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Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of 
developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. 
Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic 
determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and 
epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, 
which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of 
MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein 
themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as 
epigenetic modifiers of MAFLD development and progression.
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Introduction

Metabolic dysfunction-associated fatty liver disease 
(MAFLD) defines fatty liver disease related to systemic 
metabolic dysregulation due to insulin resistance [1]. 
MAFLD is a multifactorial disease that encompasses a 
spectrum of pathological conditions, ranging from simple 
steatosis (MAFL), MASH, and fibrosis/cirrhosis which can 
lead ultimately to hepatocellular carcinoma (HCC) [2]. This 
condition was previously known as non-alcoholic fatty liver 
disease (NAFLD), and is now also referred to as metabolic 
dysfunction-associated steatotic liver disease (MASLD) [3]. 
Between 1999 and 2022, MAFLD-related mortality rate 
increased from 0.2 to 1.7 per 100,000 individuals. Hence, 
it is estimated that the number of MAFLD death will rise 

along with the risk of type 2 diabetes (T2D) and cardiovas-
cular disease [4]. People with MAFLD have metabolic dys-
function triggered by excess adiposity and insulin resistance, 
and features of the metabolic syndrome including dyslipi-
demia, hypertension, hyperglycemia, and pro-inflammatory 
state [5]. Indeed, a positive energy balance due to excess in 
food intake and sedentary lifestyle leads to excess adipos-
ity and potentially ectopic lipid accumulation in the liver 
and insulin resistance [6]. Adipose tissue insulin resistance 
causes increased lipolysis with excess circulating free fatty 
acids (FFA) flux to the liver, while at the same time hyper-
insulinemia promotes de novo lipogenesis in hepatocytes. 
When the ability of hepatocytes to get rid of excess lipids 
by secretion of lipoproteins and oxidation is overwhelmed, 
hepatic fat accumulation drives lipotoxicity, lipid peroxida-
tion, and elevated reactive oxygen species (ROS) production 
[7]. In addition, intestinal dysbiosis and enhanced intesti-
nal permeability with bacterial translocation into the liver 
contribute to inflammation [7]. In patients with MAFLD, 
T2D affects liver disease progression and advanced fibrosis 
leading to a major risk of adverse outcomes, and it is also 
associated with higher cardiovascular mortality [5].

The risk of developing MAFLD varies even among 
individuals with insulin resistance, due to a combination 
of environmental and inherited genetic factors. Environ-
mental factors, such as smoking, air pollution, and the 
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exposure to toxins, are implicated in the development 
of liver disease [7] (Fig. 1). In the last decades, major 
advances in genomics technologies and bioinformatics 
have led to a better comprehension of the causes behind 
liver disease [8]. Genome-wide association studies 
(GWAS) identified the main common genetic variants 
modulating hepatocellular lipid metabolism. However, 
all in all these loci explained less than 25% of disease 
heritability [9]. The molecular understanding of liver dis-
ease continues to be redefined since the introduction of 
“next-generation sequencing” (NGS) in clinical practice, 
which also permits to identify rare variants with a strong 
impact on protein function and to diagnose a considerable 
number of cases previously classified as “cryptogenic” 
[10, 11]. This review aims to provide an update of the 
current knowledge on MAFLD genetics and epigenetics. 
Taking into consideration that the majority of the litera-
ture focuses on NAFLD, we will extrapolate data from 
literature related to different analysis such as GWAS and 
whole-exome sequencing (WES) in NAFLD and discuss 
the recent discoveries and limitations of these approaches, 
including biological understanding, risk prediction, and 
drug development (Fig. 2).

MAFLD heritability

Epidemiological studies in multi-ethnic cohorts, and familial 
and twin studies demonstrated that inherited factors play 
an important role in determining MAFLD predisposition 
[12, 13]. The risk of advanced fibrosis is more than 12-fold 
higher in first-degree relatives of patients with MAFLD cir-
rhosis than in those without MAFLD irrespective of meta-
bolic triggers [12, 14]. Long et al. [15] demonstrated that a 
greater proportion of individuals with a parental history of 
MAFLD had hepatic steatosis as compared to those with-
out MAFLD in parents. In keeping, twin studies led to the 
estimation that about 38 and 100% of hepatic fat content 
and MAFLD variability depend on inherited factors [14]. 
Advances in nuclear magnetic resonance techniques and 
in the measurement of hepatic fat and fibrosis by transient 
elastometry showed again that these traits are inherited for 
about 50% [13, 16]. Studies on multi-ethnic cohorts have 
demonstrated that there is a major inter-ethnic variability in 
MAFLD susceptibility which is high in people of Hispanic 
and East Asian ancestry, intermediate in Europeans, and 
lower in individuals with African ancestry [17, 18]. Interest-
ingly, the rs738409 variant encoding for PNPLA3 p.I148M 
accounts for a large fraction of the inter-ethnic variability 

