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Single-cell transcriptomes identify patient-
tailored therapies for selective co-inhibition
of cancer clones
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Intratumoral cellular heterogeneity necessitates multi-targeting therapies for
improved clinical benefits in advanced malignancies. However, systematic
identification of patient-specific treatments that selectively co-inhibit cancer-
ous cell populations poses a combinatorial challenge, since the number of
possible drug-dose combinations vastly exceeds what could be tested in
patient cells. Here, we describe a machine learning approach, scTherapy,
which leverages single-cell transcriptomic profiles to prioritizemulti-targeting
treatment options for individual patients with hematological cancers or solid
tumors. Patient-specific treatments reveal a wide spectrum of co-inhibitors of
multiple biological pathways predicted for primary cells from heterogenous
cohorts of patients with acute myeloid leukemia and high-grade serous ovar-
ian carcinoma, each with unique resistance patterns and synergymechanisms.
Experimental validations confirm that 96% of the multi-targeting treatments
exhibit selective efficacy or synergy, and 83% demonstrate low toxicity to
normal cells, highlighting their potential for therapeutic efficacy and safety. In
a pan-cancer analysis across five cancer types, 25% of the predicted treatments
are shared among the patients of the same tumor type, while 19% of the
treatments are patient-specific. Our approach provides a widely-applicable
strategy to identify personalized treatment regimens that selectively co-inhibit
malignant cells and avoid inhibition of non-cancerous cells, thereby increasing
their likelihood for clinical success.

High intratumoral cellular heterogeneity and clonal evolution of can-
cer cell populations are major drivers of therapy resistance both in
hematological malignancies and solid tumors1–5. In acute myeloid
leukemia (AML), several single-cell genomic analyses havemapped the
clonal evolutionary processes of disease progression and therapy
resistance at the cell subpopulation level, aswell as deciphered cellular

hierarchy and reprogramming among the leukemic cell subpopula-
tions involved in chemoresistance, relapse and clinical outcomes6–9.
Similarly in solid tumors, intratumoral and interpatient heterogeneity
are significant medical challenges both for disease diagnosis and
treatment optimization. The highly heterogeneous tumor ecosystem
contains not only malignant cells but also other cell types, such as
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endothelial cells, stromalfibroblasts, and a variety of immune cells that
control tumor growth and invasion. Notable studies in melanoma,
ovarian and colorectal cancers have demonstrated that specific char-
acteristics of the tumor immune microenvironment (TME) can, to
some extent, predict a patient’s clinical outcome10. For instance, clonal
analysis and longitudinal sampling of patients with high-grade serous
ovarian carcinoma (HGSC) revealed evolutionary trajectories, with
distinct genomic and morphological features across patients that
associate with therapy responses11. Moreover, the interaction between
immune and non-immune cells within the TME can influence the
effectiveness of immune responses, leading to varied treatment out-
comes among patients.

Single-cell analyzes in cancer research utilize a wide array of
advanced techniques aimed at understanding theheterogeneitywithin
tumors at the individual cell level. These methodologies provide
insights into the genomic, transcriptomic, and epigenomic variations
among cancerous and healthy cells, offering a more comprehensive
understanding of cancer biology and progression. While multiple
single-cell technologies have been developed, scRNA-seq is currently
themostpopular andmatured technology, and it allows researchers to
analyze the transcriptome of individual cells, identifying gene
expression patterns and heterogeneity across cell populations.
Advances in scRNA-seq technology have improved its sensitivity and
accuracy, enabling the characterization of even rare cell populations in
both tumor and TME. Single-cell analyses are increasingly being
applied in clinical settings for precision oncology. Profiling individual
cells allows for the identification of specific biomarkers and the
development of personalized treatment strategies tailored to the
unique characteristics of a patient’s cancer. Single-cell technologies
have the potential to open up new applications in cancer research;
however, translational precision medicine strategies that use single-
cell data are still rare12. Current challenges in clinical applications
include the robustness, scalability, and cost-effectiveness of single-cell
assays when profiling complex patient samples.

Tumor-specific drug combinations are often required to provide
clinical benefits for patients with advanced, relapsed, or refractory
malignancies13,14. However, there is a medical need for systematic
approaches to identify more effective combinatorial therapies, using
either multi-targeting inhibitors or their combinations, which selec-
tively co-inhibit multiple signaling pathways that drive the disease- or
resistance in heterogeneous patient and cell populations. Despite the
wealth of information on cancer evolution and intra-tumoral cellular
heterogeneity, we lack approaches that target chemoresistant sub-
populations to enhance second-line treatment efficacy in relapsed
patients or to avoid resistance to first-line therapies by co-inhibiting
multiple cancer cell subpopulations with sufficient high potency and
precision. Several computational approaches have been developed
that use scRNA-seq data to associate individual cells with disease
attributes, such as diagnosis, prognosis, and response to therapy15–20;
however, none of these methods enable the identification of multi-
targeting drugs or drug combinations for genetic clones at a single-cell
and individual-patient level. In particular, there is a lack of approaches
that consider both the patient and disease heterogeneity when pre-
dicting drug sensitivity differences among cell populations, with the
aim todesign cancer-selective and patient-specific therapeutic options
using computationally and experimentally scalable and clinically fea-
sible profiling measurements in scarce patient-derived primary cells.
The use of large-scale drug testing data for predictions poses a prac-
tical challenge, since systematic ex vivo drug testing in primary patient
cells is currently not feasible in many solid tumor types21.

To address these limitations, we present a machine learning
model, scTherapy, which identifies cancer-selective and low-toxic
multi-targeting options for each individual cancer patient based on a
single scRNA-seq count matrix alone. The selective predictions origi-
nate from transcriptomic differences between genetically distinct

cancer cell populations (or clones) in individual patient samples when
compared to non-cancerous cells from the same patient sample. To
enable fast translational applications, we pre-train a gradient boosting
model (LightGBM) that learns drug response differences across cell
populations by leveraging a massive reference database of large-scale
phenotypic profiles (both transcriptomics and viability readouts)
measured in cancer cell lines in response to single-drug perturbations.
When applied to a patient sample, themodel generates a ranked list of
the most effective multi-targeting options (either targeted agents,
chemotherapies, or their combinations) that selectively co-inhibit key
cancer clones in each individual patient sample. To guide translational
applications, we further remove low-confidence predictions and non-
tolerated doses among the dose-specific drug response predictions,
hence ensuring that only the most relevant predictions will be sug-
gested for treatment optimization. The scTherapy predictions makes
ex vivo drug testing in patient-derived cells more cost-effective by
prioritizing the most potent multi-targeting options for further
experimental validation in scarce patient cells. Moreover, we expand
the combinatorial space of single-cell drug response assays, currently
constrained by the excessive time and cost of the assays for
translational use.

Results
To design multi-clone targeting and cancer-selective therapeutic
options for each patient, we leveraged 394,303 genome-wide tran-
scriptomic profiles post-treatmentwith 19,646 single-agent responses,
measured in multiple doses in 167 cell lines, available from the LINCS
2020 project22. We next matched these transcriptomic response pro-
files with drug-induced cell viability responses available from
PharmacoDB23,measured inmultiple doses in the same 167 cell lines to
pre-train a LightGBM that predicts drug response differences across
cell populations (Fig. 1, Online Methods). The model predicts drug
response using fold changes of differentially expressed genes (DEGs)
after drug treatment at a particular dose, hence leading to
concentration-specific cell inhibition predictions. In the patient appli-
cations, we used the pre-trained model to predict multi-targeting
options that can selectively co-inhibit multiple cancer subclones,
identified from patient-specific scRNA data, and using fold changes of
DEGs between normal cells and cancer cell populations as input. In the
final step,we combined the top-predicted effective and selective drugs
for each clone as a targeted combinatorial therapy for the patient
sample. This translational approach enables the systematic tailoring of
personalized multi-targeting options by considering both the intratu-
moral cellular heterogeneity and dose-specific therapeutic and toxic
effects of anticancer compounds.

