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Whole-genome sequencing in 333,100
individuals reveals rare non-coding single
variant and aggregate associations
with height

A list of authors and their affiliations appears at the end of the paper

The role of rare non-coding variation in complex human phenotypes is still
largely unknown. To elucidate the impact of rare variants in regulatory ele-
ments, we performed a whole-genome sequencing association analysis for
height using 333,100 individuals from three datasets: UK Biobank
(N = 200,003), TOPMed (N = 87,652) and All of Us (N = 45,445). We performed
rare ( < 0.1% minor-allele-frequency) single-variant and aggregate testing of
non-coding variants in regulatory regions based on proximal-regulatory,
intergenic-regulatory and deep-intronic annotation. We observed 29 inde-
pendent variants associated with height at P < 6× 10�10 after conditioning on
previously reported variants, with effect sizes ranging from −7cm to +4.7 cm.
We also identified and replicated non-coding aggregate-based associations
proximal toHMGA1 containing variants associatedwith a 5 cm taller height and
of highly-conserved variants in MIR497HG on chromosome 17. We have
developed an approach for identifying non-coding rare variants in regulatory
regions with large effects from whole-genome sequencing data associated
with complex traits.

The role of rarenon-coding variation in commonhumanphenotypes is
still largely unknown. Previous studies have been largely limited to
studying commonvariations using genotyping arrays or rare variations
in the coding regions of genes using exome sequencing. Studies of rare
variation in the non-coding genome,which is by far themost abundant
form of inherited variation, could lead to the identification of impor-
tant gene regulatory elements with large effects on human diseases
and traits.

Most genetic variation associatedwith complexphenotypes lies in
non-coding regions of the genome1. Array-based genome-wide asso-
ciation studies have had substantial success at identifying common
variants associated with complex phenotypes and disease2. For height
a large proportion of the common variant heritability has been
explained2. In contrast, the identification of rarer variation, potentially
with substantially larger effects, has been largely limited to coding

variation based on exome sequencing (e.g., loss-of-function variants in
GIGYF1 associated with diabetes3) or imputation of lower frequency
variants2.

Despite the success of common variant and rare coding variant-
based approaches, the vast majority of inherited human genetic var-
iation is both rare and in the 99% of the genome that is non-coding.
Identifying the rare non-coding variation associated with common
diseases and traits could reveal new regulatory gene mechanisms, and
substantially increase our understanding of human biology and
disease.

Whole genome sequencing (WGS) has been successful at identi-
fying rare non-coding causes of monogenic disease in several cases4,5.
For example, we have recently shown that rare variants in an intronic
regulatory element of HK1 causes inappropriate expression of
Hexokinase 1 in pancreatic beta-cells leading to congenital
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hyperinsulinism6. However, there have been few sequencing-based
studies aiming to identify rare non-coding variation associated with
complex phenotypes7, despite estimates of the relative functional
importance of the non-coding genomeof 6–15% 8,9. Two recent studies
from TOPMed performed WGS rare-variant analysis for lipid-levels10

(N = 66,000), where they identified suggestive associations with var-
iants in DNA hypersensitivity sites proximal to PCSK9 altering lipids,
and in blood pressure11 (N = 51,456), where genomic aggregate signals
at KIF3B were identified.

Identifying associations between rare variants and complex traits
has several advantages over common variant associations. Firstly, rare
causal variants are likely to have larger effect sizes and so potentially
be of greater clinical relevance. Secondly, rare variants are less likely to
be in linkage disequilibrium with other variants and so provide more
direct information about likely causal regulatory regions and genes
involved. Finally, rare variant aggregate associations, where genetic
variants of similar predicted consequence and location are tested in
aggregate, can also provide strong evidence for specific non-coding
elements that are responsible for an association compared to single
variant associations.

We performed an analysis of height, a model complex trait,
focussedon identifyingnovel rare variant associations from large-scale
WGS data. We performed a discovery analysis using WGS data on
200,003 individuals fromUKBiobank (UKB) and replicated our results
in 133,097 individuals fromAll of Us12 and TOPMed13. We show that our
approach can identify rare single variant and aggregate associations in
the non-coding genome that have not been previously identified.
Importantly, our analytical approach to WGS-based association ana-
lyses can be applied to other complex phenotypes.