Fig. 1  Heterogeneous factors lead to MAFLD, including ethnicity, 
sex, dietary habits, genetic predisposition, age, gut microbiota, and 
metabolic status. MAFLD is present if hepatic steatosis occurs with 
either obesity or overweight (BMI > 25 kg/m2 in white and >23 kg/
m2 in Asian individuals), type 2 diabetes mellitus or evidence of 
metabolic dysregulation. At least two metabolic risk factors should be 
present for definition of metabolic dysregulation: waist circumference 

≥102/88 cm in white male and female or ≥90/80 cm in Asian male 
and female; prediabetes; inflammation with elevated high-sensitive 
serum C-reactive protein level; elevated blood pressure or specific 
drug treatment; decreased HDL-cholesterol levels; increased plasma 
triglycerides levels. Heterogeneous factors lead to MAFLD, including 
ethnicity, sex, dietary habits, genetic predisposition, age, gut micro-
biota, and metabolic status
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in MAFLD predisposition (see below). However, a recent 
study suggests that the protection from chronic liver disease 
in African ancestry may be mostly accounted for by still 
unknown rare genetic variants [19, 20].

Gene loci associated with MAFLD 
development by GWAS

In the last 15 years, GWAS allowed to identify the “low 
hanging fruit”, that is the main common genetic determi-
nants of MAFLD [9, 21]. The first hits were highlighted 
in the patatin-like phospholipase domain-containing 3 
(PNPLA3) [22], transmembrane 6 superfamily member 2 
(TM6SF2) [23], glucokinase regulator (GCKR) [24], and 
membrane-bound O-acyl-transferase 7 (MBOAT7) genes 
[25]. Variants at these loci modulate lipid handling by 
hepatocytes, e.g., substrate delivery for de novo lipogenesis, 
formation of lipid droplets, utilization of lipid for mitochon-
drial energy, compartmentalization of fatty acid, catabolism, 
assembly of very low-density lipoprotein, and their secre-
tion [26]. The PNPLA3 p.I148M variant (rs738409 C>G) 
accounts for the largest fraction of genetic predisposition to 
MAFLD and it increases the susceptibility to the entire spec-
trum of hepatic damage associated with MAFLD, including 
MASH, fibrosis, and HCC [22, 27]. The presence of the 
p.I148M variant facilitates the accumulation of hepatic fat 
without affecting adiposity and insulin resistance [22] and 
it increases the risk of liver-related mortality in MAFLD 
patients and in the general population [28]. The carriage 
of rs58542926 C>T encoding for the p.E167K variant of 

TM6SF2 also causes hepatic triglyceride accumulation in 
intracellular lipid droplets. TM6SF2 is a transmembrane 
protein tightly bound to the endoplasmic reticulum, which 
stabilizes apolipoprotein B (ApoB) through two intraluminal 
loops [29]. The variant destabilizes the protein [29] hamper-
ing ApoB stability, lipidation, and secretion [30, 31]. The 
TM6SF2 variant also predisposes to the full spectrum of 
liver damage, that is MASH, severe fibrosis, and HCC [23, 
32], but at the same time protects against cardiovascular 
disease through the reduction in lipoprotein secretion [33]. 
The rs641738 C>T variant situated 500 bases-downstream 
of the MBOAT7 gene is linked to fat deposition in the liver 
and the development of MAFLD, inflammation, fibrosis, and 
HCC [34]. The rs641738 variant is associated with lower 
hepatic mRNA and protein expression of MBOAT7, which 
is involved in the remodeling of phospholipids. The resulting 
increase in intracellular triglycerides is due to the induction 
a non-canonical pathway for triglyceride synthesis mediated 
by a futile cycle in phosphatidyl inositol metabolism [25]. 
The p.P446L GCKR variant (rs1260326) gene [24] curtails 
the ability to inhibit glucokinase in response to fructose-
6-phosphate, thereby causing a constitutive activation of 
hepatic glucose uptake. This process reduces circulating glu-
cose, but enhances the production of malonyl-CoA, which 
is a substrate for lipogenesis, blocking the oxidation of fatty 
acid and promoting fat accumulation in the liver [24].