Experimental validationof themodel predictions inAMLpatient
samples ex vivo
We developed the scTherapy model and tested its translational
potential first by analyzing single-cell transcriptomic profiles of 12
bonemarrow samples fromdiagnostic and refractory or relapsed AML
patients with various drivermutations and treatment regimens (Suppl.
Table 1–2), followed by careful experimental validation of the model
predictions in the primary cells of the same patient samples. The
single-cell transcriptomes revealed highly heterogeneous cell type
compositions across the heterogeneous population of patients and
cells of both leukemic and normal cell types (Fig. 2a), necessitating
personalized treatment predictions. Through processing the scRNA-
seq data from each patient separately, and then feeding these into the
pre-trained scTherapy model, we generated personalized predictions
of combinatorial drug treatments aiming to selectively target two
major subclones in each individual patient (see Online “Methods”). In
some cases, the treatment response predictions corresponded to the
subsequent clinical treatments of the patients after taking the sample
(Suppl. Table 2).
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To validate the model predictions, we first used data from single-
agent cell viability assays, which confirmed that the model-predicted
effective treatments led to significantly better cell inhibition efficacy
ex vivo, when compared with the predicted ineffective treatments
(p < 0.0001, Wilcoxon test; Fig. 2b). Importantly, this improvement
was not due to themodel selecting higher drug concentrations for the
effective-predicted treatments (Suppl. Figure 1a). Most of the treat-
ment predictions were uniquely identified for a single patient, and the
few shared treatments between patients, such as navitoclax and AT-
7519, showed highly variable responses across the patient samples
(Fig. 1b, the colored points). Such treatment response variability is
expected in this diverse patient cohort, which spans different disease
stages and samples with highly heterogeneous cell type compositions.
However, we did not find significant differences either in the number
of drug predictions, or in predicted overall effective doses between
diagnosis and refractory samples of the same patient (Suppl. Figure 2).

Next, we predicted themost promising two-drug combinations in
the four AML patient samples with enough cells for further experi-
mental testing. The patient-specific combinations were designed so

that they would maximally co-inhibit the two major leukemic sub-
clones in each patient sample, while minimally co-inhibiting the
patient-specific normal cells (Fig. 2c). Using initially a bulk cell viability
assay, we tested the predicted combinations in 4 × 4 dose-response
matrices (all the patient-specific combination matrices and synergy
distributions are provided at https://ianevskialeksandr.github.io/
scTherapyCombinations.html). Based on the zero interaction
potency (ZIP) score, we confirmed that all the predicted combinations
act either synergistically (ZIP > 10), i.e., they jointly inhibit patient cells
more than expected based on the single-agent effects (p <0.001, Wil-
coxon test), or showed at least additive combination effects (ZIP > 0;
Fig. 2d). It has been argued that combination efficacy is more impor-
tant in practice, while pharmacological synergy is not necessary for
achieving improved clinical responses24.

After confirming the higher than expected combination effects
in the bulk viability assays, we further tested a subset of the top-6
patient-specific combinations for the four patient cases using high-
throughput flow cytometry assays to quantify the differential inhi-
bition between leukemic and normal cells in each patient sample

Fig. 1 | Schematic illustration of the experimental-computational prediction
approach. Identification of clone-specific and cancer-selective compounds is
performed in two steps: (a) Raw sequencing data from selected tissue are pro-
cessedand aligned to generate a scRNA-seq expression countmatrix. Unsupervised
clustering separates malignant and normal cell clusters using an ensemble pre-
diction approach with three analytical tools: ScType, CopyKAT and SCEVAN (see
Suppl. Figure 3). InferCNV infers large-scale copy number variations and identifies
genetically distinct subclones among the malignant cells. b Subsequently,
subclone-specific differentially expressed genes are identified through differential
expression analysis. The identified genes, along with drug information such as
molecular fingerprints and drug doses, serve as inputs for the pre-trained

LightGBMmodel. Based on the patient-specific inputs, the pre-trained model pre-
dicts themost potent compounds and their effective doses for each subclone. c To
train the LightGBM model, a comprehensive dataset was compiled that integrates
transcriptional changes from small-molecule perturbation experiments (LINCS
2020 dataset)22, with chemical structures represented as ECFP fingerprints and
drug-dose response data collected from various studies (PharmacoDB resource)23.
Concentrations of the LINCS 2020 dataset were matched with dose-response
curves from the PharmacoDB, and interpolated cell viability was used as the out-
come variable for LightGBMmodel. scTherapy can propose potential drugs among
any of the 3695 unique compounds overlapping with the LINCS 2020 and Phar-
macoDB resources.
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ex vivo. Out of the 24 predicted drug combinations, 21 (88%) led to
increased co-inhibition of the leukemic cells (Fig. 2e), when com-
pared with the single-agent responses. For each patient case, we
identified multiple combinations that led to higher than 50% co-
inhibition of the blasts and other leukemic cells, suggested as
potential treatment options. Importantly, only 3 of the 24 combi-
nations (13%) showed >50% inhibition of T cells and other non-
cancerous lymphoid cells, which should be discarded as potentially
toxic combinations (i.e., trametinib-dinaciclib combination in
Patient 11, and two carfilzomib combinations in Patient 12). Not only
the effective treatments, but also the predicted doses of drugs in
the combinations varied across the patients, indicating that an

optimal balance between treatment efficacy and toxicity should be
tailored for each patient.

Application to ovarian cancer and validation in patient-derived
tumor organoids
To investigate whether the prediction approach is applicable also to
solid tumors, where large-scale ex vivo drug testing in primary patient
cells is more challenging, we employed published scRNA-seq data25,26

from a cohort of patients with high-grade serous carcinoma (HGSC)11.
This patient cohort of metastatic tumors with poor responsiveness to
standard chemotherapy represents a highly challenging case for per-
sonalized treatment identification. We tested the efficacy and

Fig. 2 | Experimental validation using bulk and cell population drug assays.
a Identification of cell types using scRNA-seq profiles of complex bone marrow
samples from 12 AML patients (2140–9340 cells analyzed per patient, Suppl.
Table 1). b Ex vivo drug sensitivity differences between single-agent treatments
predicted by scTherapy to be either effective (n = 15) or ineffective (n = 15) inwhole-
well cell viability assays (p <0.001, two-sided Wilcoxon test). The colored points
show two example drugswith highly variable responses across the patients. Source
data are provided as a Source Data file. c Identification of genetically distinct
subclones from the 4 AML patient samples with enough cells for further experi-
mental testing (Suppl. Figure 4 shows a detailed overview of genomic variation in
these 4 samples). d All the model-predicted drug combinations exhibited either
synergistic (ZIP > 10) or additive effects (0 < ZIP < 10) in the whole-well combina-
torial viability assay. Statistical analysis showed significant effects (p < 0.001, two-
sided Wilcoxon test; upper panel), when comparing measured ZIP scores to zero
(no effect). The assay involved n = 24 combinations for Patients 5 and 6, n = 11
combinations for Patient 11, and n = 20 for Patient 12, with each patient’s results
representing technical replicates derived from different drug combinations tested
on cells from the respectivepatients. Two examplesof combinationswith ZIP = 13.6

and ZIP = 13.5 as tested in multi-dose drug combination assays (lower panel).
Interactive plots of the dose-response matrices for all the predicted combinations
are provided at https://ianevskialeksandr.github.io/waterfall_plot.html. Scale bars
represent percentage inhibition from0 to 100 (white to red). e Further validation of
the top-combinations for the 4 patient samples using population-level flow cyto-
metry assays in the samepatient-derived cells. Toxic effects (left-hand bars) scored
based on co-inhibition of normal cell populations, and therapeutic effects (right-
hand bars) based on co-inhibition of malignant cells. The predicted effective doses
are indicated in parentheses (μM), and the dotted vertical lines indicate 50% inhi-
bition level. n, the number of replicate screens. Statistically significant differences
in combinatorial responses between cancerous and normal cells were observed,
with p <0.01, < 0.05, and < 0.05 for patients 5, 6, and 11, as assessed with the two-
sided Wilcoxon signed-rank test. For patient 12, given the limited number of bio-
logical replicates (n = 2), statistical significance cannot be tested. The error bars
represent the standard error of themean (SEM).Boxplots show themedian (central
line), 25th and 75th percentiles (box edges), and the range within 1.5 times the
interquartile range from the box (whiskers). Source data are provided as a Source
Data file.
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selectivity of the predicted treatments onHGSCpatient-derived tumor
organoids27. Here, three patients were used for the experimental vali-
dation of the treatment predictions, with varied sample locations for
the scRNA-seq profiling (Patient 1 omentum and Patients 2 and 3
ascites; Suppl. Table 3). To distinguish cancer cells from non-
cancerous cells in the organoids and the stromal cell cultures,
respectively, we used established tumormarker genes, including PAX8,
MUC16 (encoding CA-125) and EPCAM, collectively referred to as
PAX8+ cells (Online “Methods”, Suppl. Figure 5–6).

