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Abstract
Key message  Analysis of the N-terminome of Physcomitrella reveals N-terminal monomethylation of nuclear-encoded, 
mitochondria-localized proteins.
Abstract  Post- or co-translational N-terminal modifications of proteins influence their half-life as well as mediating protein 
sorting to organelles via cleavable N-terminal sequences that are recognized by the respective translocation machinery. Here, 
we provide an overview on the current modification state of the N-termini of over 4500 proteins from the model moss Phy-
scomitrella (Physcomitrium patens) using a compilation of 24 N-terminomics datasets. Our data reveal distinct proteoforms 
and modification states and confirm predicted targeting peptide cleavage sites of 1,144 proteins localized to plastids and 
the thylakoid lumen, to mitochondria, and to the secretory pathway. In addition, we uncover extended N-terminal methyla-
tion of mitochondrial proteins. Moreover, we identified PpNTM1 (P. patens alpha N-terminal protein methyltransferase 1) 
as a candidate for protein methylation in plastids, mitochondria, and the cytosol. These data can now be used to optimize 
computational targeting predictors, for customized protein fusions and their targeted localization in biotechnology, and offer 
novel insights into potential dual targeting of proteins.
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Introduction

Following translation at the ribosome, the N-terminus of a 
protein is subjected to a plethora of modifications among 
which are proteolytic processing and the addition of moieties 
such as acetyl, methyl, or other functional groups (Meinnel 
and Giglione 2008; Fortelny et al. 2015). In turn, the N-ter-
minus enables subcellular targeting and determines protein 
half-life (Varshavsky 1996, 2019; Kunze and Berger 2015; 
Armenteros et al. 2019). Modifications of the N-terminus 
are introduced in a co- or a post-translational manner with 
co-translational acetylation and methionine-excision being 
among the most abundant modifications in eukaryotes (Ree 
et al. 2018; Giglione and Meinnel 2021). In plants, however, 
N-terminal acetylation also occurs in a post-translational 
manner on plastid stromal proteins after import and cleav-
age of their targeting peptide (Giglione and Meinnel 2021). 
In contrast to proteolytic trimming, amino acids can also be 
added to the apparent N-terminus of a protein in a ribosome-
independent manner (Varshavsky 1996; Tasaki et al. 2012) 
as part of the N-degron pathway for targeted proteolysis. 
Various methods such as COFRADIC (Staes et al. 2011), 
TAILS (Kleifeld et al. 2010), or HUNTER (Demir et al. 
2022) have been established and permit the characteriza-
tion of proteases, high-throughput degradomics and profiling 
of N-terminal acetylation. In turn, N-terminomics data are 
available from public databases such as TopFIND (https://​
topfi​nd.​clip.​msl.​ubc.​ca) for various organisms including 
human, mouse, yeast, and Arabidopsis.

In contrast, almost no N-terminomics data were available 
for the model plant Physcomitrella (Physcomitrium patens; 
Lueth and Reski 2023). This moss is a versatile model sys-
tem for evo-devo studies (Horst et al. 2016), plant physiol-
ogy (Decker et al. 2017; Wiedemann et al. 2018), and evolu-
tion of metabolic pathways (Renault et al. 2017; Knosp et al. 
2024) due to its interesting evolutionary position at the early 
divergence of land plants (Rensing et al. 2008). It has further 
proven to be a valuable system for proteomic and proteog-
enomic research due to its easy and axenic culture condi-
tions (Hohe et al. 2002) enabling highly reproducible and 
even GMP-compliant culture conditions (Sarnighausen et al. 
2004; Heintz et al. 2006; Mueller et al. 2014; Hoernstein 
et al. 2016, 2018; Fesenko et al. 2019, 2021). Besides broad 
application in basic research, Physcomitrella is employed 
as a production platform for recombinant biopharmaceuti-
cals in GMP-compliant bioreactors (Decker and Reski 2020; 
Ruiz-Molina et al. 2022; Tschongov et al. 2024). Further-
more, genomic and transcriptomic resources are well estab-
lished and publicly available (Lang et al. 2018; Perroud et al. 
2018; Fernandez-Pozo et al. 2020; Bi et al. 2024).

Here, we provide a snapshot of the N-terminome of 
the moss Physcomitrella with a focus on the cleavage of 

N-terminal targeting sequences, N-terminal acetylation, 
and N-terminal monomethylation. The data were com-
piled using 24 datasets from various experimental setups 
and subsequent N-terminal peptide enrichment using a 
modified TAILS approach. We reveal apparent N-terminal 
methylation not only of plastid and cytosolic proteins but 
also of mitochondrial proteins. Furthermore, we provide 
a list of confirmed targeting peptide cleavage sites along 
with a candidate list of proteins which are dually targeted 
to plastids and mitochondria as well as to mitochondria 
and the cytosol. With this, we provide a resource for basic 
research as it contains information about translation of 
splice variants as well as post-translational and post-tran-
scriptional processing of proteins. Moreover, targeting of 
recombinant proteins to plastids of Nicotiana benthamiana 
(Maclean et al. 2007) or the extracellular space in Phy-
scomitrella (Schaaf et al. 2005) enabled high yields of the 
desired recombinant product. Consequently, our present 
data also provide a comprehensive resource for further 
customized recombinant protein production and targeting 
in Physcomitrella.

Results and discussion

Overview of identified N‑termini

The present data provide a qualitative overview of the N-ter-
minome of the moss Physcomitrella using a compilation of 
24 datasets from N-terminal peptide enrichments from dif-
ferent tissues, treatments, and different sample processing 
protocols. The datasets were obtained during method estab-
lishment for various purposes not related to the analysis per-
formed in this study, and hence the data were only assessed 
qualitatively and will not allow any cross-sample compari-
son. A table providing details about the sample type, tissue 
employed, and other experimental parameters is available 
from Supplemental Table S1.

