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Abstract

Adaptive Laboratory Evolution (ALE) of microorganisms can
improve the efficiency of sustainable industrial processes impor-
tant to the global economy. However, stochasticity and genetic
background effects often lead to suboptimal outcomes during
laboratory evolution. Here we report an ALE platform to circumvent
these shortcomings through parallelized clonal evolution at an
unprecedented scale. Using this platform, we evolved 104 yeast
populations in parallel from many strains for eight desired wine
fermentation-related traits. Expansions of both ALE replicates and
lineage numbers broadened the evolutionary search spectrum
leading to improved wine yeasts unencumbered by unwanted side
effects. At the genomic level, evolutionary gains in metabolic
characteristics often coincided with distinct chromosome amplifi-
cations and the emergence of side-effect syndromes that were
characteristic of each selection niche. Several high-performing ALE
strains exhibited desired wine fermentation kinetics when tested in
larger liquid cultures, supporting their suitability for application.
More broadly, our high-throughput ALE platform opens opportu-
nities for rapid optimization of microbes which otherwise could
take many years to accomplish.
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Introduction

Microbial processes play important roles in the global economy
with the production of fermented food and drinks alone accounting
for trillions of dollars in turnover (Bisson et al, 2002; Jullesson et al,

2015; Marsit and Dequin, 2015). Beyond fermented food and
drinks, microbial fermentation is central to many production
processes, such as enzymes, antibiotics, probiotics, fine chemicals,
and biofuels. However, the naturally occurring microbes seldom
operate at the efficiencies required for an economically viable
production, leading to intense efforts to improve their properties
(Dai and Nielsen, 2015; Dugar and Stephanopoulos, 2011; Peris
et al, 2018). Rational genetic engineering has helped in addressing
some microbial shortcomings (Choi et al, 2019; Nielsen et al, 2014;
Oud et al, 2012), but generates genetically modified organisms
(GMO) that are often unsuitable or restricted for food, feed, or
beverage production. Further, successful genetic engineering
requires a deep understanding of the genotype–phenotype map
(Brochado and Patil, 2013; Lee and Kim, 2015; Monk et al, 2016;
Steensels et al, 2019), which is often unknown, especially in the
cases of complex, multi-genic traits. Mathematical modeling of
cellular states and fluxes is equally challenging due to the
interconnected nature of metabolic and regulatory processes
(Basler et al, 2016). Manifestation of both the desired industrial
trait and unwanted side effects therefore often depends both on the
genetic background and the environment (Costanzo et al, 2016;
Stearns, 2010; Streisfeld and Rausher, 2011) and defy prediction.

Adaptive Laboratory Evolution (ALE) offers an attractive
alternative for microbial improvement because it is unburdened
by the need to understand the genotype–phenotype relation on a
single gene level (Mans et al, 2018; Notebaart et al, 2018). As such,
it has been successfully used for, e.g., microbial thermotolerance
(Caspeta et al, 2014), methylotrophy (Espinosa et al, 2020),
carotenoids production (Reyes et al, 2014), and alcohol tolerance
(Ghiaci et al, 2013; Wang et al, 2020). Yet, ALE lineages often fail to
evolve the desired traits, or end up carrying unwanted side effects,
because the etiology of the desired traits involves neutral, costly,
inaccessible, or highly pleiotropic mutations (de Visser and Krug,
2014) (Fig. 1A). Moreover, chance influences both the birth and
early fate of mutations, delaying the establishment of beneficial
variants in ALE populations and allowing neutral or weakly
deleterious variants to become common (Masel, 2011) (Fig. 1B).
The power of numbers could unshackle ALE from the constraints
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of chance; however, achieving a sufficiently high ALE throughput
without compromising error rates has proven challenging (Dun-
ham et al, 2017; Fasanello et al, 2020; Lukačišinová et al, 2020;
Nguyen Ba et al, 2019; Wong et al, 2018). We here developed an
ALE platform capable of evolving 104 microbial populations in
parallel, and we demonstrate the utility of parallelization by
selecting eight desired wine production traits while measuring
adaptation, and its side effects, with high accuracy.