Due to the small proportion of cancer cell populations detect-
able in the scRNA-seq profiles of the patient samples (Figs. 3a–c), the
identification of cancer subclones for combinatorial targeting was
not considered reliable enough in these samples. Therefore, we
chose to predict multi-targeting monotherapies, where we used all
the cancer cells from the patient sample as a collective malignant
entity, disregarding the subclone distinctions. To secure enough
fibroblasts and other genetically normal stromal cells for the
treatment-selectivity assays, we integrated scRNA-seq data from
three HGSC patients (Patients 1, 4 and 5) for the challenging HGSC 1
with an omentummetastasis (Fig. 3a). The expression of PAX8 tumor
marker showed a clear separation between the tumor cells and other
cell populations also in this “integrated patient” case (Fig. 3a–c, right
panels). The treatment-naive tumor organoids were developed
exclusively from the cancer cells of the treatment-naïve patient
samples (Online “Methods”), which displayed an elevated expres-
sion of PAX8 (Fig. 3g).

Comparison of the treatment-induced viability changes in the
organoid cells and stromal cells in the three patient samples revealed
that 31 of the 54 evaluated treatments (57.4%) resulted in greater than
50% inhibition of the PAX8+ tumor cells, and only 11 predicted treat-
ments (20.4%) had similar inhibition levels in the PAX8- non-cancerous
cells (Fig. 3d–f, left panels); specifically, the proteasome inhibitors
(bortezomib, ixazomib), HSP inhibitor (ganetespib), BET inhibitor (I-
BET-762, a.k.a. molibresib), and broad-targeting tyrosine kinase inhi-
bitor (dasatinib) showed notable non-selective responses. Across all
the samples and predictions, the patient-specific multi-targeting
treatments consistently demonstrated a significantly higher efficacy in
suppressing tumor cells, when compared to normal cells (p ≤0.01,
Wilcoxon test; Fig. 3d–f, right panels). Interestingly, there was no
correlation between the predicted treatment doses and PAX8+ or
PAX8- cell inhibition effects in any of the patient samples (Suppl.
Figure 1b). Similar to the AML patient application, we observed sig-
nificant differences in the ex vivo drug sensitivities between the
patient-specific treatments predicted to be either effective or inef-
fective when assessed in patient-derived PAX8+ cells (p <0.001, Wil-
coxon test; Fig. 3h).

Landscape of predicted drug responses in solid tumors and
hematological cancers
To investigate the versatility and scope of scTherapy in other tumor
types, and to study the frequency of recurring therapy options among
patients with the same tumor type, as well as the prevalence of pre-
dicted personalized treatments unique to a single patient, we used the
publicly available scRNA-seq data from cancer patients that were
curated andmade available byGavish et al28.We expanded our analysis
of the AML and HGSC cohorts, and applied scTherapy to three addi-
tional tumor types; 10 patients with lung adenocarcinoma (LUAD, 5
primary samples, 5 metastatic, 4 treatment naïve, 6 treated samples)29,
10 patients with pancreatic ductal adenocarcinoma (PDAC, 5 primary
samples, 5 metastatic samples)30, 4 patients with triple negative breast
cancer (TNBC, 4 treatment naïve primary samples)31. These cancer
types were chosen as they pose clinically significant therapeutic chal-
lenges; in particular, patients with PDAC, LUAD and TNBC urgently
need new treatment options. For comparison, we included 12 samples
from our AML cohort reported in this manuscript, and 4 ovarian

samples from the HGSC cohort of metastatic tumors with poor
responsiveness to standard chemotherapy, representing a highly
challenging case for personalized treatment identification.

Our analysis demonstrates the presence of therapy clusters
shared amongpatientswith the same tumor type, aswell as emergence
of unique, patient-specific therapies (Fig. 4a). These findings provide a
statistical landscape of the predicted treatments: 19% are patient-
specific, indicating a high degree of personalized treatment potential,
25% are disease-specific (2% LUAD, 1% TNBC, 2% PDAC, 10% AML, 10%
HGSC), and 22% were common across the five cancer types (Fig. 4b).
While we observed a relatively clear separation between solid tumors
and hematological cancers, as expected, there were no apparent
therapy clusters for specific diseases stages, or striking differences
between treatment naïve and treated patient samples (Fig. 4a). The
predicted treatments for the solid tumors were also rather equally
distributed (Fig. 4c). This distribution underscores the versatility of
scTherapy in addressing the diverse and complex landscape of cancer
treatment predictions, paving the way for identification of more tar-
geted and effective therapeutic strategies across a range of tumor
types. Furthermore, 22 out of the total 131 scTherapy-predicted
treatments (17%) are currently advancing through phase 3 or 4 clinical
trials (Suppl. Table 4), underscoring the capability of the prediction
approach to identify clinically relevant and potentially efficacious
cancer treatment options.

Quantitative comparison of scTherapy against state-of-the-art
methods in the field
We compared the patient-specific predictions of scTherapy against
those of BeyondCell15 and scDrug17 in the AML patients, where large-
scale single-drug sensitivity testing is routinely done for each patient
sample. We focused on the top and bottom 15 drugs predicted as the
most and least effective, respectively, by each method for the indivi-
dual patients. To ensure a fair comparison with other methods, which
do not offer effective dose predictions like scTherapy, we focused on
the overall drug responses across the dose ranges, and summarized
the drug efficacy with the drug sensitivity score (DSS, normalized area
under the drug dose-response curve), which is widely-used in perso-
nalized drug testing studies32. We observed a consistently improved
performance of scTherapy for prediction of both effective and inef-
fective single-drugs across thepatients, when compared toBeyondCell
and scDrug (Fig. 5a, b)

To summarize these quantitative evaluations, we used the Recei-
ver Operating Characteristic (ROC) curves and calculated Area Under
the ROC Curves (AUC) values for each prediction method. The ROC
curves visualize the overall performance of the methods to dis-
criminate between effective and ineffective drug treatments, using the
experimentally measured DSS values aggregated across the 12 AML
patients (Fig. 5c). The AUC values and confidence intervals clearly
demonstrate the superior predictive performance of scTherapy
(Fig. 5d). The improvement in predictive accuracy is statistically sig-
nificant, as evidenced by DeLong test, where the performance of
scTherapy was significantly better compared to that of both scDrug
and BeyondCell (p < 0.01). These quantitative and statistical evalua-
tions provide further support for the predictive accuracy of scTherapy,
in addition to the experimental validations.

Discussion
Advanced cancers are heterogeneous diseases, typically comprising at
diagnosis more than 1010 cells, which very likely harbor therapy-
resistant subpopulations11,24. This translates into a medical need for
multi-targeting therapies for effective cancer cures. Our experimental-
computational approach for personalized identification of multi-
targeting treatments makes use of two recent advances: (i) the feasi-
bility of scRNA-seq profiling in complex patient samples that allows for
the identification of malignant and non-cancerous cell populations for
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selective targeting; and (ii) the availability of large-scale transcriptomic
and viability response profiles of cancer cell lines treated with thou-
sands of single-agent perturbations. Taken together, our approach
provides a clinically actionable and relatively fastmeans for predicting
drug-dose combinations for individual patients, and compared to our
earlier work33, it can be applied also for patients whose tumors are not
easily amenable to drug testing (e.g. HGSC). The only input for the
model is a count scRNA-seq data matrix of a given patient sample; the
rest of the computational steps are either fully-automated or semi-
automated (e.g., selection of the broad-level subclones based on visual
analysis of the clonal evolutionary tree; see Step 4 in Suppl. Figure 3).
To validate this targeting strategy, we demonstrated in AML andHGSC
cases that nearly all the predicted combinations exhibited positive
synergy scores (96.3%), highlighting their potential for improved

therapeutic efficacy and reduced toxicity by lowering the doses of
single agents. Importantly, 83.4%of the predictions demonstrated low-
toxicity to normal cells ( < 50% inhibition of non-cancerous cells);
however, the flow cytometry and organoid drug response assays
indicated that certain multi-target therapies (16.6%) excessively
inhibited non-cancerous cells (e.g. proteasome and topoisomerase
inhibitors), emphasizing the importance of ex vivo experimental vali-
dation prior to clinical translation.

scTherapy identifies individual drugs or their combinations that
(i) reverse clone-specific transcriptomic responses closer to the nor-
mal expression state, and (ii) exhibit selective cancer cell inhibition at
the predicted effective dose to ensure differential inhibition between
malignant and normal cells. The model outcome is a list of predicted
treatments and effective doses for targeting the unique intratumoral