We performed discovery association analyses using WGS data on
200,003 individuals from the UKB, a population cohort from the
United Kingdom14. We analysed rank inverse-normalised standing
height, a model polygenic trait, with genomic data on 789,700,118
genetic variants including single nucleotide variants (SNVs), small
insertions/deletions (indels) and large structural variants (SVs)
including copy number deletions and duplications. To identify rare
non-coding genetic associations that have not previously been iden-
tified, we conditioned our analyses on 12,661 variants from the latest
GIANT height consortium analysis of 5.4 million people2 based on
imputed genotype array data, an exome-array analysis of height15, and
genome-wide significant (P < 5× 10�8) variants from an exome-wide
association study of height16. Our primary discovery analysis was per-
formed in 183,078 individuals of genetically-inferred European
ancestry. We also performed the same analyses in individuals with
genetically-inferred South Asian (N = 4439) and African (N = 3077)
ancestry in the UK Biobank. We replicated our results in a cross-
ancestry analysis using 87,652 individuals with WGS from TOPMed,
and 45,445, 20,548 and 13,683 individuals with genetically-inferred
European, African and self-reported Hispanic ancestry/ethnicity with
WGS data in All of Us respectively (refer to Supplementary Data 1 for a
breakdown of ancestries and cohort demographics). Statistical sig-
nificance for single variants was defined as P < 6:3 × 10�10, and
P < 6.58× 10�10 for genomic aggregates, based on 20 simulated ran-
domly generated phenotypes (see “Methods”). Association statistics
are based on a two-sided chi-squared test, unless otherwise stated.

Single Variant Association Testing
We tested all genetic variants with a minor allele count (MAC) ≥ 20,
excluding variants with a low-quality genotype calling score (graph-
Typer AA score <0.5), using REGENIE17. Variants which were associated
at the stated statistical threshold were then clumped using PLINK18,
and a sequential variant conditioning procedure was applied to
determine the variant most likely to be responsible for the signal (see
“Methods”).

Genomic Aggregate Association Testing
After annotating each variant using the Ensembl Variant Effect
Predictor19, we segmented variants in the genome into classification
groups, including gene-centric (i.e., coding and splicing; or proximal
regulatory, including 5 kb upstream and 5 kb downstream - +/− 5 kbp
from the 5/3’ UTR’s) and non-gene-centric potentially regulatory var-
iation (intergenic and intronic based on any transcript), as well as a
sliding window test that covered the whole genome, excluding exons.
We performed genomic unit aggregate testing limited to rare (within-
sample minor allele frequency, MAF <0.1%) genetic variants in func-
tionally annotated regions based on three published weights repre-
senting in silico predicted deleteriousness (Combined Annotation
Dependent Depletion, CADD20), conservation (Genomic Evolutionary
Rate Profiling, GERP21) and non-coding constraint (Junk Annotation
Residual Variation Intolerance Score, JARVIS22). Variants that were
classified as coding in any transcript were excluded from regions we
defined as proximal (within 5kbp of the 5/3’ UTR19), and variants in
proximal regions were subsequently excluded from regions defined as
non-proximal potentially regulatory regions—see the “Methods” sec-
tion for precise definitions. We refer to proximal-regulatory regions
and non-proximal regulatory regions as “proximal” and “regulatory”
respectively for the remainder of the manuscript.

Results
We identfied29 rare and low-frequencynotpreviously identified
single variants associated with human height in UKB
After adjusting for published height genetic variants (Supplementary
Data 2), 28 rare (MAF <0.1% & MAC>20) and low-frequency
(0.1% <MAF< 1%) SNVs and indels remained independently associated
with height (Fig. 1). These variants had effect sizes ranging from
−7.25 cm to +4.71 cm (−0.79 to 0.52 SD)—see Supplementary Data 3 & 4.
As expected, variants with a lower minor-allele-frequency had the lar-
gest effect estimates (Fig. 2).

We additionally identified evidence of association with a
47,543 bp structural deletion in the pseudo-autosomal region of
chromosome X (X:819,814-867,357). The proximal-SHOX deletion
occurs 173kbp downstream of SHOX, and is present in 0.3% of the
population and associates with lower height (β = −2.79 cm [−3.33,
−2.25], P = 5:01× 10�24, Supplementary Data 3). This exact deletion,
downstream of SHOX, has only previously been reported in clinical
cohorts with Leri-Weill dyschondrosteosis23, a genetic disorder char-
acterised by shortened limbs and short stature. In these clinical
cohorts, 15% had at least one copy of the 47.5kbp deletion. In the UKB
population, the deletion was present in 824 individuals (0.3%) (one
carrier was a homozygote).