Enrichment of N-terminal peptides was performed as 
described in Hoernstein et al. (2018) with modifications. 
Free amino groups in the protein sample were blocked by 
reductive dimethylation according to Kleifeld et al. (2010) 
and depletion of internal peptides after proteolysis was per-
formed according to McDonald and Beynon (2006). Mass 
spectrometry (MS) measurements were performed on an 
LTQ-Orbitrap Velos Pro (ThermoScientific, Waltham, MA, 
USA), and raw data were processed and searched with Mas-
cot (Matrix Science, Chicago, IL, USA). All database search 
results were loaded in Scaffold5™ (V5.0.1, https://​www.​
prote​omeso​ftware.​com) software and proteins were accepted 
with a ProteinProphet™ (Nesvizhskii et al. 2003) probabil-
ity of at least 99% and a minimum of 1 identified peptide. 
Peptides were accepted at a PeptideProphet™ (Keller et al. 
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2002) probability of at least 95% and a Mascot ion score of a 
least 40 (Supplemental Table S2). Using these settings, from 
a total of 24 datasets, we identified 11,533 protein N-termini 
using 32,213 spectra corresponding to 4517 proteins (3,920 
protein groups) with a decoy FDR (false discovery rate) 
of 0.4% at the protein level and 0.08% at the peptide level 
(Supplemental Tables S2, S3). Approximately 20% of the 
identified N-termini represented either the initiator methio-
nine (start index 1, Fig. 1A) or the subsequent amino acid 
after cleavage of the initiator methionine (start index 2). For 
approximately 40%, a start index between 2 and 100 was 
identified, indicating proteolytic processing and cleavage 
of subcellular targeting sequences. A single experimentally 
determined N-terminus was observed in approximately 70% 
of all cases whereas for approximately 30% of the identified 
proteins, two or more N-termini were observed (Fig. 1B). 
This is in strong contrast to previous findings from proteins 
in Physcomitrella bioreactor supernatants (Hoernstein et al. 
2018) where at least two distinct N-termini were observed 
for approximately 80% of all identified proteins. Further, we 
analyzed the presence of N-terminal modifications with a 
focus on N-terminal acetylation, monomethylation, and pres-
ence of pyro-glutamate (pyroGlu) at the N-terminus. The 
latter modification can occur spontaneously or via enzymatic 
catalysis on N-terminal glutamine residues (Schilling et al. 
2008). Since pyro-glutamate formation can also occur fol-
lowing proteolysis during sample processing (Purwaha et al. 
2014), only peptides where the preceding P1 amino acid did 
not match the specificity of the employed protease (e.g., no 
peptides with K or R as preceding amino acid in the case of 
trypsin digests) were considered here.

Approximately 25% of all identified N-termini were acet-
ylated, 71% had no modification and 4% were either methyl-
ated or had N-terminal pyroGlu (Fig. 1C). The actual level 
of N-terminal pyroGlu occurrence is likely higher, but due 
to specificity ambiguity with the experimentally employed 

proteases, this cannot be analyzed further. At the protein 
level, we found approximately 76% of the nuclear-encoded 
proteins having either the retained or the cleaved initiator 
methionine (1436 protein groups, Supplemental Table S3) 
to be N-terminally acetylated (1097 protein groups, Supple-
mental Table S3). This degree is slightly below the estimated 
degree of around 90% of N-terminal acetylated proteins in 
plants (Bienvenut et al. 2012; Linster and Wirtz 2018).

Post‑import trimming of plastid proteins

Cleavable N-terminal sequences are required for subcellu-
lar and extracellular targeting of nuclear-encoded proteins. 
Their cleavage via specific proteases after translocation 
across a respective organellar membrane generates a new 
N-terminus that represents either the final N-terminus of 
the translocated protein or a new site for further proteolytic 
processing by organellar proteases. For Physcomitrella, a 
total of 8681 cleavable N-terminal targeting sequences are 
predicted (Supplemental Fig. S1) and here we compared 
our experimentally observed N-termini to these predictions 
allowing a tolerance window of ± 5 amino acids around 
a predicted targeting peptide cleavage site (Fig. 2A). In 
the following, a difference of 0 indicates agreement of an 
observed N-terminal amino acid with a predicted cleav-
age site (predicted P1 amino acid, Fig. S2A). Within this 
range, we confirm the predicted cleavage sites of 748 plastid 
targeting signals (cTP), of 57 thylakoid luminal targeting 
signals (luTP), of 154 mitochondrial presequences (mTP), 
and of 185 secretory signal peptides (SP) using our present 
N-terminomics data (Fig. S2B). This data is compiled in 
Supplemental Table S4.

Among the confirmed plastid proteins, we find approxi-
mately 42% to be N-terminally acetylated (317 protein 
isoforms, Supplemental Table S4). Apparently, N-termini 
identified around a plastid transit peptide cleavage site only 

Fig. 1   Overview of identified N-termini, N-terminal modifications, 
and identified cleavage sites of targeting peptides. A Frequency of 
identified N-terminal positions per identified protein accession. The 
start index represents the position number of the identified N-termi-
nal amino acid in the corresponding protein model. B Frequency of 
the number of identified N-termini per protein. C Bar chart depict-

ing the distribution of identified N-terminal modifications. Peptides 
bearing N-terminal pyro-glutamate (pyroGlu) were only counted if 
the preceding amino acid did not match the specificity of the applied 
protease (e.g., peptides identified with K|R in the P1 position were 
rejected in the case of trypsin digests)
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matched the predicted cleavage site exactly for approxi-
mately 47% (Fig. 2A). This percentage is strikingly higher 
in all other cases with almost 70% for thylakoid luminal 
transit peptides (Fig. 2B) and around 65% for mitochon-
drial presequences and secretory signal peptides (Fig. 2C, 
D). Further, approximately 43% of the N-termini of plastid 
proteins within the chosen difference window deviate by 
one to five amino acids upstream of the predicted cleavage 
site with decreasing frequency. This effect is less apparent 
for luminal targeting sequences (approximately 33%), mito-
chondrial presequences (approximately 22%), and secretory 
signal peptides (approximately 32%). Consequently, the 
distribution of differences between predicted and observed 
plastid transit cleavage site (Fig. 2A) indicates a successive 

proteolytic post-processing pattern of plastid proteins after 
cleavage of their transit peptide. A similar scenario with 
multiple cleavage sites around predicted plastid transit pep-
tide cleavage sites has also been observed in Arabidopsis 
(Bienvenut et al. 2012; Rowland et al. 2015).