Fig. 3 | Experimental validation in ovarian cancer patient-derived tumor
organoids. a–c UMAP projection of the scRNA-seq transcriptomic profiles for the
three HGSC patient samples, using standard Seurat integration workflow, where
cell typeswere identifiedwith ScType (left panel). The number of cells analyzed per
patient as shown on UMAP plots: Patient 1 (4706 cells), Patient 2 (1483 cells), and
Patient 3 (1934 cells). Expression of the PAX8 marker, effectively separating tumor
cells from the other cell populations (right panels). Scale bars represent raw PAX8
expression counts. d–f Barplots showing cell inhibition differences between the
patient-derived organoid cancer cells (PAX8 + , blue bars) and non-cancerous
normal cells (PAX8-, gray bars) for the 18 predicted multi-targeting drugs (left
panels). The predicted effective doses are indicated in parentheses (μM), and the
dotted vertical lines indicate 50% inhibition. The error bars represent SEM, based
on three replicates of organoid treatments and curve-fitting in PAX8- cells. For
patients 2 and 3 both organoids and the stromal cell cultures were available at the
cell numbers sufficient for single-drug sensitivity and selectivity testing, whereas

for Patient 1 the PAX8+ tumor cells originated from the patient organoid and PAX8-
normal cells were available from additional Patients 4 and 5 (Suppl. Table 3). Sta-
tistical comparison of the treatment responses between PAX8+ and PAX8- cells
across three HGSCpatient samples with two-sidedWilcoxon signed-rank test (right
panels). g Representative immunofluorescent image of treatment-naive tumor
organoids from Patient 1 sample. This experiment was conducted once. Scale bar
equals to 250μm. h Statistical comparison of ex vivo drug sensitivity differences in
patient-derived PAX8+ cells between the treatments predicted by scTherapy to be
either effective (n = 18) or ineffective (n = 10) in the individual patients (p <0.001,
two-sided Wilcoxon test). Suppl. Fig. 7 shows the same data in a heatmap, sum-
marizing the drug responses across multiple doses using drug sensitivity scores
(DSS), instead of the percentage inhibition at the predicted effective dose (as
shown here). Box plots show the median (central line), 25th and 75th percentiles
(box edges), and the range within 1.5 times the interquartile range from the box
(whiskers). Source data are provided as a Source Data file.
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heterogeneity within each patient sample, complemented with a
confidence score for the reliability of each treatment-dose prediction.
The quantitative performance evaluation (repeated cross-validation
and experimental validations), together with the confidence scoring
(conformal prediction), enables medical professionals to decide when
and how to use the model to guide clinical decision making. By map-
ping the gene signatures to drug-target interactions networks, one can
also explore potential biomarkers (e.g., patient-specific DEGs) that

drive the selection of the best treatment regimens for individual
patients (Suppl. Fig. 8). This provides additional insights into the
rationale of the treatment recommendations for a given patient. Such
network markers are not limited by the current genetic biomarkers,
e.g., oncogenes, that are rare especially for drug combinations34.
scTherapy can also predict responses to custom compounds, hence
facilitating the assessment of novel or less-studied compounds for
their patient-specific efficacy. Furthermore, the model incorporates a

Fig. 4 | scTherapy predictions across solid tumors and hematological cancers.
aHeatmap of the scTherapy predictedmonotherapies across patient samples from
multiple tumor types (columns). Each column represents a patient sample, with
annotations indicating treatment history, disease stage, and cancer type. The color
coding indicates predicted effectiveness of the treatment (rows). Instances where
the ScTherapy did not generate a prediction for a specific patient sample are

marked with a gray color. b Overlap of the predicted treatments between patients
with solid tumor (PDAC, TNBC, LUAD, HGSC) and patients with hematological
cancer (AML) (c). Overlap of the predicted treatments when focusing on the solid
tumors only (PDAC, TNBC, LUAD, HGSC). Source data are provided as a Source
Data file.
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user-defined drug-dose information, especially useful in cases where
certain drugs or doses are clinically more relevant for a given cancer
type. By dose restriction, one can further reduce the risk of toxic
effects that often occur at higher doses, hencemaking the predictions
clinically more feasible. Overall, our approach offers a systematic and
flexible framework for predicting personalized drug-dose combina-
tions that can be tailored to individual patient and tumor
characteristics.

When comparing predictions across five cancer types, we
observed a rather striking balance between treatment options that are
recurrent in the patients of the same tumor type (25%), in addition to a
strong inclination towards personalized options (19% of treatments
being patient-specific), and high prevalence of common treatment
predictions between cancers even among targeted therapies (22%)
(Fig. 4). When comparing solid tumors and hematological cancers, we
predicted a higher number of targeted signal transduction inhibitors
for the AML patients, compared to the patients with HGSC, which
reflects the underlying differences in the disease biology. AML cells
often carry oncogenicmutations in signaling proteins,making the cells
addicted to MAPK signaling35, which explains why MEK inhibitor
combinations were identified for many of the AML patients. Similarly,
PLK inhibition has been extensively studied in AML, and while PLK
inhibitor combinations have shown promise in clinical development,
they are also associated with complicated toxicities36. Therefore, even
though the scTherapy model identifies surprising multi-targeting
treatments for patients, the drug and target classes of the predicted
combinations are well-studied in these cancer types, and many are
either approved or under clinical investigation (Suppl. Table 4).
Importantly, the model predictions are tailored to the molecular

context of a given patient (or sample), which is expected to lead to
better efficacy-safety balance at the level of an individual patient,
rather than identifying broadly chemotoxic combinations that may
lead to severe side effects in the non-matching subset of patients. Our
next-generation precision medicine approach provides a streamlined,
yet relatively precise approach to finding the right combinations of
drugs and doses, toward enhancing therapeutic potential through
using both molecular and functional information.

Traditionally, effective drug combinations have been identified
either by empirical clinical testing37, or using high-throughput
screening (HTS) in cell line panels in vitro, followed by in vivo valida-
tion of the most relevant combinations and target mechanisms in
animal models38–40. However, drug combination synergy is a rare and
highly context-dependent event, which requires combinations to be
tested in large-scale screens and in various cellular contexts and
genomic backgrounds34. This is beyond the scalability of in vivo
models, and in vitro screening alone cannot identify combinations
targeting specific cancer subclones, even if large enough cell line
panels can to certain extentmodel the cellular heterogeneity and drug
response variability. In particular, a multi-targeting therapy that
effectively inhibits cancer cells may also co-inhibit normal cells, ren-
dering the treatment non-selective against malignant cells. In patient
applications, it is therefore critical to identify cancer-selective combi-
nations, rather than broadly active therapies that may lead to severe
toxic effects. Ex vivo drug testing in primary patient cells, using either
patient-derived 2D cell cultures or 3D organoids, strikes a balance
between the in vitro and in vivo approaches21,41. However, even though
flow cytometry and imaging-based ex vivo assays offer possibilities for
drug response testing at a single-cell resolution, HTS of a larger

Fig. 5 | Quantitate comparison of monotherapy efficacy predictions in 12 AML
patients. Drug sensitivity score (DSS)32 distributions of the top-15 drugs predicted
as (a) the most effective and (b) the least effective monotherapies by each model
for individual patients (n = 12). For each patient, 15 technical replicates (top-15
drugs) were compared between models using two-sided pairwise Wilcoxon rank-
sum tests, with p-values adjusted for the False Discovery Rate (FDR) with the
Benjamini-Hochberg procedure. *a model’s predictions are significantly different
(p <0.05) compared to that of at least one of the two other methods; **a model’s
predictions show a significant difference (p <0.05) when compared to both of the
alternative methods. Box plots show the median (central line), 25th and 75th per-
centiles (box edges), and the rangewithin 1.5 times the interquartile range from the
box (whiskers). c Receiver Operating Characteristic (ROC) curves for each model

demonstrating their ability to distinguish between effective and ineffective treat-
ments based on the predictions of the most effective and least effective drugs by
eachmodel for 12 individual patients (as shown in panels a and b). The shaded area
around each curve represents the 95% confidence interval (CI), calculated around
the mean, illustrating the variability of the predictions based on data from 12
patients. d A summary table displays the Area Under the Curve (AUC) values for
each model, quantifying their overall predictive accuracy. Statistical comparison
was performed with the two-sided DeLong’s test, indicating that the prediction
performance of scTherapy was significantly better than that of scDrug and
BeyondCell (p =0.00064 and p =0.0000054). The other two methods show sta-
tistically similar prediction results (p =0.29). Source data are provided as a Source
Data file.
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number of drug combinations in multiple doses remains infeasible in
scarce patient cells using these advanced assays42–44. Therefore, sys-
tematic methods to prioritize the most potential combinations to be
tested in primary patient cells are needed.