In the last 2 years, recruitment of larger biobank cohorts 
led to pinpoint novel genetic determinants of MAFLD. 
Chen et  al. [35] conducted a GWAS meta-analysis of 
MAFLD identified by imaging and diagnostic codes across 
diverse ancestries 17 new loci; the study highlighted new 

Fig. 2  Genomic approaches 
to investigate MAFLD genetic 
determinants: GWAS to discov-
ery the main common genetic 
variants; biological and path-
ways analysis to provide details 
regarding GWAS-prioritized 
tissues, and genes; PheWAS of 
MAFLD-risk-increasing alleles 
to identify distinct biologi-
cal subgroupings; Mendelian 
randomization (MR) to estimate 
variant-MAFLD casual effect; 
PRS to stratify MAFLD risk 
in individuals with metabolic 
disorders; NGS techniques to 
identify rare variants involved in 
disease progression
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MAFLD-associated variants in or near fat mass and obesity 
associated (FTO), torsin family 1-member B (TOR1B), cor-
don-bleu WH2 repeat protein like 1 (COBLL1)/growth factor 
receptor-bound protein 14 (GRB14), insulin receptor (INSR), 
and sterol regulatory element-binding transcription factor 1 
(SREBF1). The alteration in the expression of these genes 
affects insulin resistance, triglyceride, and cholesterol accu-
mulation. By a phenome-wide association study (PheWAS), 
authors identified seven distinct clusters among the MAFLD 
variants and their associations with related phenotypes 
and cellular localization of the resulting protein product. 
In particular, alterations in PNPLA2, INSR, SREBF1, and 
COBLL1 were grouped in “insulin resistance MAFLD sub-
type”; mutations in GCKR and TRIB1 in “alteration of glu-
cose level subtype”, variants in GPAM, MARC1, TOR1B, 
ADH1B, and MBOAT7 in “triglyceride diversion/reduction 
subgroup”, APOE variants in “high/normal lipoprotein”, 
FTO variants in “low lipid burn subtype”, alterations in 
MTTP in “intestinal absorption” subgroup, and mutations 
in PNPLA3, TM6SF2, and PTPRD in “Low lipoprotein out-
put” in subtype [35].

Furthermore, variants associated with cirrhosis trough 
alcohol consumption were found in alcohol dehydrogenase 
1B (ADH1B), genes involved in de novo lipogenesis and 
retinol metabolism [35]. Moreover, Sveinbjornsson et al. 
[36] using magnetic resonance imaging, a meta-analysis 

of determinants of clinical MAFLD and integrating the 
results multiomics data pinpointed several genetic determi-
nants as in a gene involved in lipogenesis, Apolipoprotein H 
(APOH) and cholesterol synthesis and Glucuronidase Beta 
(GUSB) which is related to glycosaminoglycan metabolism. 
Recently, a variant in the pleckstrin and Sec7 domain-con-
taining 3 (PSD3) gene (rs71519934) was reported to reduce 
MAFLD susceptibility and it was associated with protec-
tion against MAFLD in individuals at risk. PSD3 expression 
level is increased in MAFLD patients and its downregulation 
leads to a reduction in hepatocellular lipid content in mice 
and in several hepatocyte cell lines including human primary 
hepatocytes [37]. Gene variants associated with MAFLD 
predisposition are reported in Table 1.

Polygenic risk score for MAFLD risk 
prediction

Polygenic risk scores (PRS) were developed to sum-
marize the effect variants for MAFLD, such as those in 
PNPLA3–TM6SF2–GCKR–MBOAT7, e.g., the hepatic 
fat PRS, or PRS-HFC, and then adjusted for a protected 
variant in and 17-β hydroxysteroid dehydrogenase 13 
(HSD17B13) (PRS-5) [38–40], to improve MAFLD risk 
stratification. These PRS allowed to demonstrate that genetic 

Table 1  Germline variants associated with MAFLD development

Variant Gene Function Effect MAF Phenotype

rs738409 C>G PNPLA3 Lipid droplets p.I148M 0.267 MAFLD, MASH, fibrosis, HCC
rs58542926 C>T TM6SF2 VLDL secretion p.E167K 0.074 MAFLD, MASH, fibrosis, HCC
rs1260326 C>T GCKR lipogenesis p.P446L 0.293 MAFLD, protection against diabetes
rs641738 C>T MBOAT7/TMC4 Lipid droplets 3’-UTR - p.G17E 0.388 MAFLD, MASH, fibrosis, inflammation, 