N‑terminal modifications of plastid 
and mitochondrial proteins

Among the proteins with an identified plastid transit pep-
tide cleavage site, we found 42% protein isoforms with an 
acetylated N-terminus and almost 10% with a monometh-
ylated N-terminus (Fig. 2E). Strikingly, plastid N-termini 
being acetylated and non-modified (free), both show this 

Fig. 2   Comparison of experimentally observed N-termini with pre-
dicted organellar targeting peptide cleavage sites. Depicted are fre-
quencies of identified N-termini around a predicted targeting peptide 
cleavage site. A difference of 0 indicates an identified N-terminal 
amino acid which corresponds to the P1’ amino acid of a predicted 
cleavage site. Cleavages of plastid (A), thylakoid lumen (B), mito-
chondrial (C), and secretory (D) targeting signals were predicted with 
TargetP2.0. All data are available from Supplemental Table S4. (E) 
Bar chart depicting the distribution of plastid protein isoforms with 

confirmed cleavage of a plastid targeting peptide and their identified 
N-terminal modifications. Percentages are related to the total num-
ber of identified proteins with a cleaved N-terminal plastid targeting 
peptide (748) within a window of ± 5 amino acids around a predicted 
cleavage site. All data are available from Supplemental Table  S4. 
Frequency of identified N-termini around a predicted plastid transit 
peptide cleavage site being either acetylated (F), unmodified (free, 
(G)), or monomethylated (H). Cum. [%]: cumulative percentage (red 
points)
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successive cleavage pattern whereas monomethylated N-ter-
mini do not show this pattern (Fig. 2F–H).

This raises the question whether this processing occurs 
on both, acetylated and free N-termini, or whether only free 
N-termini are processed and subsequently acetylated. One 
explanation would be that Nα-acetylation of plastid proteins 
is incomplete and affects only a fraction of each protein iso-
form. Effectively, many N-termini of plastid proteins were 
identified in this study in a dual state, being acetylated and 
free (e.g., Pp3c18_19140V3.1, Pp3c15_7750V3.4; Sup-
plemental Table S4). In this case, Nα-acetylation would 
prevent N-terminal trimming, whereas the fraction with an 
unmodified N-terminus would be proteolytically processed 

to different levels and subsequently acetylated. This scenario 
may be supported by the fact that Nα-acetylated and free 
N-termini share a similar preference of N-terminal amino 
acids (Fig. 3), with alanine and serine being the most promi-
nent ones. Apparently, the relative amino acid frequency 
of the N-terminally acetylated plastid proteins is strikingly 
similar to the relative frequency in Arabidopsis (Huesgen 
et al. 2013). Although the plastid protease inventory is under 
active investigation (Meinnel and Giglione 2022; van Wijk 
2024), a specific protease for such N-terminal trimming 
has not yet been identified. Aminopeptidases identified in 
Arabidopsis were recently proposed to also confer trimming 
functions (Rowland et al. 2015; Meinnel and Giglione 2022), 

Fig. 3   Sequence logos of identified N-termini with different modifi-
cation states of plastid and mitochondrial proteins. “Dif” indicates the 
position difference upstream of a predicted plastid or mitochondrial 
transit peptide cleavage site. Transit peptide cleavage sites were pre-

dicted with TargetP2.0. The prediction data are available from Sup-
plemental Table S4. “n” represents the total number of non-redundant 
sequences. Sequences were aligned at the identified N-terminal amino 
acid
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but their activity was investigated on released plastid transit 
peptides in conjunction with presequence proteases (Teixeira 
et al. 2017), and not on the protein N-terminus of the cor-
responding protein.

On the other hand, a cleavage of an Nα-acetylated amino 
acid may also be possible, although until now no protease 
has clearly proven activity on acetylated N-termini of 
intact proteins. However, acylamino acid-releasing enzyme 
(AARE), a bifunctional serine protease (Tsunasawa et al. 
1975; Fujino et al. 2000; Shimizu et al. 2003; Nakai et al. 
2012; Hoernstein et  al. 2023), has a proven activity on 
Nα-acetylated oligopeptides and activity on intact proteins 
is repeatedly considered (Tsunasawa et al. 1975; Arfin and 
Bradshaw 1988; Adibekian et al. 2011). Moreover, one Phy-
scomitrella AARE isoform and the Arabidopsis AARE are 
localized not only to the cytoplasm but also to plastids and 
mitochondria (Hoernstein et al. 2023). This renders AARE 
an interesting new candidate for the processing of plastid 
proteins, especially since this protease shows a strong sub-
strate preference for Ac-Ala (Yamauchi et al. 2003; Hoern-
stein et al. 2023), the most frequent Nα-acetylated amino 
acid of plastid proteins observed here (Fig. 3).