Three rare single variant associations showed robust evidenceof
replication in TOPMed and All of Us
Twenty two of the 28 low-frequency SNVs/indels we identified had
consistent sign (binomial P = 1.51× 10�3), and ten showed nominal
(p < 0.05) evidence of replication in ameta-analysis of TOPMed and All
of Us when we would expect 1-2 (1.4 expected at P = 0.05)—Supple-
mentary Data 5. Three loci replicated at Bonferroni significance
(P < 0.05/27) in ameta-analysis of the replication datasets.We estimate
that in the replication dataset we are powered (power > 80%) to
replicate 9 signals at P < 0.05 and4 atP < 1.85×10−3. These variantswere
in the promoters of HMGA1 (6:34237902:G:A, β = 4.71 cm [3.41,
6.01 cm], P = 1:29 × 10�12, replication P = 6:82× 10�7), GHRH
(20:37261871:G:A, β = 1.82 cm [1.43, 2.23 cm], P = 2:52 × 10�19, replica-
tion P = 3:13 × 10�5), and proximal to CUL3 (2:224492608:T:C,
β = 2.72 cm [2.24, 3.19 cm], P = 4:29× 10�11, replication P = 4:20× 10�4).
Chromosome X data was unavailable for replication.

Wedid not identify any novel replicating associations in the South
Asian or African ancestry-specific analyses in the UKB. Only one
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genetic variant achieved genome-wide significance in an analysis of
individuals of South Asian ancestry (X:116495780:AGTGTGTGTGT:A,
P = 1.43× 10�10), but did not associate in the European (P = 0.91) or
African (P =0.98) ancestry-specific analyses (we were unable to test
this variant in All of Us or TOPMed).

We identified and replicated three rare (MAF<0.1%) non-coding
regions associated with height
We performed 57,608,498 genomic aggregate association tests, con-
sisting of 5,941,548 coding, 13,005,638 proximal regulatory, 4,861,759
intergenic/deep intronic and 33,799,553 non-coding sliding window

association tests.We performed three different types of statistical test:
i) ‘BURDEN’, where the direction of effects for all variants is assumed to
be the same, ii) ‘SKAT’, where there is no assumption about direc-
tionality or similarity of magnitude of effects, and iii) ‘ACAT’, where
there is no assumption about directionality or magnitude of effects
and not all variants need be associated with the outcome24.

We identified seven (partially overlapping) non-coding regions of
interest based on aggregate tests (P < 6.31× 10�10; Supplementary
Data 6 & 7). Four regions remained significant after adjusting for pre-
viously identified height loci (Table 1). The four regions consisted of
nine genomic aggregate tests proximal to: HMGA1, C17orf49, GH1,
CSHL1, PRR5-ARGHGAP8 and MIR6835. We did not find any novel
genomic unit associations based on African or South Asian ancestry-
specific analyses in our discovery analysis. We also did not observe
evidence of study-wide significance for any intergenic-regulatory or
sliding window aggregate associations.

The aggregate-based tests atHMGA1 andC17orf49 replicated in All
of Us and TOPMed when combined with genetically inferred indivi-
duals of South Asian (SAS) and African (AFR) in the UKB, and we were
unable to test PRR5-ARHGAP8 for replication in non-UKB analyses, as
they did not annotate fusion transcripts, and the aggregate showed no
evidence of replication in the UKB-AFR (SKAT P =0.195) or UKB-SAS
(SKAT P =0.452) analyses (Table 1).

We then performed a final analysis additionally adjusting
aggregate-based tests for variants identified in our single variant ana-
lysis. Two non-coding aggregate associations remained genome-wide
significant: C17orf49 (downstream, GERP > 2, β = 1.34 cm [95% CI 0.931,
1.66], P = 2:00× 10�11) and PRR5-ARHGAP8 (upstream, JARVIS>0.99,
P = 4:27× 10�10).

Fig. 2 | Comparisons of rare variant effect sizes with known common effects.
Variant minor-allele-frequency versus absolute effect size for the 28 genetic var-
iants (red) identified after adjusting for previously published height loci (derived
from the discovery UK Biobank analysis set; N = 183,078), contrasted against the
results of Yengo et al. 2 for common variants (grey).

Fig. 1 | Manhattan plots of a whole-genome sequencing analysis of height.
Manhattan plots of results split by single variant and genomic aggregate analysis.
From top to bottom: unconditioned single variants, single variants conditioned on
known height loci, rare ( < 0.1%minor-allele frequency) coding genome aggregates,
followed by rare non-coding genome units proximal genome aggregates, reg-
ulatory genome aggregates and sliding window aggregates. We plot–log10(p) on