Various machine learning (ML) methods have been developed to
predict effective anticancer drug combinations using multi-omics
training data from large-scale screens in cancer cell lines and patient-
derived samples. By surveying the existingMLmethods45, we identified
three critical areas of improvement for translational applications. First,
none of the existing methods were designed to predict selective drug
combinations that target multiple cancer subclones, and avoid co-
inhibiting normal cells, using merely single-cell transcriptomic data as
input. This is important since multi-omics profiling and ex vivo drug
testing in scarce primary patient cells is not practically feasible for
many tumor types21. Second, most of the current methods either do
not use any normal reference, and hence lack preclinical toxicity pre-
dictions, or use molecular or functional profiles from healthy indivi-
duals to de-prioritize toxic combinations, which may lead to non-
selective combination predictions, due to high inter-individual mole-
cular and phenotypic heterogeneity. Third, drug combination effects
are not only patient-specific, but also highly dose-dependent34, and
therefore we argue that computational prediction methods need to
provide dose-specific prediction of the responses, especially for
translational applications where often the lower doses are better tol-
erated by the patients. However, we note that doses optimized in cell-
based assays need to be adjusted for clinical use, as patient treatment
doses depend on multiple factors, including age, disease stage and
comorbidities.

Similarly, a recent review of single-cell level drug response pre-
diction methods concluded three key limitations of the current
methods20: (i) they cannot predict drug combination responses, but
rather focus on single drug effects; (ii) they do not attempt to predict
effective drug dosage, which is critical for translational applications;
and (iii) they have not been experimentally evaluated to truly evaluate
their practical utility. For instance, BeyondCell introduced a “ther-
apeutic cluster” (TC) concept, defined as groups of cells with a similar
drug response within cellular populations, and applied it to propose
single-drugs to target sensitive and resistant cells and to identify drug-
response biomarkers15. In BeyondCell, TCs were identified using
unsupervised clustering analysis, whereas scTherapy takes a more
supervised approach to identifying multi-targeting treatment regi-
mens that inhibit multiple disease- or resistance-driving cancer clones
in individual patients. Similarly, scDrug starts by cell clustering of
scRNA-seq data set and identifies tumor cell subpopulations, and then
uses functional annotation of subclusters to suggest candidate drugs
for effective treatments17. Our work addresses all these limitations of
the current methods for single-cell level drug treatment response
prediction in cancer applications. When compared with the measured
single-agent responses in the AML patients, we showed that Beyond-
Cell or scDrug predictions provided sub-optimal prediction accuracy
compared to scTherapy patient-specific predictions (Fig. 5).

The current version of ScTherapy requires only the scRNA-seq
count matrix of a cancer sample as its input. This means that tumor
types or patient cases in which the most predictive omics feature for a
given targeted therapy is a point mutation are currently beyond the
scTherapy approach; for instance, melanomas harboring BRAF-V600E
mutation are known to benefit from BRAF inhibitors such as vemur-
afenib. In future developments, we plan to incorporate multi-omics
data, including point mutations, where available. We further utilized
CNV profiles inferred from scRNA-seq data (using InferCNV), rather
than the actual CNVmeasurements, to streamline themethodology by
requiring only scRNA-seq data from patient samples as input for
scTherapy. Previous studies have shown that inferred CNVs can
accurately capture the complex subclonal architecture of tumors
based on their genomic differences46–48.We also compared scRNA-seq-

inferred CNV profiles with the expression-based cell clusters in the
patient 12, used for combinatorial testing, and showed that expression-
based clustering may miss certain subclonal genomic variation in the
detected cancer subpopulations (Suppl. Fig. 9). However, while this
study focused on the differential drug targeting between genetic
cancer clones and non-cancerous cells, the predictive approach is
applicable also to selective targeting of other cell types, states or
phenotypic subpopulations, for instance, small molecule-induced
activation of immune cell TME compartments for boosting treat-
ment effects of targeted-drugs or immunotherapies. Additionally, with
the emerging availability of large-scale morphological and single-cell
proteomic responseprofiles in cancer cell lines and samples49–52, future
scTherapy versions could be extended to incorporate these pheno-
typic measurements for better modeling and targeting of different
mechanisms of drug resistance and sensitivity.

In samples where scRNA-seq detects only a small fraction of
cancer cells, further dividing this subset becomes unreliable, as it
would increase noise rather than distinguishing cancer-related signals.
Given this challenge in our HGSC samples, we chose to predict
responses to single-agents, instead of drug combinations, relying on a
comprehensive transcriptomic profile of the cancer cells (instead of
smaller sub-clones). Therefore, we advise users of scTherapy to con-
sider the limitations of cell population size and the potential for
increased noise when attempting to delineate subclonal populations.
In such cases, the analysis of the overall transcriptomic landscape of
malignant cells may offer a more feasible and effective strategy for
identifying multi-targeted monotherapies, rather than subclone-
specific drug combinations.

However, when using scTherapy for predicting combination
therapies, such as in the AML case, one can shift focus to broader level
subclones. While our current predictions are made for two major
subclones, where a specific drug in the drug combination is uniquely
predicted for each subclone, these major subclones themselves
encompass a spectrum of subclonal diversity. In future developments,
we plan to extend scTherapy formulti-drug combinations that can also
selectively target otherminor subclones, e.g., threeormore subclones,
in cases where this is feasible. However, we note that the current
predictions from scTherapy can also target both major and minor
subclones, due to polypharmacological effects of the drugs. For
instance, when examining the drug predictions among various sub-
clones in the AML patient samples, we observed that the treatment
predictions for the major subclones largely coincide with those of
minor subclones within the same broad clone (Suppl. Fig. 10). This
demonstrates a broad yet selective targeting strategy across the clonal
spectrum of cancer cells.

Compounds from different drug and target classes may elicit
varied phenotypic responses in the viability and transcriptional
response profiles. For instance, in contrast to other molecularly-
targeted compounds, HDAC inhibitors often induce significant chan-
ges in the expression of multiple genes beyond their target proteins.
Comparison of the expression and viability changes between cancer-
ous and non-cancerous cells is expected to normalize out a part of
such variability between drug classes. However, future studies are
warranted to tailor input data not only for a specific patient sample but
alsomake predictions drug class-specific by considering differences in
binding affinities, phenotypic profiles, and treatment time points.
Different diseasemodelsmay also have differing growth dynamics. For
instance, as opposed to themost conventional cell lines, organoid cells
undergo less cell divisions during 7-day incubation. Therefore, someof
the discrepancies seen between the model predictions (made using
in vitro cell line data) and the experimental validations (made in ex vivo
experiments) may stem from such variations between the 2D and 3D
diseasemodels and time points. The ex vivo validation strategy for the
selective predictions would also benefit from the incorporation of
different types of control models, ideally closely matching the growth
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conditions of the cancer cells, which would minimize confounding
factors, such asmedium composition, matrix requirements, or growth
dynamics of the model. In this context, adding different types of
“healthy controls”, for instance, orthotopic non-transformed cells
together with PBMC or iPSC organoids from the same patient, would
offer alternative validation strategies in solid tumors.

Methods
This research complies with all relevant ethical regulations, approved
by the institutional review boards, who approved the use of the human
samples in the study. TheAMLpatient samples anddatawere collected
and published with signed informed consent in accordance with the
Declaration of Helsinki (HUS Ethical Committee Statement 303/13/03/
01/2011, latest amendment 7 dated June 15, 2016. Latest HUS study
permit HUS/395/2018 dated February 13, 2018). The HGSC patient
samples were collected as a part of a larger study cohort, where all
patients participating in the study provided written informed consent.
The study and the use of all clinical material have been approved by
The Ethics Committee of the Hospital District of Southwest Finland
(ETMK) under decision number EMTK: 145/1801/2015.

Compiling a large-scale phenotypic response data for pre-
training a LightGBM model
A comprehensive training dataset of large-scale phenotypic response
profiles was created by merging data from three databases: Con-
nectivity Map LINCS 202022, PharmacoDB23, and PubChem53 (Suppl.
Figure 3, bottom part). These continuously expanding, publicly avail-
able databases allowed us to establish an extensive dataset that pro-
vides functional information on both viability and transcriptomic
responses to increasing numbers of compounds.Details on the dataset
used in the present study are outlined below. The Connectivity Map
(CMap) LINCS 2020 is a reference database that houses gene expres-
sion response profiles of 12,328 genesmeasured in 240 cell lines across
multiple doses and time points for 39,321 small-molecule compounds.
Additionally, LINCS 2020 data includes paired control states for each
perturbagen-cell line combination, enabling a comparison of the
transcriptional changes before and after each treatment. To supple-
ment our dataset, we leveraged information from PharmacoDB, a
database that contains dose-response viability data for 56,149 drugs
across 1758 cancer cell lines at multiple doses. For further analysis, we
employed 10,303 overlapping compound-cell line pairs, which were
common between 24h transcriptional responses from CMap LINCS
2020 (passing quality control, i.e., qc_pass = 1) and PharmacoDB. For
matching compounds between PharmacoDB and CMap LINCS 2020,
we used compound identifiers, and for the cell line matching, we used
cellosaurus IDs54. To extract structural information of the compounds,
we used PubChem and RDKit (rcdk v3.6 and rcdklibs v2.3) to generate
molecular fingerprints (ECFP4) from the SMILES representation of
each common drug55.