HCC
Several APOB VLDL secretion Protein changes determining LoF Rare MAFLD, MASH, fibrosis, HCC
rs17817449 G>T FTO Adipogenesis Intronic, c.46-30685T>A 0.392 MAFLD
rs7027757 G>A TOR1B TGL diversion Intronic, c.465+49G>A 0.092 MAFLD
rs13389219 A>G COBLL1 – GRB1 Adipogenesis Intergenic 0.395 MAFLD
rs112630404 A>T INSR Insulin signaling Intronic, c.653-33987A>T 0.148 MAFLD
rs4561528 C>T,G SREBP1 Lipogenesis Intergenic 0.383 MAFLD
rs140201358 G>C PNPLA2 Lipid droplets p.N252K 0.013 MAFLD
rs28601761 G>C TRIB1 Insulin signaling Intergenic 0.413 protection against MAFLD
rs2792751 T>C GPAM Lipogenesis p.I43V 0.269 MAFLD
rs2642438 A>G MARC1 TGL diversion p.T165A 0.291 protection against MAFLD
rs1229984 T>C ADH1B TGL diversion p.H48R 0.031 protection against MAFLD
rs429358 C>T APOE Lipoproteins p.C130R 0.154 MAFLD
rs10756038 A>G,T PTPRD Lipid droplets Intronic, c.-599-121406T>C 0.300 MAFLD
rs1801689 C>A APOH Lipoproteins p.C325G 0.020 MAFLD
rs6955582 A>G GUSB Lysosomes Intronic, c.1653+1032T>C 0.449 MAFLD
rs71519934 GT>AG PSD3 Lipogenesis p.T186L 0.330 protection against MAFLD
Several MTTP TGL diversion Protein change Rare MAFLD
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predisposition derived by rare combinations of common 
variants contribute to severe or early onset liver disease 
phenotypes [38]. The integration of genetics with clinical 
fibrosis scores refines individual risk and prediction for liver 
disease, mainly in subjects at risk for MAFLD. PRS pro-
vide evidence that common genetic variants capture addi-
tional prognostic insights not showed by validated clinical/
biochemical parameters [40]. Moreover, PRS improve the 
accuracy of HCC detection and may help stratify HCC risk 
in individuals with dysmetabolism, including those without 
severe liver fibrosis [38].

Rare variants predisposing to MAFLD

In the last 5 years, the advent of NGS studies has led to the 
identification of genes whose rare loss-of-function (LoF) 
variants most frequently contribute to MAFLD. Rare vari-
ants in Apolipoprotein B (APOB) predispose to MAFLD 
and they are responsible for the development of severe 
MAFLD and hypobetalipoproteinemia. Familial hypobetali-
poproteinemia (FHBL) is a codominant disorder of lipo-
protein metabolism derived from mutations in the APOB 
gene encoding for ApoB and characterized by low levels 
of LDL-cholesterol. FHBL can be caused by truncations of 
full-length ApoB-100 as short as 5% (apoB-5) and as long 
as 89% (ApoB-89) [33, 41, 42]. Rare variants in MTTP gene 
have been linked with susceptibility to MAFLD and rare and 
loss-of-function mutations in MTTP result in abetalipopro-
teinaemia. The gene encodes for microsomal triglyceride 
transfer protein (MTP) which forms a heterodimer with pro-
tein disulfide isomerase (PDI), and catalyzes the lipidation 
and assembly of ApoB [43]. These data suggest that lipopro-
tein retention in hepatocytes plays a key role in MAFLD. In 
addition, rare LoF mutations in autophagy related 7 (ATG7) 
gene modulating lipophagy and mitophagy in hepatocytes 
have been implicated in disease progression [44].

Gene loci associated with MAFLD 
progression

Through the evaluation as outcomes of severe liver disease 
phenotypes, GWAS have also led to the discovery of genetic 
variants implicated in MAFLD progression to steatohepa-
titis, fibrosis, and cirrhosis, besides in hepatic fat accumu-
lation per se. The mechanisms are related to interferences 
with oxidative stress, cell senescence, fibrogenesis, insulin 
signaling, glucose metabolism, inflammation, and lipotoxic-
ity [45]. Oxidative stress and deranged mitochondrial res-
piratory complex activity and oxidation, namely mitochon-
drial dysfunction, are considered a main contributor to liver 
injury and MAFLD progression [46]. Indeed, among the 