the y-axis. Red horizontal lines indicate the position of genome-wide significance
considering only that panel, whilst blue indicates genome-wide significance across
the entire study. For the single variant, coding and proximal panels, loci leads are
labelled by their annotated gene based on the output of the Variant Effect Pre-
dictor. All plotted statistics were derived from the discovery UK Biobank analysis
set (N = 183,078), based on a two-sided chi-squared statistic.
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Multiple rare variants, and a common variant, form an allelic
series in a regulatory region upstream of HMGA1, with sub-
stantial effects on height
There were 2,006 rare variants included in the upstream non-coding
association for HMGA1 (High-mobility group protein) in the UKB, 603
of which had MAC ≥ 5 – Supplementary Data 1. Several variants
appeared tobe responsible for these aggregate signals (Fig. 3). The two
rare variants most strongly associated with increased height were
6:34237902:G:A (β=4.83 cm, P = 2:00× 10�13, MAF = 0.04%) and
6:34236873:C:G (β = 3.97 cm, P = 1:00× 10�10, MAF =0.0470%). The
fivemost-strongly associated variants, at P < 5.76 × 10�6 (Fig. 3C), were
statistically independent of each other, as determined by sequential
conditional testing. Our results remained statistically significant after
removing several low-quality indels (P = 1.45e-11).

The most strongly associated rare variant alters the first base of
the transcription start site of the MANE Select transcript
(ENST00000311487.9, NM_145899.3) of HMGA125 (Fig. 3). This variant
could result in reduced transcription of this transcript and may result
in an alternative start site becoming dominant.

The next four most-strongly associated variants clustered in two
adjacent enhancers in the promoter region ofHMGA1 (Fig. 3A).We also
fine-mapped a previously reported GWAS signal to the same enhancer
(6:34237688:G:GGAGCCC, MAF = 10.9%, P = 6:50× 10�103), with pos-
terior probability > 0.99 and 95% credible set of size 1 (Fig. 3B).

We next searched for evidence of a role for coding variation in the
impact of HMGA1 in height. HMGA1 is a constrained gene (pLI score
= 0.83) and there are no predicted protein truncating variants in the
UKB and only a single individual with a first exon frameshift in gno-
mAD. There was also no evidence of individual missense or aggregate
coding association with height for HMGA1 either in the UKBWGS data
(min(P) = 3.09e-4), or inGeneBass, based on 394,841 exome-sequences
from UKB (min(P) = 0.284).

Rare variants of microRNA host-gene MIR497HG affect height
There were 235 highly conserved (GERP > 2) rare variants which con-
tributed to the non-coding C17orf49 (Chromosome 17 Open Reading
Frame 49) genomic aggregate result in the UKB, cumulatively asso-
ciated with a 1.36 cm increase in height (95% CI 1.11, 1.48 cm,
P = 1:26× 10�11), 59 of which hadMAC ≥ 5 – see Supplementary Data 9.
Of the 235variants that contributed to the aggregate signal, 152 (64.7%)
had an effect estimate with the same direction of effect as the aggre-
gate (binomial P = 7:96× 10�6), suggesting that multiple variants are
responsible.

The proximal region of C17orf49 overlaps with microRNA host
cluster MIR497HG, from which microRNAs MIR195 and MIR497 are
derived (Fig. 4A). We thus re-analysed the C17orf49 proximal region
excluding miRNA variants, and additionally tested the microRNA as
independent genome units (Fig. 4B). The strength of association
between the identified C17orf49 proximal aggregate and height was
reduced after removing any variant overlapping miRNA (β = 1.11 cm,
P = 3:98× 10�5)–Supplementary Data 10. Further, the association
between a genomic aggregate of miRNA variants inMIR195 and height
wasmore than double that of the primary C17orf49 signal (β = 3.05 cm
[95% CI 1.44, 4.65 cm, P = 1:97× 10�4]), showing nominal evidence of
heterogeneity (P =0.0454) to the primary signal.

The variants contributing to theMIR497HG signal occurred in the
promoter region and in the two2miRNAproducts,MIR195 andMIR497.
This suggests the possibility of twomechanisms that contribute to the
association—variants altering the expression of the host gene
MIR497HG, and variants specifically affecting the miRNA sequence.

There is extensive literature on the genes thatMIR195 andMIR497
bind and affect expression of, while there is little previous literature
referencing C17orf49, except for a small number of studies of cancer
phenotypes26. MIR497 and MIR195 expression have been associated
with a range of genes that influence cancer27, and both have beenTa
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Fig. 4 | Identification of a regulatory region associatedwith height proximal to
C17orf49, overlapping a miRNA. A UCSC genome browser window showing
genomic features in the region of the region upstream of C17orf49, including
JARVIS score and conservation score. –log10(P) values of rare ( < 0.01%) variants
which contributed to the aggregate association are highlighted in a custom track
basedona two-sidedchi-squared test statistic. The vertical blue, red andgreen lines

show the boundaries ofMIR195,MIR497 andMIR497-HG respectively.B Forest plot
demonstrating how the effect estimate for the association between the proximal
and miRNA aggregates, depending on how variants are allocated. Error bars show
the standard error of the effect size estimate.CQQplot for variants in theC17orf49
proximal aggregate. All plotted statistics were calculated from the discovery UK
Biobank analysis set (N = 183,078) based on a two-sided chi-squared statistic.