We also identified several mitochondrial proteins that 
are N-terminally acetylated around a predicted transit pep-
tide cleavage site (Supplemental Tables S4, S5). Although 
Nα-acetylation of plastid proteins is well known, this modi-
fication has not yet been detected to a similar extent on mito-
chondrial proteins, and its apparent presence is not clear 
(Giglione and Meinnel 2021). The N-terminally acetylated 
amino acids were A, T, S, and in all cases were preceded by 
a methionine, which may also indicate alternative transla-
tion initiation. Consequently, we did not consider this to be a 
previously undiscovered modification of mitochondrial pro-
teins, but rather a co-translational modification of a shorter, 
e.g., cytoplasmic isoform, resulting from alternative transla-
tion initiation or alternative splicing. In Physcomitrella, both 
mechanisms are known to target protein isoforms to distinct 
subcellular localizations (Kiessling et al. 2004; Hoernstein 
et al. 2023). Apart from these two scenarios, dual target-
ing of proteins to plastids and mitochondria via ambigu-
ous targeting signals is also considerable. In this case, the 
N-terminally acetylated protein would represent the plastid-
localized variant. Hence, we investigated those N-terminally 
acetylated and potentially mitochondria-localized proteins 
with a focus on alternative translation initiation sites or 
splice variants that would give rise to shorter, possibly cyto-
plasmic, protein isoforms (Supplemental Table S5). Sub-
cellular targeting predictions were performed with Local-
izer, and the presence of ambiguous targeting signals was 
predicted with ATP2. In two cases (Pp3c13_17110V3.1, 
Pp3c21_2600V3.1), potential dual targeting to plastids 
and mitochondria was predicted by Localizer and ATP2, 
but alternative translation initiation from the downstream 

methionine was also likely (Supplemental Table S5). In most 
other cases, we found either a potential alternative transla-
tion initiation site (Pp3c15_21480V3.1, Pp3c4_3210V3.1) 
or alternative splice variants (Pp3c22_8300V3.1, 
Pp3c7_24050V3.2) that facilitate translation of a shorter 
open reading frame. For one protein (Pp3c9_14150V3.1, 
Pp3c9_14150V3.2), the situation remains unclear. Neverthe-
less, the present data indicate that the observed N-terminally 
acetylated proteins are localized in plastids or the cytoplasm 
rather than in mitochondria.

Besides acetylation, we also observed N-terminal meth-
ylation on plastid proteins and on mitochondrial proteins. 
Strikingly, monomethylation on plastid proteins was also 
identified predominantly not only on N-terminal alanine 
and serine but also on N-terminal methionine (Fig. 3). The 
apparent absence of a successive cleavage pattern similar 
to that observed for free or acetylated N-termini may indi-
cate a stabilizing effect of monomethylation on the modi-
fied protein. This modification is found in prokaryotes and 
eukaryotes (Stock et al. 1987) but is poorly investigated in 
plants. It has been proven for the small subunit of Rubisco 
(RbcS) in pea, spinach, barley, and corn (Grimm et al. 1997). 
Accordingly, we found the N-terminal methionine of RbcS 
to be monomethylated at its N-terminal methionine (after 
transit peptide removal, Pp3c12_19890V3.4, Supplemental 
Fig. S3) in Physcomitrella, suggesting that this modification 
of RbcS is evolutionary conserved.

Apart from those plastid proteins, we also identify 49 
mitochondrial proteins being monomethylated at their 
N-terminus, matching the predicted presequence cleavage 
site (Supplemental Table S4), including cytochrome C sub-
unit 5B (COX5B, Pp3c19_11870V3.1, Fig. S4). A strong 
overrepresentation of serine as N-terminally monomethyl-
ated amino acid was observed (Fig. 3), whereas alanine and 
serine were equally frequent on non-modified N-termini of 
mitochondrial proteins. This specificity of methylated pro-
teins in plastids and mitochondria resembles only partially 
the specificity of human NTM1A (Alpha N-terminal pro-
tein methyltransferase 1A; UNIPROT: Q9BV86) (Schaner 
Tooley et al. 2010; Wu et al. 2015) which methylates N-ter-
minal alanine and serine when followed by a proline and a 
lysine. In our data, proline and lysine were not frequently 
observed as subsequent amino acids (Fig. 3). Intriguingly, 
the observed amino acid frequency of methylated plastid and 
mitochondrial proteins rather resembles the situation in yeast 
(Chen et al. 2021). Despite RbcS, N-terminal methylation 
of plant proteins was reported only on cytosolic and plastid 
ribosomal subunits and histones (Carroll et al. 2008; Webb 
et al. 2010). Again, the N-terminal amino acid sequences 
(Webb et  al. 2010) share almost no homology with the 
methylated N-termini observed in our data. Nevertheless, 
we identified the cytosolic ribosomal subunit RPL19 to be 
methylated at its mature N-terminus (Pp3c18_14440V3.1, 
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Fig. S5), but also other likely cytosolic proteins (Supple-
mental Table S3).

Finally, we also identified several proteins that were 
methylated at their N-terminus after cleavage of a predicted 
secretory signal peptide (Supplemental Table S4). Most 
seemed to be false positive identifications due to isotope 
peak errors and were not considered further.

Knowledge of N-terminal methylation of proteins, espe-
cially in plants, is scarce, and until now the methylation of 
RbcS was considered an exception (Grimm et al. 1997; Pet-
kowski et al. 2013). In contrast, our data reveal that this 
modification affects several plastid and mitochondrial pro-
teins with similar specificity of the methylating enzyme. In 
humans, two N-terminal methyltransferases are known so 
far, NTM1 and NTM2 (Schaner Tooley et al. 2010; Pet-
kowski et al. 2013). To investigate whether homologues in 
Physcomitrella exist, we used the sequence of human NTM1 
(UNIPROT: Q9BV86) as a query for a BlastP search (Alts-
chul et al. 1997) against all Physcomitrella V3.3 protein 
models (Lang et al. 2018) using the Phytozome database 
(https://​phyto​zome-​next.​jgi.​doe.​gov) (Goodstein et al. 2012) 
and identified a single protein (Pp3c22_8670V3.1; identity 
36%, alignment length 74 amino acids) sharing the same 
protein family annotations as human NTM1A (InterPro: 
Alpha-N-methyltransferase NTM1 IPR008576; S-adenosyl-
L-methionine-dependent methyltransferase IPR029063). In a 
reciprocal BlastP search using Pp3c22_8670V3.1 (hereafter 
referred to as PpNTM1) as a query, human NTM1 appeared 
as best Blast hit, confirming the orthology. A full InterPro 
search against all Physcomitrella V3.3 protein sequences 
(Lang et al. 2018) did not reveal any further hits with this 
protein family annotation. Consistent with this, PpNTM1 
was also the only Blast hit when using the sequence of 
NTM2 (UNIPROT: Q5VVY1), a human homologue of 
NTM1, as a Blast query.