The light gradient boosting machine (LightGBM) model was
trained on a comprehensive dataset of 3695 compounds tested at 1–35
doses in 167 cell lines. Drug-dose-cell line profiles (including tran-
scriptomic response profiles, ECFP4 molecular fingerprints, and drug
doses) were used as the model predictors, while the outcome variable
is the inhibition percentage, derived from PharmacoDB dose-response
viability data (Suppl. Figure 3). The LightGBMmodel was trained using
Bayesian Optimization, with a repeated cross-validation (three repeti-
tions), and ten-fold inner cross-validation (CV). This ensures a robust
and generalizablemodel for patient applications.More specifically, the
LightGBM model matches gene expression signatures (differentially
expressed genes between cancer and non-cancer cells) to the tran-
scriptional responses to smallmolecules tested at different doses from
LINCS 2020 to find the compounds that induce opposite tran-
scriptomic changes. In the next step, the model identifies which
compounds and doses most effectively inhibit cell growth, by

extracting percent inhibition responses for corresponding cell line-
drug-dose triads from PharmacoDB. After examining tens of thou-
sands of possible matches, the model provides a prediction of the
most promising compounds and the effective dose. We also recom-
mend including at least one dose-fold above and below the predicted
dose in the experimental evaluation todelineate themost effective and
least toxic drug dosage.

Prediction of multi-targeting therapies using scRNA-seq data in
AML patient samples
The experimental-computational prediction approach consists of the
following five subsequent steps (Suppl. Figure 3). These steps are
described here for the AML case, and modifications to this pipeline in
the HGSC case are described under section Tailoring the
experimental-computational approach to ovarian tumor patient
samples.

Step 1: Longitudinal sampling
After obtaining informed consent, bone marrow aspirates were col-
lected from patients diagnosed with acute myeloid leukemia (AML) at
the Helsinki University Hospital (HUS). For this study, a total of 12
longitudinal samples (7 at diagnosis, 2 at relapse stage and 3 at
refractory stage) were obtained and stored at the Finnish Hematology
Registry andClinical Biobank (FHRB).Theprotocols used for this study
were reviewed and approved by the institutional review board in
compliance with the Declaration of Helsinki56. The below steps 2–5
were repeated for each sample individually to provide a customized
set of effective and low-toxic multi-targeting options for each patient
individually by considering the intratumoral heterogeneity of cancer
cells that is present not only at later stages of the disease or resistance
development but already at the diagnostic stage.

Step 2: Single-cell data analysis
For the single-cell transcriptomic analysis, we processed the filtered
gene-barcode matrix derived from 10X Genomics data using the
ScType platform57, with Louvain clustering, as implemented in the
Seurat version 4.3.058. To filter out low-quality cells, we removed cells
that had either a low or high number of detected genes and also cells
that had more than 10% of mitochondrial UMI counts in the AML
scRNA-seq data. The quality control (QC) criteria depend on the
sample types; for instance, in HGSC organoids, 20% of mitochondrial
UMI count cut-off was used27. Such QC cell filtering step is critical to
exclude technical noise and thus to avoid biases in the downstream
analysis. To normalize the gene expression levels, we utilized the
LogNormalize method implemented in Seurat.

Step 3: Identification of malignant and normal cells
Single-cell RNA sequencing profiles were used to identify malignant
and normal cell clusters in each sample using three analytical tools,
ScType57, CopyKAT31, and SCEVAN59. These tools were specifically
selected for their ability to accurately classify and differentiate
between malignant and normal cells in the given complex sample,
eliminating the requirement for larger cohort samples. We demon-
strated that the detection procedure maintains a surprisingly stable
performance in most AML samples, even when as large proportion as
75% of cells are removed (Suppl. Fig. 11). This suggests its robust per-
formance on diverse datasets with different proportions of healthy
andmalignant cells, and relatively stable capability to capture relevant
malignant and healthy signatures of mixed cell samples.

Step 3a: Cell type annotation
We utilized the ScType web-tool57 that enables fast, precise and fully-
automated cell cluster annotation. ScType integrates cell typemarkers
from the two most comprehensive resources for human cell popula-
tions and classifies cells based on gene expression changes across
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clusters.We used ScType to assign a confidence score to each cell type
annotation and each cluster, with high scores indicating a high level of
confidence in the cell type annotation. Clusters with low scores were
labeled as “Unknown” cell types based on the default ScType cutoff
(score < number of cells in the cluster divided by 4). In addition, we
visually analyzed previously established marker genes for blasts,
including CD33, CD34, CD38, PROM1, ENG, CD99 and KIT33, on the
UMAP space and calculated the proportion of the blast cells in each
patient sample to gain a better understanding of the distribution of
leukemic cells. This resulted in a Seurat object that includes cell clus-
ters and their corresponding annotations.

Step 3b: Detection of aneuploid cells
To further classify cell populations as normal or malignant, we devel-
oped an ensemble approach that utilizesmultiplemethods to generate
a confident classification. The first method is a marker-based
approach, which involves carefully filtered cell markers from Cell-
Marker2.0 database60, and then using these as a custom marker data-
set for ScType to identify normal and malignant cells. The second
approach uses CopyKAT31, a Bayesian segmentation-based method,
with default parameters and known normal cells (T cells in the AML
case61) as a baseline to estimate copy number alterations (CNA). The
third method is SCEVAN, with the non-cancerous control cells used as
input, which employs a Mumford and Shah energy model to distin-
guish normal and malignant cell states59. The use of CNA estimation-
based approaches allows us to classifymalignant cellswhile taking into
account overall variability within normal cells. We then constructed a
majority vote based on the combined results of these tools to con-
fidently identify both normal and malignant cell clusters. To further
validate our approach, we superimposed the ensemble predictions
onto the UMAP space and compared them with the cell-type infor-
mation obtained from ScType. By integrating cell type and normal/
malignant annotations from ScType, with ploidy information from
CopyKAT and SCEVAN, we identified clusters of cells as either normal
or malignant. Our ensemble approach accounts for variability within
normal cells and therefore minimizes the risk of misclassification.

Step 4: Identification of genetically distinct subclones and
visualizing clonal lineages
After successfully identifying normal and malignant cell clusters, we
used inferCNV62 to infer large-scale copy number variations, such as
gains or deletions of whole chromosomes or segments from the scRNA-
seq data. The input for the inferCNV analysis included the known non-
cancerous cells identified in Step 3, genomic locations, cell type anno-
tations, and the scRNA-seq countmatrix data. CNVswere inferred using
theHiddenMarkovModel (HMM) approach implemented in the 6-state
i6 HMM model (https://github.com/broadinstitute/infercnvApp/blob/
master/inst/shiny/www/Infercnv-i6-HMM-type.md). In accordance with
the inferCVN guidelines in the document “Using 10X data” section
(https://github.com/broadinstitute/infercnv/wiki/infercnv-10x), we
adjusted the “cutoff” parameter from 1 to 0.1, and subsequently com-
puted the CNV profiles from the scRNA-seq expression counts. To
explore the subclonal structures, we used the “subcluster” method on
the HMM predicted CNVs.

After identifying the genetically distinct subclones, we used
Uphyloplot263 to visualize intra-tumoral heterogeneity and clonal
evolution using the CNV calls from the inferCNV 6-state HMM “sub-
cluster”method and its “.cellgroupings” file.We note that the resultant
evolutionary tree does not follow amolecular clock; rather, the branch
length is proportional to the percentage of cells in the subclone, hence
providing information about which subclone dominates the tumor
mass. Next, two broad-level subclones detected from the evolutionary
tree were identified using visual analysis, and along with normal cells,
overlaid on a UMAP projection for further analysis. To quantify gene
expression differences between the normal cells (identified in Step 3)

and the broad-level subclones (identified in Step 4), log-fold change
values and determined significance levels via the nonparametric Wil-
coxon rank-sum test, applied in Seurat 4.3.0 using the FindMarkers
command.