Fig. 3 | Identification of a regulatory region associated with height proximal
to HMGA1. A UCSC genome browser window showing genomic features in the
region upstream of HMGA1, including JARVIS score, conservation score, known
ENCODE cCRE’s and consensus coding sequence. Custom track ‘Common Variants’
shows the locations and –log10(P) values of variants with MAF>0.01%, and ‘Rare
Variant Associations’ displays the locations and –log10(P) values of variants which

contributed to the genomic aggregate (MAF <0.001%). BManhattan plot showing
the distribution of log10-pvalues centred on the common GWAS signal at the
HMGA1 locus.CQQ-plot of –log10(P) values for variants whichwere included in the
aggregate test. All plotted statistics were calculated from the discovery UK Biobank
analysis set (N = 183,078) based on a two-sided chi-squared statistic.
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implicated in quiescence of skeletal muscle cells28. Reduced expres-
sion of MIR497 has also been shown to promote osteoblast prolifera-
tion and collagen synthesis29. Zhao et al. also reported an association
between down-regulation of MIR497, one of the three miRNA which
overlapped with the proximal aggregate, and idiopathic short stature
in a clinical cohort of Chinese children with short stature30 (P <0.05).
Zhang et al.31 have additionally implicated MIR497 in chondrogenesis
(cartilage development), and shown that the miRNA impacts IHH
(Indian Hedgehog Homologue), which is essential for bone
formation32.

MIR195 has also been shown to interact with HMGA1 and
affect expression. For example, it has been shown that MIR195 and
MIR497 repress HMGA1, which in turn downregulates one of the
HMGA1 downstream targets Id3, which has an inhibitory effect on
myogenic differentiation33. We therefore tested interaction of the
common HMGA1 variant and the miRNA, but did not detect an
association either at the aggregate (min(P) = 0.541) or single var-
iant (min(P) = 3.09 × 10�3) level.

Promoter variants of GH1 have substantial effects on height
Nine rare highly conserved (GERP > 2) variants contributed to the
upstream non-coding aggregate for GH1 (Growth Hormone 1) in the
UKB, 5 of which had MAC ≥ 5—see Supplementary Data 11. The aggre-
gate signal was associated with a 0.34 SD (3.11 cm) reduction in height.
One of the 9 variants, which replicated, was independently associated
with height (17:63918961:A:G, β = −4.24 cm [95% CI −5.53, −2.94 cm],
P = 1:46× 10�10, MAF = 0.04%), and has previously been reported as a
variant of unknown significance in multiple clinical cohorts for idio-
pathic short stature as NM_000515.5_c.185 T >C. These findings in
clinical cohorts of idiopathic short stature include: three carriers of the
variant we identified (c.185 T >C) were previously identified in a Sri
Lankan cohort of patients with Isolated Growth Hormone deficiency34

(IGHD); three siblings with consanguineous parents with IGHD35. The
variant was originally identified in a cohort of 41 unrelated children
with short stature, and 11 unrelated patients with IGHD36 (as −123T >C).
That study showed that that the variant occurs in a distal binding site
for POU1F136 (Pituitary-specific positive transcription factor 1), which
might regulate GH137.

Discussion
By conducting one of the largest whole-genome sequence-based
analyses to date with a focus on rare non-coding variation, we have
provided novel insights into the genetic architecture of height not
previously detected by standard array-based GWAS or exome
sequencing approaches. Our results clearly demonstrate that our
approach to analysing whole-genome sequencing data has revealed a
largely untapped potential for linking rare non-coding genetic varia-
tion to complex, common human phenotypes.

We identified six non-coding regions basedon genomic aggregate
testing, four of which contained at least one genomic aggregate that
survived adjustment for genetic variation known to impact height. We
presented evidence for replication of three of these non-coding
genomic aggregates, proximal toC17orf49,GH1 andHMGA1. These loci
implicated highly-conserved miRNA regulating gene expression, an
altered transcription start site, pituitary growth factor co-gene reg-
ulation,multiple proximal enhancers, and conservation and constraint
of genetic variation in the biology of human growth via height.

We additionally found evidence of 23 low-frequency
(0.1% <MAF < 1%) and 5 rare (MAC> 20 and MAF <0.1%) single var-
iants, after conditioning on all previously published variants. Three of
the variants identified were proximal, non-coding associations (CUL3,
HMGA1, GHRH) that showed strong evidence of replication in the All of
Us and TOPMed studies.