In Physcomitrella, PpNTM1 is expressed in all major tis-
sues at moderate levels (Supplemental Fig. S6). We also 
found only a single Arabidopsis homologue (AT5G44450.1) 
which is predicted to localize to plastids by both predictors. 
Interestingly, PpNTM1 is predicted via TargetP2.0 to local-
ize to mitochondria, whereas plastid localization is predicted 
by Localizer (Supplemental Table S6). Moreover, a potential 
alternative translation initiation site might be at M56 (Kozak 
Similarity Score ≥ 0.7 and < 0.8; Gleason et al. 2022a, b) 
which would not interfere with the predicted domain struc-
ture and enable cytosolic localization. We further inves-
tigated the conservation of residues with known catalytic 
function in the human isoform (Dong et al. 2015; Wu et al. 
2015) in plant homologues with a focus on bryophytes, and 
mosses in particular, including two other species from the 
same family as Physcomitrella. Surprisingly, only one of 
seven known catalytic sites is conserved in Physcomitrella 
(Supplemental Figure S7A), while all but one are conserved 

in Arabidopsis. Notably, Arabidopsis NMT1 has a three 
amino acid long “EPV” motif where the human isoform 
has the motif “DIT” (Supplemental Fig. S7A). In turn, the 
EPV motif appears to be conserved in all other plant species 
analyzed here, except the chlorophytic alga Volvox carteri 
which features an S instead of V, and Physcomitrella which 
deviates completely, even from the orthologues of its closest 
relatives (Supplemental Fig. S7A). Thus, we performed phy-
logenetic reconstruction of the aligned protein sequences by 
calculating a maximum likelihood tree (Supplemental Fig. 
S7B). The phylogeny further indicates that the accumula-
tion of changes in Physcomitrella NTM1 is species-specific. 
Finally, we checked the structure predictions from Alpha-
Fold (Jumper et al. 2021; Varadi et al. 2024). While human 
and Arabidopsis NTM1 have obvious structural similarities 
(Supplemental Fig. S7C), the predicted structure of Phy-
scomitrella NMT1 is different but of poor prediction qual-
ity (Supplemental Figure S7C). Nevertheless, the search for 
similar structures of PpNTM1 with Foldseek (van Kempen 
et al. 2023) again revealed sequences of NTM1 isoforms 
from other species such as rice (UNIPROT: Q10CT5).

Therefore, it is not yet entirely clear whether PpNTM1 
is a methyltransferase responsible for the monomethylation 
observed here, and whether, at least in Physcomitrella, it 
could be targeted to both plastids and mitochondria. The 
present data do not provide evidence for predicted transit 
peptide cleavages or alternative translation initiation for this 
protein. Hence, further research is required to investigate 
the molecular function and localization of PpNTM1. Two 
scenarios are currently conceivable: (i) The deviant Phy-
scomitrella NMT1 is responsible for the monomethylation 
of N-termini observed here. A targeted gene ablation based 
on highly efficient homologous recombination (Hohe et al. 
2004) would result in knockout mutants with no or drasti-
cally reduced monomethylated N-termini. (ii) In addition 
to NMT1, at least one other enzyme is responsible for the 
observed monomethylation of N-termini in Physcomitrella 
and possibly also in other plants.

Conclusion

In the present study, we used a compilation of 24 proteomic 
datasets obtained from different experiments to gain first 
insights into the N-terminome of the model plant Physcom-
itrella. We found that the percentage of N-terminal acetyla-
tion of cytosolic proteins appears slightly lower than the 
estimated percentage in Arabidopsis. Our data allow the 
confirmation of hundreds of predicted targeting peptide 
cleavage sites localizing proteins to plastids. These data can 
now be used to optimize computational targeting predictors, 
for customized protein fusions and their targeted localiza-
tion in biotechnology, and provide new insights into the 

https://phytozome-next.jgi.doe.gov
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potential dual targeting of proteins. Furthermore, we show 
that N-terminal monomethylation is a previously unknown 
modification of mitochondrial proteins. The function and 
effects of this modification need to be further analyzed, but 
we propose PpNTM1 as a candidate for protein methylation 
in plastids, mitochondria, and the cytosol.

Methods

Cell culture

For all experiments, Physcomitrella WT (new species 
name: Physcomitrium patens (Hedw.) Mitt.; Medina et al. 
2019) ecotype “Gransden 2004” available from the inter-
national Moss Stock Center (IMSC, www.​moss-​stock-​
center.​org, #40001) was used. Cultivation was performed 
using Knop medium (Reski and Abel 1985) containing 
250 mg/l KH2PO4, 250 mg/l KCl, 250 mg/l MgSO4 × 7 H2O, 
1,000 mg/l Ca(NO3)2 × 4 H2O and 12.5 mg/l FeSO4 × 7 H2O 
(pH 5.8). According to Egener et al. (2002) and Schween 
et al. (2003) 10 mL of a microelement solution (309 mg/l 
H3BO3, 845 mg/l MnSO4 × 1 H2O, 431 mg/l ZnSO4 × 7 H2O, 
41.5  mg/l KI, 12.1  mg/l Na2MoO4 × 2  H2O, 1.25  mg/l 
CoSO4 × 5 H2O, 1.46 Co(NO3)2 × 6 H2O) was added per 
liter of medium. Gametophores were either cultivated on 
plates containing 12 g agar per liter liquid medium or on 
hydroponic ring cultures as described in Erxleben et al. 
(2012) and Hoernstein et al. (2016). Hydroponic gameto-
phore cultures were started from protonema culture that was 
dispersed weekly using an Ultra Turrax (IKA, Staufen, Ger-
many) at 18,000 rpm for 90 s. All cultivation was done at 
25 °C in a day/night cycle of 16 h light with a light intensity 
of 70 µmol/sm2 and 8 h dark.

