In contrast to the larger sample, genetic distance measures
were non-significant between Black RC individuals who did or did not
report sub-SaharanAfrican PA. Likewise, amongGATparticipants, 96%
of Black respondents reporting sub-Saharan ancestry also reported being
U.S. born. In addition to sub-Saharan African PA, a number of other PA
responses were also found to differ in frequency according to whether
respondents had usedGAT. For example, amongGAT takers, American

Indian PAwas reported less often by individuals identifying asWhite RC
(pcorr = 0.004), but more often by individuals identifying as Hispanic RC
(pcorr < 0.001) compared to thosewho did not useGAT. Thus, in contrast
to individuals who did not participate in GAT, here the race response did
not improvemodel fit and racial identification appears not relevant with
respect to HLA genetic ancestry.

Discussion
Taken together, our results demonstrate that there is a place for the language
of both race and (geographic) ancestry in the specific context of matching
forHLA in donor registries. Although not used formatching itself, given the
high level of ambiguity in HLA genotyping in donor registries and the
critical role that self-identified race and ancestry play in bioinformatic
predicting high-resolution, unambiguous HLA genotypes, more accurate
self-identification of race and ancestry translates directly to more accurate
matching and improved patient outcomes. A limitation of this study is the
lack of genome-wide data for comparison to results for theHLA data. Given
the objective here to consider prediction of high-resolutionHLA genotypes,
we acknowledge that the results might not be applicable to questions con-
sidering the relationship between genetics and self-identification outside of
the registry setting. Likewise, these results are specific to the context of aU.S.
donor registry and may not be applicable to other populations, which may
be significantly more homogenous or have very different histories of
immigration.

Consideration of multiple measures here has revealed the underlying
complexity in self-identification, with substantial variance between ances-
tries. For example, we show that while a substantial number of respondents
claim American Indian ancestry, many acknowledge its relatively low

Fig. 2 | Assessment of different races and/or
ancestries models. These models represent the
observed fits of different models as predictors of
genetic (HLA haplotype) ancestry (seeMaterials and
Methods). Shown on the x-axis is the test mis-
classification error (rate of incorrect model predic-
tion) and values for McFadden’s R2 are shown on
the y-axis, which corresponds to goodness of fit. The
predictors shown are as follows: RC race category;
PR personal race; RR reflected race; PA personal
ancestry; PAS personal ancestry salience; FFA frac-
tional family ancestry; FA family ancestry.
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salience; for those who do not simultaneously identify as American Indian
in the context of race, we did not observe significant deviation in terms of
HLAgenetics fromthosewhodidnot identifywith this ancestry. Incontrast,
individuals who do select American Indian in the context of race typically
gave higher salience values to that ancestry and were genetically distinct
from those who did not. Thus, in this case racial self-identification appears
to signal both personal and biological relevance. Our results also illustrate
one of the pitfalls of using a check-all-that-apply format for reporting
geographic origins as the sole self-identification measure in the registry
setting.

Examination of HLA genetic differentiation among respondents who
identified as Black in the context of race, but have variably selected between
African American and Sub-Saharan African in the context of geographic
ancestry, underscores conversely the pitfalls in using race as the only
measure of self-identification. Here, although shared racial identification
suggests a shared social experience of “blackness,” which likely has impli-
cations for health28,29, a registry that groups donors solely by racial self-
identificationmight miss theHLA genetic variation among individuals and
their differing immigration histories, which could be important for
matching as well as understanding match disparities. For some other
ancestries, racial self-identification has even more limitation. A high pro-
portion of individuals claiming only Middle Eastern or North African
ancestry do not identify with any of the standard OMB RC’s, and rather
select Other. Likewise, South Asian ancestry is generally split between the
Other category and Asian RC (Fig. 1).

These results underscore the notion that race and ancestry are
describing distinct aspects of self-identification, which partially – but far
from completely – overlap.Moreover, these patterns vary by population,

emphasizing the need to embrace multiple measures in order to offer
appropriate options to diverse cohorts. Accordingly, our results show
that while providing important information, self-reported geographic
ancestry alone is not as good a proxy for genetic variation in the context
of HLA as when coupled with racial self-identification; there is also
ample research that shows self-reported race has a role to play in studies
of health disparities, and thus it might be important for the continued
collection of this information by registries to continue to track and
ameliorate longstanding inequalities in match rates across racial groups.
Our results for individuals participating in GAT suggest that as genea-
logical tools and technologies increase in popularity and accessibility,
individuals may move toward means of self-identification that are more
geographically, and less racially, based; this may present an important
opportunity for donor registries going forward as increasing numbers of
engaged donors employ GAT.

In conclusion, this work demonstrates that we stand to improve cur-
rent matching algorithms by recognizing the differences betweenmeasures
of race and ancestry, and leveraging the instances of empirical convergence
and divergence presented here to better reflect modes of identification that
resonate with donors.

Data availability
The full raw data that support the findings of this study are not openly
available due to reasons of sensitivity and are available from the corre-
sponding author upon reasonable request. Data are located in controlled
access data storage at the University of California San Francisco. Processed
data underlying all figures and tables (source data) are given in Supple-
mentary Data Table 1.

Fig. 3 | Density plots of personal ancestry salience
(PAS) values given by individuals who selected
specific geographic ancestry. The x-axis represents
salience values (range 0-100) provided by partici-
pants for specific ancestries.
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Code availability
Analytical codes for this study are available at https://github.com/Hollenbach-
lab/AQP_Paper1_PublicRelease, https://doi.org/10.5281/zenodo.1368551524.
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