determinants of liver damage and cirrhosis risk in Europe are 
Homeostatic Iron Regulator (HFE) p.C282Y and p.H63D 
variants (rs1800562, rs1799945) associated with hemochro-
matosis, type 1 [47]. Excess tissue iron predisposes to the 
development and progression of MAFLD by catalyzing oxi-
dative stress [48]. Other genes whose mutations are impli-
cated in iron disorders and in MAFLD are ceruloplasmin 
(CP), serpin family A member 1 (SERPINA1), and propro-
tein convertase subtilisin/kexin type 7 (PCSK7), which is 
involved in hepatic inflammation by modulating multiple 
pathways, such as lipid, iron metabolism, and fibrogenesis 
[44, 49, 50]. Other pathways are also involved. For exam-
ple, variants in Fibronectin Type III Domain Containing 5 
(FNDC5) have been linked with fibrosis progression: the 
gene encodes for a myokine named Irisin involved in hepatic 
stellate cell activation and fibrogenesis [51, 52]. Moreover, 
concerning hepatic inflammation, two variants in interferon 
IFN-λ3/IFN-λ4 region in linkage disequilibrium among 
them were confirmed to be associated with more severe 
fibrosis in MAFLD by modulating the activation of innate 
immunity and inflammation [53, 54]. Alterations in insu-
lin signaling lead to a more severe fibrosis: examples are 
variants in Ectonucleotide Pyrophosphatase/Phosphodies-
terase 1 (ENPP1), Insulin Receptor Substrate 1 (IRS1), and 
Tribbles homolog 1 (TRIB1) [55, 56]. The main modulator 
of steatohepatitis affects HSD17B13, a lipid droplet (LD)-
associated protein that is mainly expressed in hepatocytes. 
LoF variants (mainly rs72613567: TA) of this gene mitigate 
the progression of MAFLD, reducing the risk of steatohepa-
titis, cirrhosis, and HCC. Genetic variants in HSD17B13 
result in a loss of expression and/or of enzymatic activity, 
toward retinol, steroid hormones, and other pro-inflamma-
tory lipid mediators, and increase retinol–retinol binding 
protein (RBP4)–transthyretin (TTR) transport from hepato-
cytes [57]. However, despite this evidence, the function of 
HSD17B13 and how its absence protects against MASH 
remains obscure. Finally, concerning the role of rare vari-
ants, those in ATG7 were identified as modifiers of MAFLD 
progression in Europeans by enhancing specifically the risk 
of hepatocellular ballooning (e.g., rs143545741 C>T and 
rs36117895 T>C) [58], as well as LoF mutations in Telom-
erase Reverse Transcriptase (TERT) were associated with 
liver senescence and development of HCC [59]. Variants/
genes modulating MAFLD progression are presented in 
Table 2.

Sex‑genotype epistasis in MAFLD

Excess adiposity is a main trigger of MAFLD genetic 
susceptibility [58, 60]. Sex hormones have also a major 
role in modulating liver fat content [61]. Estrogens pro-
tect against MAFLD, accounting for a lower prevalence 
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of this condition in female before menopause. In older 
male, lower testosterone levels are associated with frailty 
and increased risk of MAFLD, while, in both sexes, lower 
sex hormone-binding globulin (SHBG) circulating levels 
are associated with MAFLD [62]. High androgen levels 
in female with polycystic ovary syndrome (PCOS) lead 
to a markedly increased risk of MAFLD, as well as insu-
lin resistance and obesity [63]. Recently, Cherubini et al. 
[64] demonstrated that there is an interaction between 
sex and the common genetic variant PNPLA3 p.I148M 
in determining the development and severity of MAFLD. 
This relation, documented both at the epidemiologi-
cal and a molecular level, contributes explaining why a 
subset of Female develop rapidly progressive MAFLD 
at menopause. Indeed, estrogens protect premenopausal 
female against MAFLD operating on lipid metabolism 
at a systemic level and in hepatocytes through estrogen 
receptor alpha (ERα) [65]. Instead, following menopause, 
lower estrogens cannot inhibit de novo lipogenesis, favor-
ing import and accumulation of lipid in the liver [64]. 
Postmenopausal female carrying of PNPLA3 p.I148M 
variant has a persistent induction and accumulation of the 
mutant PNPLA3 protein in hepatocytes and consequently 

enhanced hepatic fat accumulation and fibrogenesis [64] 
(Fig. 3).

Acquired somatic variants in MAFLD

Somatic mutations are non-heritable gene variants that 
occur in aged or chronically injured somatic cells, and 
this phenomenon is also observed in livers from individu-
als with MAFLD. The acquisition of somatic variants and 
clonal expansion leads to the progression of chronic liver 
diseases into HCC [66, 67]. Somatic alterations occurring 
in genes involved in lipid metabolism are also implicated 
in MAFLD progression to cirrhosis. Indeed, in individuals 
with the most advanced liver disease, there are evidences of 
selection of somatic variants in Forkhead Box O1 (FOXO1), 
Cell Death Inducing DFFA Like Effector B (CIDEB) and 
Glycerol-3-Phosphate Acyltransferase, Mitochondrial 
(GPAM), involved in the regulation of lipid synthesis and 
the antioxidant response, leading to a reduction of hepatic fat 
accumulation possibly accounting for “burnt-out steatohepa-
titis”, as an adaptive response against chronic lipotoxicity 
[68, 69]. On the other hand, somatic variants accumulation 

Table 2  Germline variants associated with MAFLD progression

Variant Gene Function Effect MAF Phenotype

rs72613567 T>TA HSD17B13 Retinol, steroid and lipid 
metabolism

Splice c.704+2dup 0.250 protection against MAFLD, 
fibrosis, cirrhosis and 
HCC

rs762623 G>A CDKN1A modulation of cell cycle 
regulator p21

Intronic, c.-141-7G>A 0.118 fibrosis and in cell senes-
cence

rs3480 A>G FNDC5 hepatic stellate cells activa-
tion

Intronic, c.*1730C>T 0.565 fibrosis

Several TERT cell senescence Protein change Rare Fibrosis, cell senescence, 
HCC

rs12979860 C>T IFN-λ4 activation of innate immu-
nity and necroinflam-
mation

Intronic, n.429-152G>A 0.310 fibrosis

rs236918 G>C PCSK7 sTfR generation and iron 
homeostasis

Intronic, c.1156-1135 0.154 Dyslipidemia, fibrosis, iron 
overload

rs1044498 A>C ENPP1 Insulin signaling p.K121Q 0.177 fibrosis
rs1801278 G>A IRS1 Insulin signaling p.G972R 0.062 fibrosis
rs1800562 A>G; 

rs1799945 C>G
HFE Iron metabolism p.C282Y; p.H63D 0.038; 0.099 Iron overload, MAFLD