Our work further highlights the importance of adjusting for
common variants in rare and low frequency variant discovery analyses

to circumvent linkage-driven associations. Before adjustment for
common variants, we observed 319 rare and low frequency variants,
which dropped to 80 (non-independent) after adjusting.

We chose to report genetic aggregate results after correcting for
known variation only, despite some genes (e.g., HMGA1) containing
genetic variants that were independently significant in our analysis.
Although conditioning upon independent variants within the aggre-
gates often decreased the strength of association, we do not interpret
this as a suggestion that the association at the locus is driven entirely
by a single variant. This is a topical point for rare variant analyses: at
sufficiently high sample sizes, we predict that a large proportion of
genetic variants within an identified genetic aggregate will be inde-
pendently associated. We propose that this does not imply, however,
that the association itself is not aggregate.

There are some limitations to our study. First, we acknowledge
that our study is currently limited by sample size: a maximum allele
frequency cut-off of 0.1% for genomic aggregate restricts our analysis
to approximately 183 carriers per variant. Upcoming releases of whole-
genome sequencing data from UKB, All of Us and TOPMed will sub-
stantially increase the identification of novel findings. Sample sizes for
analysis of individuals not of inferred European genetic ancestry were
particularly limited, restricting rare variant analysis and reducing sta-
tistical power more so than for common variant analysis. We were
additionally limited to replication in non-UKB datasets: future meth-
odological advances will allow individual-level meta-analysis, sub-
stantially increasing statistical power. However, this should not
understate the significance of the replication of our findings in inde-
pendent cohorts with differing ancestral backgrounds. Further, there
is a lack of high-quality tissue-based functional data available for the
non-coding genome, which will improve as more non-coding sequen-
cing data becomes available.

In conclusion, we have identified several non-coding single var-
iants and genomic aggregate genetic loci associated with human
height using generalised annotation criteria. Our approach provides a
template for future rare-variant analyses of whole-genome sequencing
data of other complex phenotypes.

Methods
UK biobank and whole genome sequencing
The whole genome sequencing performed for UKB had an average
coverage of 32.5X, with a minimum of 23.5X, using Illumina NovaSeq
sequencing machines provided by deCODE38. The genome build used
for sequencing was GRCh38: single variant nucleotide polymorphisms
and short ‘indels’ were jointly called using GraphTypher39. deCODE
found that the number of variants identified per individual was 40
times larger than that foundusingWES in the initial 150,000 releasesof
whole genome sequences. Structural variants were called using the
same process.

Of the 200,000 individuals whose genomes were sequenced, we
found, using genetic principal components as previously described40,
there were 183,078 individuals of European ancestry in this subset of
the UK Biobank.

Genetic data format
We performed amulti-allele splitting procedure on each of the 60,648
pVCF whole genome sequencing files provided by the UK Biobank
using bcftools41 and then converted those pVCFs to PLINK18 (v1.9).bed/
bim/fam format. We then grouped multiple PLINK files together, to
produce 1196 non-overlapping PLINK files each covering approxi-
mately 2.5Mbp of the genome, which we use as input to REGENIE17

(v3.1) to perform both single variant and genome unit testing.

Common variant conditioning
We adjusted for all known loci at most 5Mbp from each variant by
further grouping each of the 1196 PLINK format files into triplets, with
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the two genotype files up- and downstream of the central PLINK file, to
ensure that a genetic variant which was close to the beginning of an
individual genome chunk was conditioned on sufficiently distant loci.
We merged genome chunks at the beginning and end of a chromo-
some, and at either end of the centromere with only one chunk, be it
downstream or upstream as appropriate.

Genetic variant exclusion
We excluded all variants fromour association analyses ifGraphTypher,
the software used to by the UK Biobank to perform genotype calling,
assigned anAAScorewhichwas less than0.538, denoting variant quality.

Single variant association testing
We performed single variant association testing on any variant with at
least 20 carriers in the population (MAC≥ 20, equivalent to a
MAF ≥ 5.46 × 10−5) due to the instability of regression estimates for
variants with very low minor allele count42. We conditioned our asso-
ciation tests on all common variants identified in the most recently
published GWAS2 as well as published exome array variants15, and
significant (P < 5:00× 10�8) exome variants published by Regeneron
for standing height16, to minimise the likelihood that our non-coding
associations were driven by known common GWAS or coding loci –
Supplementary Data 12.