Results

Parallelizing ALE for high throughput

We developed a highly parallelized ALE platform and evaluated its
applicability by evolving 48 wine yeasts for eight desired wine yeast
traits (Appendix Table S1). The selected traits include growth on
less-preferred nutrients (fructose and arginine, proline), growth on
eccentric concentrations (high sugar, high ethanol, low vitamin
and low nitrogen) and production of metabolites (glutathione and
aromatic compounds) toward a more efficient and better-quality
wine production for which we designed specific environments
(Appendix Tables S2 and S3). We used 15 commercial wine yeasts
(Lallemand Inc. Montreal, Canada) and 33 noncommercial
lineages isolated from cellars across the Priorat wine district in
Spain as genetic starting points and sequenced their genomes.
Commercial and noncommercial lineages all shared recent
ancestry (mean nucleotide diversity = 0.000018–0.011) within the
Wine/European clade and showed only limited population
structure (Liti et al, 2009; Peter et al, 2018) (Fig. EV1).
Heterozygosity varied across strains (heterozygote/homozygote
sites = 0.02–0.67) with half of strains (55%) being almost
completely homozygotic (heterozygosity ratio <0.05) (Appendix
Table S1). We repeatedly (n = 24 replicate ALE populations)
expanded all 48 lineages clonally to generate 1152 parent strain
populations. We cultivated these as colonies on solid medium
based on each of the eight synthetic grape must media (Beltran
et al, 2004) (n = 9216), as shown in Appendix Fig. S1A,B.

To estimate doubling times for the parent population at the start
of the ALE regime, we used an automated set-up (Zackrisson et al,
2016) to count cells in colonies expanding on the designed
variations of a solidified synthetic grape must, achieving generally
high precision (mean CV = 10.0%) (Appendix Fig. S1C). Selection
environments increased the cell doubling time (mean increase
across strains and environments: 4.15 h or 200%) compared to
control environments; thus, they imposed substantial selection
pressures (Fig. EV2A, right panel). The exception was nitrogen
starvation, which imposed little to no selection for improvement of
the maximum growth rate, likely because nitrogen supplies have yet
to become limiting when growth is at its fastest. However, the

variation in cell doubling times across lineages was large, reflecting
that the degree of selection for doubling-time improvement varied
considerably (Fig. EV2A, heatmap). Commercial lineages enjoyed
no cell doubling-time advantage over noncommercial in any niche
(Fig. EV2A,B), and a clustering of strains based on phenotypic
similarity often grouped commercial lineages together with
noncommercial lineages, with no evident connection to the weak
population structure (Fig. EV2A, heatmap). However, many
lineages in both categories were general slow growers (Fig. EV2A,
bottom panel), which imply no or limited historical adaptation to
the background grape must medium.

We evolved the 9216 wine yeast populations over 30 consecutive
ALE batch cycles and stored evolved endpoint strains as frozen
stocks (Appendix Fig. S1B). Extinctions of 2351 populations
(~25%) mostly affected slower-growing lineages and likely reflected
ratchet-like error accumulation, and fewer viable cells being
transferred to new batch cycles, as the ALE progressed (Fig. EV3A).
Surviving ALE populations varied dramatically in their endpoint
doubling-time adaptation, and differences between selection
environments could explain 45% of this variance (Fig. 2A,B). This
reflects that adaptability in some environments is constrained
across wine yeasts, while being generally high in others. Indeed,
nitrogen starvation and selection for better aroma production often
reduced, rather than improved, fitness (population doubling times).
This is consistent with the high rates of extinction in these two
designed niches, whereas the other six environments tended to
promote fitness gains, albeit to varying degrees. Adaptation was
strongest in high-sugar grape must, in which 30% of the
populations achieved >80% doubling-time reductions. The capacity
of wine yeasts to rapidly improve when facing environments richer
in sugar than typical grape musts (200–250 g/L) suggest limited
historical selection to perform well in such niches.

Highly parallel ALE enables the selection of better-
adapted variants

General differences between wine yeasts explained 23% of
adaptation variance, illustrated by the strain E11 often adapting
fast (mean doubling-time reduction: 1.15 h) while strain T7
consistently reached (Fig. EV3A) or approached extinction
(Fig. 3A,B). Wine yeast adaptability therefore has a generic
component that persists across selection environments, with some
strains being inherently more suited to ALE in synthetic grape
must. The commercial and noncommercial lineages were equiva-
lent in this respect (Fig. EV3C). However, more often than not,
adaptability involved significant genotype-by-environment compo-
nents (Fig. EV3D), as illustrated by T14 and D10 showing
approximately the same overall ability to adapt to the selection
pressures imposed, but D10 adapting much better to fructose use
and T14 much better to vitamin scarcity (Fig. 3A). Predicting wine

Figure 1. ALE challenges overcome by parallelization.