Several CP Iron metabolism Protein change Rare Iron overload, MAFLD
rs28929474 G>A SERPINA1 ER stress, iron metabolism p.E366K 0.013 Iron overload, MAFLD
rs143545741 C>T; 

rs36117895 T>C
ATG7 Autophagy p.Pro426Leu; p.V471A 0.001; 0.036 MAFLD

rs4374383 G>A; MERTK Fibrogenesis Intronic, 
c.2079+3127A>G

0.579 MAFLD, fibrosis

rs3750861 G>A KLF6 Regulation of de novo lipo-
genesis fibrogenesis

Intronic, c.103-27G>A 0.077 MAFLD
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occurring in genes involved in chromatin remodeling [i.e., 
AT-Rich Interaction Domain 1A (ARID1A), AT-Rich Inter-
action Domain 2 (ARID2), and Lysine Methyltransferase 
2C (KMT2C)] and in cell differentiation and migration (i.e., 
RAS, MAPK, AKT, mTOR, and MET pathways) contribute 
to hepatic inflammation and carcinogenesis [67, 70]. Impor-
tantly, while germline common and rare variants affect pri-
marily hepatocyte triglyceride homeostasis and inflamma-
tion that are the initial disease stage, the somatic ones are 
mostly present in the late stage.

In regards to HCC, it is not surprising that somatic muta-
tions in TERT promoter account for 60% of HCC cases 
[71]. Alterations in TERT promoter cause the reactivation 
of telomerase reverse transcriptase causing telomere re-elon-
gation and immortalization of the neoplastic clone; these 
variants occur not only in cancer tissue but also in early 
cirrhotic tissue (6–19%) highlighting their importance in 
the disease progression and tumorigenesis [72]. Similarly, 
another frequent gene affected by somatic variants is Tumor 

Protein P53 (TP53) (45% of HCC cases), a tumor suppres-
sor protein involved in the maintenance of genome integ-
rity inducing cell cycle arrest, apoptosis, and senescence 
in response to cellular stress [73]. Aberrant reactivation of 
Wnt-β-catenin pathway due to somatic alterations in Catenin 
Beta 1 (CTNNB1) is present in 30% of the cases, while for 
10% of the cases mutations involved Axin 1 (AXIN1) gene 
[74, 75]. Furthermore, recent studies have shown an excess 
of somatic variants predisposing to clonal haematopoiesis 
of indeterminate potential (CHIP), a precursor of hemato-
logic cancer, in individuals with MAFLD. Somatic muta-
tions in Tet Methylcytosine Dioxygenase 2 (TET2), ASXL 
Transcriptional Regulator 1 (ASXL1), and Janus Kinase 2 
(JAK2) genes are implicated in CHIP [76]. In general CHIP 
may induce chronic liver disease progression via an aberrant 
inflammatory response [77, 78]. Also, CHIP is relatively 
common in patients with solid tumor malignancies and it is 
associated with adverse outcomes of hematologic malignan-
cies. However, it is fair to say that the risk associated with 

Fig. 3  Genetic determinants of MAFLD, classified according to 
the biological processes by which the encoded proteins are thought 
to contribute to the pathogenesis. Red arrows indicate pathological 

processes/lipid fluxes, whereas green arrows indicate beneficial path-
ways. Pathophysiological processes are indicated in red, while genes, 
and cellular and liver compartments in black
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CHIP for progressive MAFLD is negligible as compared to 
blood cancer. Several examples of genes in which somatic 
variants occur are reported in Table 3.