Step 5: Predictive modeling of multi-targeting therapies
When applied to patient samples, the subclone-specific differentially
expressed genes (DEGs) were used as input for the pre-trained
LightGBM model to predict single-agent cell inhibition percentages
for each compound-dose pair in the particular patient cells. This allows
us to take into account both the intratumoral and intertumoral het-
erogeneity, as captured by the scRNA-seq profiles of the patient sam-
ples. Our prediction approach is highly flexible and can be used in two
ways: first, by utilizing a predefined set of drug-dose pairs for predic-
tions, or second, by customizing the analysis with additional input of
new drug structures (ECFP4 fingerprints) and/or specific doses of
interest. The scTherapy tool offers flexibility for the users in per-
forming either monotherapy or combination therapy predictions,
depending on the number of cancer cells available from the patient
samples for experimental testing. Currently, the predictions are lim-
ited to two majority clones, where a specific drug in the drug combi-
nation is uniquely predicted for each subclone, when themodel is used
for combinatorial treatment predictions (please see the ovarian cancer
case study below for monotherapy predictions).

As anyMLmodel predictions inherently comewith somedegree of
uncertainty, we used conformal prediction (CP) to eliminate low-
confidence predictions and improve the prediction accuracy64. CP
generates confidence intervals for each prediction by measuring
uncertainty based on repeated CV residuals. Predictions with a non-
conformity score <0.8 were excluded, thereby ensuring inclusion of
only confident and accurate predictions. In addition, to ensure that our
model returns clinically more relevant predictions, we imposed a 1μM
dose maximum when utilizing the pre-defined set of drug-dose pairs.
High drug doses, even though potentially increasing cancer cell inhi-
bition, may also inhibit normal cells, hence compromising the selec-
tivity of targeted agents65. By using such a dose restriction, we ensured
the selectivity of targeted agents returned by themodel andminimized
the risk of toxic effects, making our predictions more clinically action-
able.We applied this approach to each subclone, hence generating a set
of drug-dose-response tuples for the experimental validation.

Retrospective testing of the model predictions in single-agent
data from AML patients
To validate the performance of our model, we first used existing data
from bulk drug response assays, available for the 12 patient samples
from previous studies56. For the single-agent response testing, 20μl of
freshAMLcell (approximately 10,000) suspension inmononuclear cell
mediumwasaddedperwell to pre-druggedplateswith 10-folddilution
series of five concentrations, and the whole-well cell viability was
measured with CellTiter-Glo (CTG; Promega) in duplicate using
established protocols35,56. After 72 h of incubation at 37 °C and 5% CO2,
cell viability of each well was measured using the CTG luminescent
assay and a PHERAstar FS (BMG Labtech) plate reader. The percentage
inhibition was calculated by normalizing the cell viability to negative
control wells containing 0.1% dimethyl sulfoxide (DMSO), and positive
control wells containing 100μM cell killing benzethonium chloride
(BzCl). Notably, these existing single-agent response data were not
used in the model training and were only employed retrospectively to
test the accuracy of the model to predict effective monotherapies.
Since the whole-well assay is not a cell population-specific assay, we
performed this validation using the differentially expressed genes
(DEGs) between the malignant cell types and normal cells to generate
single-agent predictions for each patient sample. Subsequently, we
matched the drugs and doses predicted by the model to the available
patient-specific cell viability dose-response data (see Fig. 2b).
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Prospective testing using whole-well and flow cytometry assays
in the AML patient cells
The patient-specific predicted combinations were first tested on the
bone marrow mononuclear cells of each patient in a 4 × 4 dose-
response matrix using the bulk CTG viability assay, similarly as
before33. The combination synergy in the experimental validations was
quantified using ZIP model66, calculated based on the dose region
around the predicted effective dose of each compound in the
combination.

Cell population-specific drug combination effects in primary
AML patient samples were assessed by high-throughput flow cyto-
metry assay. The compounds were dissolved in 100% dimethyl
sulfoxide and dispensed on conical bottom 384-well plates (Grei-
ner) either as single agents or combinations using an Echo 650
liquid handler (Beckman Colter). Cryopreserved bone marrow
mononuclear cells were thawed and suspended in 12.5% HS-5
derived conditioned medium, and 2 − 3 × 104 live cells were seeded
with a MultiFlo FX.RAD (BioTek) to 384 well-plates, followed by
incubation for 72 h at 37 °C and 5% CO2. To profile the cell sub-
population responses, the cells were stained with BV785 Mouse
Anti-Human CD14 (Biolegend, dilution 1:200), VB515 Recombinant
Anti-Human CD56 (Miltenyi, dilution 1:400), and following anti-
bodies from BD Biosciences; V500 Mouse Anti-Human CD45 (dilu-
tion 1:240), BV650Mouse Anti-Human CD19 (dilution 1:120), PE-Cy7
Mouse Anti-Human CD3 (dilution 1:150), PE Mouse Anti-Human
CD34 (dilution 1:240), BV421 Mouse Anti-Human CD38 (dilution
1:600) and APC Mouse Anti-Human CD117 (1:600), together with
APC-Fire 750 Annexin V (Biolegend, dilution 1:80) and DRAQ7 (BD
Biosciences, dilution 1:600). The cells were analyzed with an iQue3
flow cytometer (Sartorius). The remaining live cells after drug
treatments were gated using Forecyt (Sartorius). Briefly, cell sing-
lets were identified based on FSC-A (forward-scattered area) versus
FSC-H ratio, and live cells were identified by excluding annexin V-
and DRAQ7-positive cells, followed by identification of leukocytes
(CD45 + ). Further characterization was done for NK cells (CD56 +
CD3-), leukemic blasts (CD34+ and/or CD117 + ) leukemic stem cells
(CD34 + CD38-), monocytes (CD14) and T/B- cells (SSC-A and CD3/
19) from the leukocytes.

Tailoring the experimental-computational approach to ovarian
tumor patient samples
To differentiate between cancer and non-cancerous cells in ovarian
cancer patient scRNA-seq data, we utilized a panel of established
marker genes, including PAX8, CA125, MUC16, WFDC2, and EPCAM,
collectively referred to as PAX8+ cells; PAX8 is expressed in 80–96% of
high-grade serous ovarian cancer (HGSC) tumors (Suppl. Figure 5)67,68.
Our initial analysis focused on theHGSC Patient 1 sample, selected due
to the availability of both scRNA-seq data and viable cells for experi-
mental validation. Due to the small proportion of PAX8+ malignant
cells detected in the scRNA-seq data, we opted to predict only single-
agent therapies as opposed to combination therapies. However, dur-
ing the validation phase, the PAX8- stromal cells of Patient 1, serving as
normal controls, died. This led us to integrate this sample with two
other HGSC Patient 4 and 5 samples, which had readily available PAX8-
cells (see https://ianevskialeksandr.github.io/figovfig145.png). The
integration was achieved using the standard Seurat workflow, and the
cell types were assigned using ScType. Both combined PAX8 + and
PAX8- cell populations were visualized using Seurat “FeaturePlots”. We
used an average of previously-measured responses of PAX8- cells from
patient 4 and 5 samples (serving as combined ovarian-sample normal
controls) to 372 compounds overlapping with the LINCS 2020 com-
pounds. We extended these initial analyzes with two additional HGSC
patients (Patients 2 and 3) for which both organoids and the stromal
cell cultures were available at the cell numbers sufficient for single-

drug sensitivity and selectivity testing in PAX8 + and PAX8- cells
(Suppl. Table 3).

Prospective testing in ovarian tumor organoids and drug
response assays
In contrast to the AML case, where we had enough cancer cells for
combinatorial testing of targeting two major subclones, in the HGSC
case study, we opted to predictmulti-targetingmonotherapies, due to
the small proportion of patient-derived cancer cells based on the
scRNA-seq analyzes (Fig. 3a–c). In such limited cancer cell populations,
identifying subclones may not be reliable for combinatorial targeting.
Instead, we used all cancer cells from a patient sample as a collective
entity, disregarding subclone distinctions and subdivisions, when
identifying treatments that inhibit mostly PAX8+ cells. To predict the
compounds that specifically target and eliminate cancer PAX8+ cells,
while sparingPAX8- cells, weutilized thedifferentially expressedgenes
(DEGs) from the comparison between PAX8+ and PAX8- cells in the
scRNA-seq data. These DEGs were used as input for the pre-trained
LightGBM model. Among the predicted 372 compound responses
(that overlapped with drugs tested on PAX8- cells), we selected the
top-20 most effective compounds, and removed two with low con-
fidence, hence resulting in 18 predicted agents. Subsequently, we
validated the efficacy of these compounds in PAX8+ tumor organoids
and compared the results, as shown in Fig. 3 (3 replicates).