(A) Mutations underlying desired traits may be neutral (blue), costly (black), inaccessible (gray), low adaptive (yellow), or associated with side effects (orange) in a
lineage. Parallelizing ALE across many lineages can increase the chances of some being capable of evolving a desired trait that is unburdened by side effects (green). (B)
Chance affects new mutations in a population, leading to slow (blue), or low yield (yellow), adaptation, and a side-effect burden (orange). Parallelizing ALE across many
replicated populations of a lineage can increase the chances of some quickly adapting to a high adaptation yield without becoming burdened by unwanted side effects
(green).
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yeast adaptation in a particular ALE environment is therefore likely
to be challenging, and this is further underscored by the often-best
adaptation predictor, low initial fitness (Jerison et al, 2017; Persson
et al, 2022; Stenberg et al, 2022), accounting for no more than 36%
of adaptation variance (Pearson, r =−0.61) (Fig. 3B, left panel). An
unbiased high-throughput ALE platform based on the power of
numbers circumvents this need for predictability by allowing a
simple post-experiment selection of the most improved strains for
further development. The value of such an approach is illustrated
by the fact that the most adapted lineages reduced their doubling
time 1.1–3.8× more than the average lineage in each environment
(Fig. 3C, main panel) and often ended up among the fastest
growing (Fig. 3B, right panel). The latter underscores that ALE not
only quenches defects in low-fitness lineages, transforming these

into average wine yeasts, but can imbue them with a fitness that is
much superior to what is typical. This is illustrated by the gains of
D10 in an environment selecting for fructose, and of E11 when
selecting for NCR (Nitrogen Catabolite Repression) relaxation
(Fig. 3C, main panel).

The divergence of populations evolving as replicates further
amplified the value of ALE parallelization, accounting for nearly
70% of adaptation variance within environments (Fig. 2B). The
most adapted ALE replicate of each parental lineage (1.1–1.9×)
consistently reduced its cell doubling time more than the average
ALE replicate for that parental lineage (FDR: q = 0.05). For the
best-adapting strains (average of replicates) in each environment,
this advantage of the best adapted replicate was even larger
(1.1–6.6× greater doubling-time reduction than the mean replicate)

Figure 2. Wine yeast adaptation under highly parallelized ALE.

We parallelized ALE across many (n= 24) replicated populations of 48 (Appendix Table S1) commercial and noncommercial wine yeasts as replicated colony populations
on each of eight synthetic grape musts designed to select for traits desired by the wine industry (Appendix Tables S2 and S3). The ALE design for the 9216 populations is
shown in Appendix Fig. S1. We counted cells in growing populations to generate high-density growth curves and estimated adaptation as the log(2) change in normalized
cell doubling time from before to after ALE. (A) Histogram of the adaptation of all ALE populations, in each ALE environment (color). Extinct ALE populations are not
included. Inset: Mean (n= 24 replicate ALE populations) adaptation of the wine yeast lineage with the greatest adaptation (left bar, indicated by name) as compared to the
average wine yeast lineage (n= 48 strains), in each selection environment. Error bars: SEM. (B) Percentage of the variance in adaptation that is explained by differences
between: ALE selection environments, parental lineages, replicated ALE populations, and technical replicates. Source data are available online for this figure.
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(Fig. 3C, inset panel, and Appendix Fig. S2). These benefits of ALE
replication depended strongly on selection environment and
genetic background, with selection for a relaxed NCR, tolerance
to high sugar, and glutathione production, and lineages E12, G12,
and M2 promoting a particularly large variation in adaptation
between replicates (Fig. EV3D). Overall, we conclude that
expanding the numbers of ALE lineages and replicates, while
keeping other parameters constant, improves the chances of
obtaining highly adapted variants.