Null association model
We randomly generated and performed association testing for 20
normally distributed (mean zero and unit standarddeviation) ‘dummy’
phenotypes, with an N matching that of our European ancestry ana-
lysis, in order to estimate the number of independent tests, because
Bonferroni correction is known to be over-conservative for highly
correlated tests. To determine a significance threshold, we took the
minimum p-value across all single variant and genomic unit tests
across any of the 20 simulated phenotypes, representing a 95% sig-
nificance level relative to the null.

Defining independent variants
Single variants which passed genome-wide significance were analysed
using PLINK’s clumping procedure, based on r2 < 0.001 (linkage dis-
equilibrium) and a minimum clump distance of 250kb. Variants clas-
sified as independent by PLINK then underwent a formal conditional
analysis step. For each window (as defined above) containing more
than one ‘clumped’ variant, we conditioned on the top variant in the
window, which we classify as an independent variant.

LocusZoom
We generated a LocusZoom43 plot for each genetic variant which
passed our clumping procedure, based on statistical linkage dis-
equilibrium derived from the UK Biobank whole genome sequencing
data. In these cases, all variants with MAC≥ 1 within +/− 750 kbp of the
lead variant were tested for association with height, and the lead var-
iant within the locus was determined using the PLINK clumping pro-
cedurewith amaximum r2 ≤0.001 and distance of at least 250 kbp. If a
variant passed only one of these criteria, we performed a bespoke
independence test, where significant variants are conditioned on one-
by-one until no association remains.

Genetic variant annotation
Weannotated all genetic variants usingVariant Effect Predictor (VEP)19.
Where possible, we assigned each variant to one of three classifica-
tions: coding, proximal-regulatory or intergenic-regulatory. A variant
was classified as coding if it had an impact on anexonof any transcript;
proximal-regulatory if the variant lay within a 5kbp window around a
transcript, and was not already a coding variant in any transcript, and
finally intergenic-regulatory if the variant fell within a conserved,
constrained, intronic or non-coding exon region (details below), and

was neither proximal-regulatory or coding. We additionally tested
variants in sliding windows of size 2000 base pairs, regardless of the
number of variants in each window, with proximal and coding variants
excluded to minimise hypothesis overlap.

We then assigned each variant to groupings, which we refer to as
masks, according to their predicted consequence and location. We
used five published variant scores to group variants by consequence:

Genomic evolutionary rate profiling (GERP). The GERP score is a
measure of conservation at the variant level21. We classified a variant if
it had a GERP score > 2.

phastCons score. phastCon is a window-based measure of conserva-
tion across species44: either strictly mammalian (phastCon 30), or for
all species (phast_100). We tested non-coding genome windows, i.e.,
excluding any window containing an exon, that had a phastCon score
in the top percentile.

Constrained score. Constraintwas calculated inwindowsof size 1kbp8

based on the local mutability and observed mutation rate of each
window. We tested windows with a constraint z-score greater than or
equal to four.

Splice AI (AI) score. The splice AI score45 is a measure of how well
predicted each variant within a pre-mRNA region is of being a splice
donor/acceptor, or neither. A variant was classified as a splice site with
high confidence if it had an AI > 70.

Combined Annotation Dependent Deletion score (CADD). The
CADD score20 predicts how deleterious a variant is likely to be. We
applied theCADDscoreonly to coding variants and considered loss-of-
function variants only if tagged as high confidence by VEP. Missense
variants with CADD> 25 were segregated for testing in a
separate mask.

JARVIS Score. The JARVIS score was derived to better prioritise non-
coding genetic variation for association study, based on a machine
learning model derived from measures of constraint22.

Each genome mask consisted of a number of variants with dif-
ferent consequences, based on their location, one of the above scores
and/or predicted coding consequences. For example, for a variant to
be classified asmissenseCADD> 25, itmust change a codonof an exon
of a gene transcript, and be predicted to be highly deleterious.

In Supplementary Data 13 we present the full list of consequences
assigned to each mask and classification.

We re-assigned variants that fulfilled two distinct criteria within a
givengenomeunit to avoidduplication. In these cases, a variantwas re-
labelled as a combination of the two criteria, and were attached to any
mask which selects variants from at least one of those criteria.

Pseudogenes
We assigned variants to pseudogene transcripts if they contained
pseudo-exons. However, pseudo-exons were not excluded from
proximal regions of non-pseudo gene associations, instead being tes-
ted as a regulatory genome unit. If a pseudo-exon overlapped with any
significant genome unit signal, we performed a bespoke analysis.

Association testing
All association analyses were corrected for age, sex, age squared, UK
Biobank recruitment centre (as a proxy for geography) and the first
forty genetic principal components. To account for relatedness and
genomic structure, we first ran Step 1 of REGENIE46, which generates a
background null-association model for each participant and each
chromosome, using 487,558 genetic variants extracted from the UKB
array genotypes, after LD-pruning and frequency filtering.