Epigenetic alterations in MAFLD

Epigenetic factors are stable modifications of chromosomes/
DNA that modify gene expression and cause phenotypic 
variation without direct alteration of DNA base sequence. 
Epigenetic alterations encompass DNA methylation, his-
tone modifications, and modulation of gene expression by 
microRNAs (miRNA) and other non-coding RNAs [79]. 
DNA methylation occurs when methyl groups are covalently 
bound to cytosine to produce 5-methylcytosine near to gua-
nine (CpG dinucleotides), which is most frequently located 
at the promoter region of genes. This reaction is catalyzed 
by DNA methyltransferases (DNMTs). Hypermethylation of 
CpG islands is associated with gene silencing, while hypo-
methylation leads to gene activation [79]. Some studies have 
reported a role of global hypomethylation and differential 
methylation in the progression of MAFLD, highlighting also 
specific methylation shifts at transcriptional start of genes 
involved in lipid metabolism and energy homeostasis. There 
is evidence of changes in methylation of genes regulating 
lipid and cholesterol transport (APO family members and 
STARD) and the metabolic hormone fibroblast growth fac-
tor 21 (FGF21), which is high expressed in the liver and 
modulates systemic energy values acting in macronutrient 
metabolism [80]. Pirola et al. [81] showed that silencing 
of mitochondrial gene NADH dehydrogenase 6 (MT-ND6) 
by promoter hypermethylation correlated with MAFLD 
severity. Furthermore, hypermethylation of the hepatic 
promoter of the peroxisome proliferative activated recep-
tor (PPAR)-gamma coactivator one alpha (PGC1-α) gene, a 
transcriptional regulator of mitochondrial fatty acid oxida-
tion was associated with peripheral insulin resistance and 
fasting insulin levels of MAFLD patients [82]. Two studies 

highlighted a general hypomethylation status of hepatic 
DNA in patients with MAFLD compared to individuals 
with healthy liver, and a more marked demethylation in 
patients with advanced compared to milder MAFLD [83, 
84]. Conversely, PNPLA3 was reportedly hypermethylated 
in patients with MAFLD [85], but evidence is controver-
sial and specific hypomethylation may be linked to higher 
gene expression in people carrying at risk genotypes and in 
female [64, 86]. GWAS analyses evidenced that hypometh-
ylated loci are near to genes involved in cancer and immu-
noresponse, whereas hypermethylated regions occur close 
to genes associated with lipid metabolism [87, 88]. Another 
epigenetics modification consists of the addition of methyl 
groups, acetyl groups or phosphoryl groups to histone pro-
teins leading to an alteration of the physical structure of 
chromatin and changing the ability of recruitment of other 
proteins. Some studies reported a correlation with aberrant 
histone methylation and acetylation profiles and metabolic 
syndrome and alteration in the expression of specific histone 
lysine methyltransferases (KMT) and demethylases (KDMs) 
during MAFLD [89, 90]. Histone acetyltransferases (HATs) 
promote gene transcription, by increasing the accessibility 
to DNA, whereas histone deacetylase (HDACs) repress it. 
The HAT p300 activates the glucose-responsive lipogenic 
activators ChREBP promoting the lipogenesis and steato-
sis. Conversely, Histone Deacetylase 3 (HDAC3), Sirtuin 
1 (SIRT1), and Sirtuin 6 (SIRT6) protect against MAFLD 
by deacetylating promoter histones of lipogenic genes [91, 
92]. Alterations in miRNA expression have also been associ-
ated with MAFLD development and progression. miRNAs 
are a class of endogenous non-coding functional RNAs 
implicated in the regulation of gene expression by interact-
ing with complementary non-coding regions of genes and 
other RNAs. Cell death and degeneration during MAFLD 
lead to the release of different miRNAs which can regulate 
an array of biological processes, such as lipid metabolism, 
glucose catabolism, inflammation, cell proliferation and 
apoptosis, adipocyte differentiation, and insulin resistance 

Table 3  Genes involved in somatic variants implicated in MAFLD and HCC

Gene Function

ARID1A, ARID2, KMT2C, SETD2, KMT2D, PBRM1, SMARCA1, SMARCA2, SMARCA4, KMT2B, 
DNMT3A, ASXL1, TET2

Chromatin remodeling pathway

TP53, FOXD4, CDKN2A, PTPRB, ATM, IRF2, RB1, TSC1, MDM2, ADAMTS9 Cell cycle control
CTNNB1, AXIN1, CDH8,APC WNT/β-Catenin pathway
RPS6KA3, PREX2, PI3CA, PTEN, PTPN13, IL6ST, MET PI3K/RAS pathway
FOXO1, CIDEB, ACVR2A, LRP1B, APOB, ALB, GPAM, PLCB4, TNRC6B, FAT4, HNF1 Lipid metabolism
TERT, NEAT1, MUC21, BRCA2, NOTCH3, HLA-F, BRCA1, TPRXL, MYD88, TSC2, NFE2L2, 