Treatments

Treatment with the proteasome inhibitor epoxomicin (Pep-
tide Institute Inc., Osaka, Japan) was done using gameto-
phores cultivated on agar plates. Gametophores were har-
vested and incubated in 10 mL Knop medium containing 
20 µM epoxomicin for 24 h (enrichment II, Supplemental 
Table S1). Red-light treatment (enrichment III, Supple-
mental Table S1) was done using hydroponic gametophore 
cultures. Cultures were incubated for 3 days in a red-light 
chamber at 650 nm. In addition, 50 µM of the proteasome 
inhibitor MG132 (Selleckchem, Houston, TX, USA) were 
applied in the culture medium at the beginning of the treat-
ment. Dark treatments (enrichment V and VI, Supplemen-
tal Table S1) were done by wrapping the entire boxes of 
hydroponic gametophore cultures in aluminum foil for the 
indicated time and wrapped boxes were cultivated further 
at the same conditions as before. Proteasome inhibition of 

gametophores during dark treatment (enrichment VI, Sup-
plemental Table S1) was done by submerging a hydroponic 
ring culture entirely in Knop medium containing 100 µM 
MG132. The box was wrapped in aluminum foil and incu-
bated for 24 h.

Enrichment of nuclei from gametophores

Eighteen g fresh weight (FW) gametophores were harvested 
from hydroponic culture and chopped in buffer I contain-
ing 1 M 2-methyl-2,4-pentandiol, 10 mM HEPES pH 7.5, 
10 mM KCl 10 mM DTT, 0.1% PVP40, 0.1% PPI (P9599, 
Sigma-Aldrich, St. Louis, MO, USA) according to Nelson 
et al. (1994) using a custom 4 razorblade chopping device. 
The homogenate was successively filtered through a 40-µm 
and a 20-µm sieve and the flow-through was centrifuged for 
30 min at 300×g at 2 °C. The supernatant was discarded, 
and the pellets were carefully dissolved in buffer II contain-
ing 110 mM KCl, 15 mM HEPES, pH 7.5, 5 mM DTT and 
0.1% PPI. The enriched nuclei were further purified using 
three-step Percoll gradients (100%/60%/30%, 17-0891-01, 
GE Healthcare, Solingen, Germany) modified after Marien-
feld et al. (1989). The Percoll gradients were centrifuged at 
200×g at 2 °C for 30 min. The interface between 100 and 
60% was recovered as well as the pellet at the top of the gra-
dient attached to the tube wall. Both fractions were strongly 
enriched in nuclei, and thus pooled for further experiments. 
The samples were combined and washed with buffer II and 
centrifuged again for 10 min at 300×g at 2 °C. The pellet 
containing enriched nuclei was stored at − 20 °C until fur-
ther use.

Sequential protein extraction from nuclei

Pellets containing enriched nuclei were dissolved in 400 µL 
50 mM Tris–HCl, pH7.6, 1% PPI (P9599, Sigma-Aldrich) 
and sonicated (Sonopuls HD2070, Bandelin, Berlin, Ger-
many) three times for 20 s with an amplitude between 60 and 
90%. Fifty µL DNAse buffer and 50 µL DNase I (EN0521, 
Thermo Scientific, Waltham, USA) were added and the sam-
ples were incubated for 1 h at 37 °C. After centrifugation at 
20,000×g for 20 min at 4 °C, the supernatant (Tris extract) 
was recovered and directly precipitated with 5 vol ice-cold 
acetone containing 0.2% DTT overnight at − 20 °C. The 
remaining pellet was dissolved in 400 µL 50 mM Tris–HCl, 
pH 7.6, 2% Triton X-100, 1% PPI, and again sonicated three 
times as before. Again, the sample was centrifuged, and the 
supernatant (Triton extract) was also acetone-precipitated 
overnight. The remaining pellet was dissolved in 50 mM 
Tris–HCl, pH 7.6, 4% SDS, 1% PPI, 50 mM DTT and incu-
bated at 95 °C for 10 min. The sample was centrifuged, and 
the supernatant was acetone-precipitated overnight. All 
acetone precipitations were centrifuged at 20,000×g at 0 °C 

http://www.moss-stock-center.org
http://www.moss-stock-center.org
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for 15 min. The supernatant was discarded, and the remain-
ing protein pellet was washed for 1 h with 1 vol ice-cold 
acetone without DTT. The centrifugation step was repeated, 
and the supernatant was discarded afterward. The remain-
ing protein pellets were air dried and stored at −20 °C for 
further experiments.

Sequential protein extraction from gametophores

One to two g FW of gametophores were ground in liquid 
nitrogen for 10–15 min. The fine powder was dissolved in 
Tris buffer containing 40 mM Tris–HCl, pH 7.6, 0.5% PVPP, 
and 1% PPI. The homogenate was sonicated for 15 min and 
afterward centrifuged at 20,000 × g at 4 °C for 30 min. The 
supernatant (Tris extract) was recovered. The remaining pel-
let containing cell debris was dissolved in 40 mM Tris–HCl 
pH 7.6, 2% Triton X-100, 1% PPI and again sonicated for 
15 min. Again, centrifugation was performed at 20,000×g 
at 4 °C for 30 min and the supernatant (Triton extract) 
was recovered. Protein concentrations of the extracts were 
directly determined via the Bradford assay (Bradford 1976) 
and aliquots corresponding to 100 µg protein were precipi-
tated with acetone containing DTT as described before.