Article https://doi.org/10.1038/s41467-024-52579-w

Nature Communications |         (2024) 15:8549 7

www.nature.com/naturecommunications


Genome unit testing
Genomeunit testingwasperformed for variantswith amaximumallele
frequency threshold of0.1%, usingREGENIE, basedon the genetic units
specified in Supplementary Data 13. REGENIE performs four types of
genome unit tests:
1. Standard BURDEN tests, under the assumption that each variant

in a given gene unit mask has approximately the same effect size
and sign on the phenotype

2. SKAT tests, where the sign of association of each variant in the
unit is allowed to vary

3. ACAT tests, where the sign of association of each variant in the
unit can differ, and only a small number of variants in the mask
need be associated at all

4. ACAT-O, which is an omnibus test of BURDEN, SKAT and ACAT to
maximise the statistical power across the three tests

We performed each of the four statistical tests above for each
mask for which a genome unit has at least one variant. Additionally, a
singleton association test was performed for all variants with MAC= 1
in each unit. REGENIE also estimated an ‘all-mask‘ association strength
for each genome unit, which is an aggregation of the test statistics of
the individual masks. To ensure that this did not result in a mixing of
non-coding and coding association statistics, we split each gene tran-
script into a coding transcript, which we tested for all coding masks,
and a proximal transcript that we tested for all proximal masks. Reg-
ulatory genome units were either classified by their ENSR assignment,
by the extent of a 1 kb constrained window, or a phastCon conserved
window. We named sliding windows by the range of chromosomes
which they covered.

Signal Classification
Wedetermined whether a genomic unit signal was the result of the net
effect of many variants of similar consequence or driven by one var-
iant/a single loci of variants, by performing a second batch of genomic
unit association testing corrected for single variants that passed the
significance threshold in the single variant analysis.

Fine mapping
To calculate the credible set for any common variant which lay within
our rare-variant loci (single variant or aggregate), we performed a fine-
mapping procedure using the recently-released SuSiEx47 software.
SuSiEx leverages linkage-disequilibrium information across ancestries.
R2 between all variants was calculated directly from UKB WGS data,
stratified by genetically determined ancestry.

Heterogeneity calculations
We used the R-package metafor48 to calculate all heterogeneity
p-values between effect estimates, under the assumption of a fixed-
effects model.

Replication within non-European UKBB ancestries
We first attempted to replicate our results by repeating our analysis for
individuals of South Asian (SAS) and African (AFR) ancestry, with
sample sizes of 4439 and 3077, respectively.

Replication using TOPMed
We have conducted a mutual-replication analysis with TOPMed
(“Trans-Omics for Precision Medicine”), who have analysed TOPMed
WGS data using the STAARpipeline42,49,50 programme. The National
Institutes of Health and the National Heart Lung and Blood in the US
sponsored the creation TOPMed. The WGS was performed at a target
depth of >30x using DNA extracted from blood. We analysed 87,652
multi-population samples from 33 studies in the freeze 8 TOPMed
(Supplementary Data 1). The population group was defined by self-
reported information from participant questionnaires in each study

(Supplementary Note). For individuals who had unreported or non-
specific population memberships (e.g., “Multiple” or “Other”), we
applied the Harmonised Ancestry and Race/Ethnicity (HARE) method
(Fang et al. 2019; Zhang et al. 2023) to infer their group memberships
using genetic data. The population groups were thus labelled by their
self-identified or primary inferred population group. Among the
87,652 participants, 52,519 (60%) were female and 44,846 (51%) were
non-European. Additional descriptive tables of the participants are
presented in Supplementary Data 1.

Replication using All of Us
We have also conducted a mutual-replication analysis with short-read
WGS data from All of Us freeze 6, stratified by continental genetic
ancestries European (EUR), AFR, and Admixed American (AMR). The
All of Us team pre-computed principal components by projecting
All of Us into the same PC space as the Human Genome Diversity
Project and 1000 Genomes. These PCs were then used as input into a
random forest classifier to derive continental ancestry classifications.
Low-quality variants were removed from the dataset before associa-
tion analyses were performed using REGENIE17.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data cannot be shared publicly because of data availability and data
return policies of the UK Biobank. Data are available from the UK
Biobank for researchers whomeet the criteria for access to datasets to
the UK Biobank (http://www.ukbiobank.ac.uk). Summary statistics are
available at the GWAS Catalogue under accession numbers
GCST90446475 (single variants) and GCST90446476 (aggregates).

Code availability
Analysis code relating to the analyses is available via github (https://
github.com/ExeterGenetics/WGS_200k_HEIGHT/tree/main).
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