Parallelizing ALE empowers selecting against unwanted
side effects

Pleiotropy, genetic linkage and neutral genetic drift means that
ALE strains typically acquire traits other than those desired, often
limiting their industrial usefulness. We measured side effects by
cultivating the start and endpoints of 5760 evolved populations in
18 carbon or nitrogen-limited environments and estimated the
doubling-time change that adaptation had caused. We found side
effects on carbon and nitrogen metabolism to be common, with
the mean population significantly (Student’s t test, P = 0.01)
changing its cell doubling time in 15 out of 18 carbon or
nitrogen-limited environments. These side effects tended to be
substantially weaker than adaptations (Fig. EV4A). Overall, they
also enhanced and impaired growth equally often, but this varied
across ALE environments, with e.g., selection on the NCR
medium strongly tending to give negative side effects. Thus, the
capacity to grow under carbon restriction, particularly when
provided as galactose, mannose, or maltose, often improved
despite the absence of direct selection for use of these carbon
sources in the designed selection environments (Fig. 4A). In sharp
contrast, the capacity to grow under nitrogen restriction, in
particular when using aspartic acid, valine, and urea as sole
nitrogen sources, consistently deteriorated across selection
environments. This dichotomy likely reflects stronger selection
on a fast carbon catabolism in the carbon-rich (20%) background
medium of synthetic grape must.

Next, we grouped populations based on similarity in evolved
side effects using hierarchical and t-SNE clustering and found
populations adapting to the same selection environment often
acquiring similar side effects (Fig. 4B,C). Thus, each selection
environment allowed adapting wine yeasts to evolve a few
(n = 2–5) distinct sets of side effects, or syndromes, with each
syndrome being mostly private to one selection environment.
Syndromes appeared to be universally available, as on average 96%
of wine yeasts could evolve each of the sets of side effects
(Fig. EV4B). However, different parental lineages had very

different propensities to evolve a particular syndrome in any given
ALE niche. The strong influence of genetic background on the
evolution of traits not under direct selection resulted in some wine
yeasts tending to evolve more desirable sets of side effects than
others, in the sense that these syndromes represented faster growth
in a wide range of environments (Fig. 5). This tendency had a
generic component, with e.g., M11 generally evolving fast growth
side effects and G2 generally evolving slow growth side effects,
regardless of ALE niche (Figs. 4B and 5). However, the parental
lineages evolving the best, and the worst, sets of side effects varied
substantially across ALE niches. All other factors being equal,
evolving many ALE lineages in parallel therefore offers better
chances of obtaining at least some ALE strains that are unburdened
by unwanted side effects.

MEP2 and chromosomal mutations drive wine yeast
adaptations to NCR relaxation

We sequenced the DNA of 26 fast-adapting populations and called
single-nucleotide and small indel variants having reached substantial
frequencies, but rarely fixation, relative to the corresponding
parental lineage (Dataset EV1; Table EV1 and Appendix Table S6).
In the case of selection for NCR relaxation (arginine, proline
consumption), four out of seven populations acquired different
amino acid changes in Mep2 (Fig. 6A), strongly suggesting these to
have contributed to adaptation. All four MEP2 mutations were
present at frequencies of P = 0.967 to 0.989, reflecting near fixation of
homozygotic variants. The homozygosity likely arises from gene
conversion, which is known to help drive ALE of diploid yeast
populations (Vázquez-García et al, 2017a). Mep2, a high-affinity
ammonium permease, serves as main entry point for the ammonium
analog methylamine, which we used to activate the NCR
intracellularly and to repress the use of arginine and proline, the
only sources of usable nitrogen present in this ALE niche. Point
mutations in MEP2 have also been shown to prevent methylamine
uptake (Wang et al, 2013a). Adaptation to this repression is therefore
likely to have been driven by loss of Mep2 function and reduced
methylamine uptake, which should result in NCR relaxation, and
consequently faster use of the arginine and proline. One of the point
mutations, W275stop, is a non-sense mutation, consistent with this
explanation (Fig. 6B). An in-frame deletion of P465 in the
autoinhibitory domain of the cytoplasmic tail (Boeckstaens et al,
2014) of Mep2 may result in constitutive Mep2 auto-inhibition and
closure, with similar effects. We note that, while wine yeasts in
ammonium-rich grape must initially take up ammonium through
Mep1 and Mep3, Mep2 takes over when ammonium concentrations
fall (Beltran et al, 2004). Loss of Mep2 function is therefore likely to

Figure 3. Wine yeast adaptation under highly parallelized ALE.