Enrichment of N‑terminal peptides

The dimethylation reaction was carried out according to 
Kleifeld et al. (2010) with some modifications. Protein pel-
lets were dissolved in 100 mM HEPES–NaOH pH 7.5, 0.2% 
SDS. Reduction of cysteine residues was carried out using 
Reducing Agent (NP0009, Life Technologies™, Carlsbad, 
USA) 1:10 at 95 °C for 10 min or Bond-Breaker® (77,720, 
Thermo Scientific) 1:100 at 28 °C for 30 min. Alkylation 
was performed at a final concentration of 100 mM iodoacet-
amide for 20 min at RT. The dimethylation reaction was 
carried out by adding 2 µL of a 4% formaldehyde solution 
(Formaldehyde 13C, d2 solution, 596,388, Sigma-Aldrich 
or Formaldehyde-D2, DLM-805-PK, Cambridge Isotope 
Laboratories Inc.) and 2 µL of a 500 mM NaCNBH3 solu-
tion per 100 µL sample at 37 °C for 4 h. The same volumes 
of formaldehyde and NaCNBH3 were added again to the 
sample, and the reaction was carried out overnight at 37 °C. 
The dimethylation reaction was stopped by adding 2 µL of 
a 4% NH4OH solution per 100 µL sample for 1 h at 37 °C. 
Afterward, the samples were precipitated as described before 
using acetone without DTT for at least 3 h at − 20 °C. The 
final enrichment was modified according to McDonald and 
Beynon (2006).

SDS‑based enrichment

The dried protein pellets were dissolved in binding buffer 
according to McDonald and Beynon (2006) containing 

20 mM NaH2PO4, 150 mM NaCl pH 7.5 with 0.2% SDS 
and in solution digest using either trypsin (V5280, Pro-
mega, Madison, USA), GluC (90,054, Thermo Scientific) 
or chymotrypsin (V1062, Promega) was performed at an 
enzyme-to-substrate ratio of 1:25 for 4 h at 37 °C (trypsin, 
GluC) or 25 °C (chymotrypsin). Then the ratio was increased 
to 1:20 and the reaction was carried out overnight. Enrich-
ment of N-terminal labeled peptides was carried out using 
200 µL NHS-sepharose slurry (17-0906-01, GE Healthcare, 
Solingen, Germany) per 100 µg protein. The slurry was cen-
trifuged for 30 s at 200×g. The supernatant was discarded 
and 400 µL ice-cold 1 mM HCl was added. The slurry was 
centrifuged again, and the supernatant was discarded. After-
ward, the sepharose was washed with 1 mL binding buffer 
without SDS. The samples were applied to the prepared 
sepharose and incubated for 4 h at RT. The sepharose was 
again centrifuged, and the supernatant was transferred to a 
new tube containing freshly prepared sepharose. The used 
sepharose was washed with 20 µL binding buffer and the 
supernatant was also added to the freshly prepared sepha-
rose. The enrichment reaction was carried out overnight at 
4–8 °C. The enriched peptides were desalted using 200 µl 
C18 StageTips (SP301, Thermo Scientific) that were supple-
mented with an additional layer of Empore™ SPE Disk C18 
material (66883-U, Sigma-Aldrich). The tips were washed 
prior to use with 100 µl 0.1% TFA and subsequently with 
100 µl 80% ACN, 0.1% TFA. The tips were again equili-
brated with 100 µl 0.1% TFA and the samples were loaded 
afterward. The remaining sepharose was washed with 50 µl 
binding buffer and the supernatant was also transferred to 
the tip. The tips were washed with 100 µl binding buffer and 
the retained peptides were eluted with 300 µl 80% ACN, 
0.1% TFA. The eluate was vacuum dried and the samples 
were stored at −20 °C until further analysis.

RapiGest‑based enrichment

The dried protein pellets were dissolved in 50  mM 
HEPES–KOH, 0.1% RapiGest surfactant (RPG, 18,600,186, 
Waters, Milford Massachusetts, USA). Proteolytic digest was 
performed as described before. After digestion, the RPG sur-
factant was cleaved by acidifying the sample to pH 2 using 
TFA as recommended by the manufacturer. The cleavage 
was performed at 37 °C for 45 min. Insoluble RPG remnants 
were removed by centrifugation at 13,000 rpm for 10 min 
at RT. The peptide-containing supernatant was subjected to 
solid-phase extraction using SampliQ C18 cartridges (1 ml, 
100 mg, 5982–1111, Agilent, Santa Clara, USA). Prior to 
the extraction, the cartridge was washed successively with 
1 ml 0.1% TFA,0.1% TFA in 80% ACN, 0.1% TFA. Then 
the peptide solution was applied and washed with 1 ml 
0.1% TFA. The peptides were eluted in 600 µl 0.1% TFA 
in 80% ACN and vacuum dried. The dried peptides were 
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stored at − 20 °C until further use. For enrichment of the 
N-terminal peptides, the dried and purified peptides were 
dissolved in binding buffer as described before without SDS, 
and the enrichment using NHS-sepharose was performed 
accordingly. Finally, the enriched N-terminal peptides were 
desalted again using SampliQ C18 cartridges as described 
before. The dried peptides were stored at − 20 °C until mass 
spectrometric analysis.