CAMTA1
ZNF521, PROKR2, KRAS, CSMD3, FAT3, KEAP1, SF3B1, VEGFA

Cancer development and progression

DNMT3A, ASXL1, SRSF2, RUNX1
PPM1D, CBL, CUX1, BCOR, BCORL1, GNAS, GNB1, U2AF1, TET2

Clonal hematopoiesis
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[93, 94]. Alterations in miRNAs involved in the regulation 
of hepatic cholesterol and lipid metabolism contribute to 
the development of metabolic disorder, atherosclerosis, 
and cardiovascular disease. In particular, miR-122 has 
been causally involved in MAFLD development: it repre-
sents the 70% of hepatic miRNAs and it plays an important 
role in the regulation of genes associated with liver regen-
eration, lipid, and cholesterol metabolism. Lower levels of 
miR-122 in hepatocytes are implicated in the activation of 
fibrotic pathways and in the reduction of lipid secretion [95]. 
Conversely, circulating levels of miR-122 are increased in 
patients with compared to those with simple steatosis and 
general population, due to the release of circulating miRNAs 
from hepatocytes [96]. Also, miR-192, and miR-375, miR-
19a/b and miR-125b, which are overexpressed in subjects 
with MAFLD, participate in the development of MASH. 
Specifically, miR-192 is induced by TGFβ1 contributing to 
fibrosis development, miR-375 regulates glucose levels, and 
the requirement for adaptive β cell expansion, while miR-
19a/b related to NF-κB signaling and miR-125b are asso-
ciated with cardiovascular disease and inflammation [93]. 
Also, miR-10b, miR-144, miR-146b, and miR-155 partici-
pate in hepatic inflammation and liver damage by regulat-
ing PPAR-α, Toll-like receptors (TLR), and Tumor Necro-
sis Factorα (TNFα) [97]. Another risk factor for MAFLD 
development is the upregulation of miR-29 a/b/c which leads 
to insulin resistance through the block of Akt pathway and 
insulin signaling [98]. Yu et al. [99] showed that overexpres-
sion of miR-33a/b in hepatocytes determines triglycerides 
accumulation and promote steatosis, whereas overproduc-
tion of miR-34 a/b/c promotes lipid metabolism by targeting 
acyl-CoA synthetase long-chain family member 1 (ACSL1) 

[100]. Recently, a role of miR-21 in the transition to HCC 
was reported, mediated by silencing of HMG box-containing 
protein 1 (HBP1) and of the consequent activation of p53 
[93]. Apart from these, other miRNAs reportedly dysregu-
lated in MAFLD are shown in Table 4.

Conclusion

Genetic variation plays a key role in determining the sus-
ceptibility to the development and progression of MAFLD 
extending to liver-related disease and overall mortality. 
Genetic determinants have an effect size comparable and 
synergic to that of the main metabolic risk factors, such as 
obesity and type 2 diabetes. Thanks to genomic studies sub-
sets of patients with different pathophysiology, risk of liver-
related complications and response to treatment can now be 
profiled. In the coming years, the search of genetic mutations 
will continue increasing the number of individuals in GWAS 
and introducing novel strategies as Mendelian randomization 
methods and meta-analysis allowing to explore the reasons 
for heterogeneity of the genetic effects across datasets. The 
high gene x environment interactions observed in the genetic 
architecture of MAFLD, and the rise of prevalence of people 
at risk (i.e., obese, insulin resistant) and with severe dis-
ease may lead to the identification of new loci and precision 
medicine strategies. In conclusion, genomic studies are revo-
lutionizing the comprehension of MAFLD leading the way 
to new tools for targeted screening of high-risk individuals, 
also improving patient stratification for clinical trials, for 
prognostication and clinical management (Fig. 4).

Table 4  miRNAs dysregulated in MAFLD

microRNA Dysregulation Disease output

miR-9, miR-16, miR-23a, miR-27b, miR-30c, miR-31, miR-101, miR-103, miR-
106, miR-107, miR-125b, miR-144, miR-149, miR-150, miR-152, miR-181a, 
miR-182, miR-183, miR-192, miR-194, miR-200a/b/c, miR-212, miR-214, miR-
223, miR-224, miR-291b, miR-301a-3p, miR-331, miR-335, miR-375, miR-378, 
miR-421, miR-429, miR-892a, miR-1282, miR-1290, miR-3663-5p, miR-3924, 
miR-451

Upregulation MAFLD

miR-17, miR-26, miR-27a, miR-29a/c, miR-30b, miR-99a, miR-139-5p, miR-
146b, miR-181d, miR-197, miR-198, miR-203, miR-378i, miR-422a, miR-467b, 
miR-576, miR-590, miR-451

Downregulation

miR-15b, miR-19a/b, miR-24, miR-33a/b, miR-34 a/b/c, miR-122, miR-21 Upregulation Lipid synthesis and accumulation
miR-216, miR-302a, miR-122, miR-199a-3p Downregulation
miR-221, miR-222, miR-219a Upregulation Fibrosis
miR-21, miR-155 Upregulation HCC
miR-601, miR-617, miR-641, miR-765 Downregulation MASH
miR-155, mir-223 Upregulation Insulin signaling
miR-10b Upregulation Hepatic inflammation
miR-143 Downregulation
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