(A) Stacked bar plot of the mean (n= 24 replicated ALE populations; extinct populations excluded) adaptation for each parental wine lineage, in each ALE selection
environment. ALE selection environments with positive adaptation (cell doubling-time decrease) are shown as negative sums, environments with negative adaptation (cell
doubling-time increase) are shown as positive sums. Zero: no adaptation. Text color: population (see Fig. EV1). Arrows: lineages indicated in text. (B) Comparing mean
(n= 24 replicated ALE populations) adaptation, for each parental wine yeast in each ALE selection environment, to the mean relative doubling time before (left panel) and
after (right panel) ALE selection. Color = selection environment. Broken line = linear regression. Pearson’s r and lineages mentioned in text are indicated. (C) Adaptation
(mean, n= 4 biological replicates) of the most adapted replicated wine yeast lineage (left bar, indicated by name) as compared to the average lineage (n= 24 replicated
ALE populations) across selection regimes. Inset: adaptation (mean, n= 4 biological replicates) of the top replicate of the most adapted wine yeast lineage (left bar,
indicated by name) as compared to the average lineage (n= 24 replicated ALE populations) in each selection regime. FDR: q= 0.05. Error bars: SEM. Source data are
available online for this figure.
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result in slower ammonium uptake at later stages of wine
fermentation, and consequently, to earlier NCR relaxation and more
extensive uptake of the abundant proline and arginine, which is an
industrially desired wine trait. Apart from a missense mutation in
WHI2, encoding a TORC1 regulator, we found no genes linked to
nitrogen metabolism to have been mutated in other ALE NCR
relaxation populations. We also found no trace of mutations in
PUT1-4, GAP1, and URE2, which recently were shown to drive wine
yeast adaptation to a NCR relaxation medium (Walker et al, 2022).

We found few other point mutations or small insertions/
deletions in ALE populations adapted to other environments, no
genes that were mutated in more than one population (Data-
set EV1), and no agreement with variants previously reported to
drive ALE adaptation to similar selection pressures. Specifically, we
found no changes to HXT3, HXK1 or FSY1, believed to drive
fructose evolution (Berthels et al, 2008; Galeote et al, 2010;
Guillaume et al, 2007), in our fructose ALE and no changes to cell
wall stability genes, which have been reported to help adaptation to

Figure 4. Side-effect syndromes in ALE populations.

We cultivated start and endpoints of ALE populations in eight selection environments in 18 non-selection carbon and nitrogen-limited niches. We estimated ALE side
effects as the log(2) change in normalized doubling time from before to after ALE, in these niches. (A) Side effects of ALE, averaged across all ALE replicates, lineages and
selection regimes (n= 5760). Faster growth side effect = negative numbers. Orange text: carbon-limited niches, blue text: nitrogen-limited niches. Error bars: SEM (across
selection regimes, n= 5). (B) Central heatmap: ALE side effects evolved by each lineage in each selection regime. Each column represents one type of side effect (growth
in a carbon or nitrogen-limited niche), evolved under one selection regime. Each row represents one lineage (mean of n= 24 replicated ALE populations), with names
colored by clade (see Fig. EV1). Arrows indicate M11 and G2. Red = faster growth side effect, blue = slower growth side effect. Left panel: Hierarchical clustering of side
effect niches. Left color panel: Selection regime. Note that sets of side effects are grouped by selection regime. Right color panel: Carbon (orange) and nitrogen (blue)
limited niches. Upper panel: Hierarchical clustering of lineages based on similarity across side-effect-environments combinations. (C) t-Distributed Stochastic Neighbor
Embedding (t-SNE) clustering reducing the side-effect variation to two dimensions. Each dot represents one ALE population, of one lineage, in one selection regime- or one
parental lineage. Color = selection regime, as in (B). Note that side effects cluster by selection regime, representing common syndromes. Source data are available online
for this figure.
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high alcohol concentrations (Ghiaci et al, 2013; Snoek et al, 2016),
in our high ethanol ALE. Instead, all sequenced ALE populations
carried large copy number variants and loss-of-heterozygosity
(LOH) variants (Fig. 6C; Table EV1). Sequence coverage indicated
that copy number variants, which tended to correspond to gain or
loss of whole chromosome, were rarely fixed within populations,
but often extensively shared across populations. Thus, 50 out of
60 such variants were present in more than one population,

consistent with them being selected for (Fig. 6C). Some, e.g., the
Chr XV duplication consistently emerging in a high-sugar
environment, were near private to specific ALE environments,
suggesting niche-specific adaptations. High-sugar ALE has in other
genetic and environmental backgrounds been linked to amplifica-
tions of chromosomes XII and IV, but not of chromosome XV
(Mangado et al, 2018). Other amplifications, e.g., of Chr I and Chr
XIV in high alcohol, NCR relaxation, and glutathione production

Figure 5. Side effects of ALE wine yeast evolution.