Mass spectrometry

NanoLC–MS/MS analyses were performed on an LTQ-
Orbitrap Velos Pro (ThermoScientific) equipped with an 
EASY-Spray Ion Source and coupled to an EASY-nLC 
1000 (Thermo Scientific). Peptides were loaded on a trap-
ping column (2 cm × 75 µm ID. PepMap C18 3 µm particles, 
100 Å pore size, Dionex, Thermo Scientific) and separated 
either on a 25 cm EASY-Spray column (25 cm × 75 µm ID, 
PepMap C18 2 µm particles,100 Å pore size) with a 30 min 
linear gradient from 3 to 30% ACN (V5280, Promochem) 
and 0.1% FA (56302, Thermo Scientific), or on a 50 cm 
EASY-Spray column (50 cm × 75 µm ID, PepMap C18 2 µm 
particles, 100 Å pore size, Dionex, Thermo Scientific) with 
a 360 min linear gradient from 3 to 30% ACN and 0.1% 
FA in the case of in solution digested proteins such as the 
enriched N-terminal peptides. MS scans were acquired in 
the Orbitrap analyzer with a resolution of 30,000 at m/z 400, 
MS/MS scans were acquired in the Orbitrap analyzer with 
a resolution of 7500 at m/z 400 using HCD fragmentation 
with 30% normalized collision energy. A TOP5 or TOP10 
data-dependent MS/MS method was used. Dynamic exclu-
sion was applied with a repeat count of 1 and an exclusion 
duration of 30 s or 2 min in the case of long gradients. Singly 
charged precursors were excluded from selection. Minimum 
signal threshold for precursor selection was set to 50,000. 
Predictive AGC was used with a target value of 106 for MS 
scans and 5 × 104 for MS/MS scans. Lock mass option was 
applied for internal calibration using background ions from 
protonated decamethylcyclopentasiloxane (m/z 371.10124). 
Electron-transfer dissociation (ETD) fragmentation was 
performed with 35% normalized collision energy. A TOP5 
data-dependent MS/MS method was used. Dynamic exclu-
sion was applied with a repeat count of 1 and an exclusion 
duration of 30 s. Singly charged precursors were excluded 
from selection. Minimum signal threshold for precursor 
selection was set to 75,000. Predictive AGC was used with 
AGC target a value of 106 for MS scans and 5 × 104 for 
MS/MS scans. ETD activation time was set to 250 ms for 
doubly charged precursors, 166 ms for triply charged precur-
sors and 125 ms for quadruply charged precursors, and the 
AGC target was set to 200,000 for fluoranthene. Lock mass 
option was applied for internal calibration in all runs using 
background ions from iron(III) citrate (m/z 263.956311).

Raw data processing and database search

Raw data were processed with Mascot Distiller (V2.8.3.0, 
https://​www.​matri​xscie​nce.​com/) and database searches 
were performed using Mascot Server (V2.7.0, https://​www.​
matri​xscie​nce.​com) against a database containing all V3 
Physcomitrella protein models (Lang et al. 2018) as well 
as their reversed sequences as decoys. In parallel, a search 
was performed against a database containing the sequences 
of known contaminants, such as keratin (269 entries, avail-
able on request). For all samples, semi-specific protease 
specificities were chosen and in the case of tryptic digests, 
the specificity was set to semi-ArgC. Variable modifications 
were Gln > pyro Glu (N term Q) − 17.026549 Da, oxida-
tion (M) + 15.994915 Da, acetyl (N-term) + 42.010565 Da, 
13C,D2 dimethyl (N-term) + 34.063117 Da, hybrid-methyla-
tion (N-term) + 31.047208 (13CD2CH2) Da and deamidation 
of asparagine (N) + 0.984016 Da. Fixed modifications were 
carbamidomethyl (C) + 57.021464 Da and 13C,d2 dimethyl 
(K) + 34.063117 Da. In the case of samples dimethylated 
with D2 formaldehyde, the dimethylation (K, N-term) mass 
shift was + 32.056407 Da and hybrid methylation (N-term) 
was set to + 30.043854 Da (C2D2H2). A precursor mass toler-
ance of ± 8 ppm and a fragment mass tolerance of ± 0.02 Da 
were specified. Search results were loaded in Scaffold5™ 
software (V5.0.1, https://​www.​prote​omeso​ftware.​com/) 
using the high mass accuracy scoring and independent sam-
ple grouping method.

Computational analysis

The presence of cleavable N-terminal targeting signals 
(plastid, mitochondrion, secretome) was performed with 
TargetP2.0 (Armenteros et al. 2019) and in selected cases 
with Localizer (Sperschneider et al. 2017). Ambiguous tar-
geting to plastids and mitochondria in Physcomitrella was 
predicted with ATP2 (Fuss et al. 2013). Potential alternative 
translation initiation was predicted with TIS (https://​www.​
tispr​edict​or.​com/) (Gleason et al. 2022a, b). All plots and 
tables were created using custom PERL scripts and R (R 
Core Team 2024).

Multiple sequence alignment and phylogenetic 
reconstruction

The amino acid sequence of human NTM1 (UNIPROT: 
Q9BV86) was used as the query in BLASTP-like searches 
with DIAMOND (Buchfink et al. 2021) in “ultra-sensitive” 
mode against the proteomes of Anthoceros angustus (Zhang 
et al. 2020), Amborella trichopoda (Amborella Genome Pro-
ject et al. 2013), Arabidopsis thaliana (Cheng et al. 2017), 
Calohypnum plumiforme (Mao et al. 2020), Ceratodon pur-
pureus (Carey et al. 2021), Funaria hygrometrica (Kirbis 

https://www.matrixscience.com/
https://www.matrixscience.com
https://www.matrixscience.com
https://www.proteomesoftware.com/
https://www.tispredictor.com/
https://www.tispredictor.com/
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et al. 2020), Marchantia polymorpha (Bowman et al. 2017), 
Oryza sativa (Ouyang et al. 2007), Physcomitrella (Lang 
et al. 2018), Physcomitrellopsis africana (Vuruputoor et al. 
2024), Selaginella moellendorffii (Banks et al. 2011), Sphag-
num fallax (Healey et al. 2023), Sphagnum magellanicum 
(Healey et al. 2023), Takakia lepidozioides (Hu et al. 2023), 
and Volvox carteri (Prochnik et al. 2010). Best hits were 
validated by reciprocal BLAST and aligned with MAFFT 
(Katoh and Standley 2013) in “localpair” mode with a maxi-
mum of 1000 iterations. Phylogenetic reconstruction was 
performed using RAxML-NG (Kozlov et al. 2019) using the 
“JTT-DCMUT + G4” model and 1000 bootstrap replicates, 
rooted at the split between human and plants and visualized 
using R (R Core Team 2024) and the ggtree package (Yu 
et al. 2017).
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