Ovarian cancer organoids were established and characterized
according to established protocols27, and propagated in BME-2 matrix
droplets in the sample-specific growthmedium. The organoid cultures
consisted only of cancer cells as judged by whole-genome sequencing
of the organoid cultures, profiling of their copy-number variation, and
determination of the tumor cell purity based on the sequencing-based
factors in the original study27. Moreover, TP53 mutation analyzes,
revealing a Variant Allele Frequency (VAF) of 1.0 in all organoids,
confirmed that organoids comprise only cancer cells27.

For the organoid drug sensitivity testing, the organoid cultures
were trypsinized to obtain the single-cell suspension. The cells were
resuspended in the fresh gel, dispensed to 384-well Ultra-Low
Attachment microplates (#4588, Corning) at approximately 103 cells
per well in 10 µl of the matrix, and covered with 40 µl of growth
medium containing 5 µM ROCK inhibitor to facilitate the organoids
formation. After 2–6 days, the medium was exchanged to ROCK
inhibitor-free growth medium. Drug testing was performed as descri-
bed above for single-agent AML sample testing, with the following
modifications. The tested compounds (10-fold dilution series of four
to five concentrations), vehicle (DMSO), or positive control com-
pounds (100μM benzethonium chloride or 10μM bortezomib) were
transferred to the wells using Echo 550 acoustic dispenser (Labcyte).
The organoids were incubated with drugs for a total of 7 days (with
freshmediumexchange anddrug replenishment on after 4 days) in the
humidified incubator at 37 °C and the viability was assessed using
CellTiter-Glo 3D Cell Viability Assay (#G9683, Promega) using a Spec-
traMax Paradigmmicroplate reader (Molecular Devices) after 5min of
agitation and 25min of incubation at room temperature, as indicated
by the manufacturer.

The PAX8-negative cells from the ovarian tumor samples were
expanded in sample-optimized media, either RPMI-1640 medium,
supplemented with 2mM glutamine, 1% Pen/Strep and 10% FBS
(Gibco), or M199 supplemented with 10% FBS, 1% Pen/Strep, 10 ng/mL
EGF, 400 nM hydrocortisone, 870 nM insulin-transferrin-selenium,
0.3%Trace elements B, and 20mMHEPES.Drug testingwasperformed
as above. The culture was trypsinized, resuspended in fresh medium
and seeded at 1000 cells in 25μl of medium per well in pre-drugged
384-well microplates (#3864, Corning). After 7 days of the drug
treatment, the viability was measured using the CellTiter-Glo 2.0
(Promega).
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Immunofluorescence and immunoblotting in ovarian cancer
organoids and cells
Cells were fixed with 4% PFA for 30min, washed 5 times with PBS, and
incubated in the blocking buffer (PBS, 0.5% BSA, 20mM glycine, 0.1%
TX-100) for 12 h (for organoids) or 1 h (for cell lines) at room tem-
perature. Immunostaining with anti-PAX8 rabbit polyclonal antibody
(dilution 1:100, Proteintech, #10336-1-AP) was performed overnight at
4 °C. After 3washeswith the blocking buffer, 8 h each, the donkey-anti-
rabbit Alexa555 secondary conjugates (dilution 1:500, Invitrogen,
#A31572) were applied for 1 h together with Hoechst 33342 (10 µg/mL
in PBS). The cells were imaged at an Opera Phenix confocal screening
microscope (Perkin Elmer), with the 20x or 40x water immersion
objectives.

For immunoblotting for PAX8 and EpCam, the cells were lysed in
RIPA buffer with Pierce protease and phosphatase inhibitors cocktail
(Thermofisher) on ice for 30min. After centrifugation (17000 rcf, 4 °C,
20min), the samples were loaded to Bis-Tris 4–12% gradient Bolt PAGs
and run according to the manufacturer’s manual. After the protein
transfer to the nitrocellulosemembranes overnight in Towbin transfer
buffer, themembranes were stained blocked in 5% non-fat milk in TBS-
T and incubated with primary antibodies in 5% non-fat milk in TBS-T
overnight at 4 °C. The antibodies were: anti-PAX8 rabbit polyclonal
(dilution 1:250, Proteintech, #10336-1-AP); anti-EpCam mouse mono-
clonal (dilution 1:500, Santa Cruz, #sc-25308); and anti-GAPDHmouse
monoclonal (dilution 1:5000, Novus, #NB300-221). After 3washeswith
TBS-T, the membranes were incubated with the secondary
fluorophore-conjugated antibodies diluted to 1:5000 in 5% non-fat
milk in TBS-T (anti-mouse IRDye 680, #926-32220; anti-rabbit IRDye
800CW, #926-32211; anti-mouse IRDye 800CW, #926-32210, Licor),
washed in TBS-T 3 times and scanned using LiCOR Odyssey imager.

Statistics & Reproducibility
The statistical tests applied and the significance values are included in
the figure legends or results text. We used non-parametric tests in all
the statistical comparisons. Patients were recruited as part of two
ongoing translational studies for AML and HGSC. The patient samples
for the current study were selected based on the availability of input
data for modeling (scRNA-seq) and primary cells for experimental
validations (single-cell drug assays). The model predictions and
experimental testing were done for each patient separately, using
scRNA-seq data and single-cell drug assays, respectively. Therefore,
the age, sex, gender, race, ethnicity, or other social parameters are not
considered as confounding factors. The patient characteristics are
reported in Suppl. Tables 1–3. The experimental validations of the
model predictions were made after the predictions, and experimental
researchers were blinded to the model prediction outcomes. The
validation experiments were not randomized, since this is not a case-
control study, instead the non-cancerous cells from each patient
samplewereused as patient-specific control for the particular patient’s
cancer cell responses. Nodatawere excluded from the analyzes. All the
validation drug assays were replicated either 2 or 3 times, depending
on the availability of primary patient cells. All the replicate measure-
ments were successful in the sense that the standard deviations were
within an expected range based on previous studies.

Single-cell RNA sequencing and data processing
Single-cell gene expression profiles were generated using the 10x
Genomics Chromium Single Cell 3’ RNA-seq platform with Next GEM
v3.1 Dual Index chemistry. Libraries were prepared using the Chro-
mium Next GEM Single Cell 3’ Gene Expression version 3.1 Dual Index
kit. Samples were sequenced on an Illumina NovaSeq 6000 system
with read lengths of 28bp (Read 1), 10 bp (i7 Index), 10 bp (i5 Index),
and 90 bp (Read 2). Data processing and analysis were performed
using 10x Genomics Cell Ranger v6.0.0 pipelines69. The “cellranger
mkfastq” command, utilizing Illumina’s bcl2fastq v2.2.0, was used to

generate FASTQ files from raw base calls. The “cellranger count”
pipeline performed alignment against the human genome GRCh38.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The previously published single-cell RNA sequencing data for 9 AML
patients are available in the European Genome-Phenome Archive
(EGA) under accession codes: EGAS0000100461433 (AML patients 2, 3,
8 and 10) and EGAS0000100444470 (AML patients 1, 4, 7, 8, and 11).
The single-cell RNA sequencing data generated in this study for AML
patients 5, 6, and 12 are available through Sequence Read Archive
(SRA accession numbers; Patient 5: SRR30720408; Patient 6:
SRR30720407:Patient 12: SRR30720406). The processed Seurat
objects were deposited to Zenodo (https://doi.org/10.5281/zenodo.
13340927)71. The previously published single-cell RNA sequencing data
for the 5 HGSC patient samples are available on EGA under accession
codes: EGAS0000100501025 (HGSC patients 1, 2, 3 and 4) and
EGAS0000100506626 (HGSC patient 5). The publicly available data
used in this study are accessible in the Connectivity Map LINCS 2020
(https://clue.io/data)22, PharmacoDB (https://pharmacodb.ca)23, and
PubChem Compound database (https://www.ncbi.nlm.nih.gov/
pccompound)53. The scRNA-seq data from cancer patients in other
tumor types were obtained from the dataset curated by Gavish et al.
(https://www.weizmann.ac.il/sites/3CA)28. The source data generated
in this study are provided in the Supplementary Information or Source
Data file. The remaining data are available within the Article, Supple-
mentary Information or SourceDatafile. Sourcedata areprovidedwith
this paper.

Code availability
The R codes for reproducing the results and for making new patient-
specificpredictions inother studies are freely available both onGitHub
(https://github.com/kris-nader/scTherapy) and Zenodo (https://doi.
org/10.5281/zenodo.13340796)72. Docker image that encapsulates all
the relevant dependencies and ensures compatibility across different
environments is available on Docker Hub (https://hub.docker.com/r/
kmnader/sctherapy). Separate docker image compatible with the lat-
est Seurat version v5 has also been available (https://hub.docker.com/
r/kmnader/sctherapy_v5).
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