Upper panel: Some wine yeast lineages (left) evolve more desirable (faster growth) side effects than others (right). Stacked bar plot of means across all side-effect
environments (n= 18) and all ALE populations (n= 24) for each lineage is shown. Color = selection environment. Negative numbers: cell doubling-time reductions.
Bottom panel: Stacked bar plot of means across all ALE populations (n= 24) in each carbon or nitrogen environment. Strain names are colored based on population (see
Fig. EV1). Source data are available online for this figure.
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ALE niches, were shared across selection regimes. Thus, they likely
reflect adaptation to the synthetic grape must background medium
and potentially contributes to the good carbon use/poor nitrogen
use common side-effect syndrome. Thus, although the underlying
genes and mechanisms are challenging to pinpoint, many of our
ALE adaptations were likely driven by large, recurring copy number
variations, consistent with some earlier ALE observations (Caspeta
et al, 2014; Mans et al, 2018).

ALE populations express desired traits in larger
liquid cultures

The physiology of yeast in large-volume liquid cultures differs from
that of small experimental colonies expanding on top of a solid
matrix (Lara et al, 2006; Neubauer and Junne, 2010; Reijenga et al,
2005; Takors, 2012). We therefore probed whether our ALE strains
presented the wanted beneficial properties when shifted to larger

Figure 6. MEP2 mutations and large copy number variants drive ALE adaptation.

(A) Venn diagram depicting proteins affected by non-synonymous mutations in seven sequenced populations ALE adapted for NCR relaxation. Names of populations
(outside) and genes (inside) are indicated. Mep2 (bold) were mutated in four populations. (B) Schematic view of the high-affinity ammonium and methylammonium
permease Mep2. The seven transmembrane regions (yellow), the autoinhibitory domain (gray) of the cytoplasmic tail and the amino acid mutations (asterisks) driving
adaptation for NCR relaxation, and population names (top) are all indicated. (C) ALE wine yeast populations often acquire large copy number variations. Changes
corresponding to 20% larger, or smaller, read coverage (central panel, color) than expected are shown for 26 sequenced ALE populations (right) evolved in four selection
regimes (left panel, color). White vertical lines indicate ends of contigs. Chromosomes are indicated in roman numbers (below).
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liquid cultures. We cherry-picked 63 endpoints from five environ-
ments with moderate to large doubling-time improvements and
designed a stepwise scale-up for validation (Appendix Fig. S3A,B).
We first tested whether production of the antioxidant glutathione,
which protects cells against oxidative damage and can be secreted
to also protect the grape must (Kritzinger et al, 2013), was present
in populations adapted for this purpose, and cultivated in 40-mL
liquid cultures in closed vessels. Because we could only indirectly
select for glutathione production, by supplying the glutathione
precursors glutamate, cysteine, and glycine as the only nitrogen
sources and challenging cells with the oxidant diamine, we expected
many of the populations to have adapted by other means.
Nevertheless, we found two of the eighteen tested populations,
M4 (15, 28) and G6 (1, 36), to substantially (27–62%, Student’s
t test P < 0.05) have increased their glutathione production when
cultivated in liquid (Fig. EV5A). The best performer, M4 (15, 28),
produced >13 nmol glutathione/mg dry weight of biomass.

We next explored whether ALE populations selected to relax
NCR, and the use of arginine and proline, even in the presence of a
preferred nitrogen source, express this property when shifted to
80 mL liquid cultures. We selected 11 ALE populations having
evolved faster growth on the NCR selection medium and cultivated
them in liquid, mostly anaerobic cultures, using ammonium as
NCR inducer. Many of these ALE populations consumed little
ammonium but still grew well, consistent with NCR relaxation and
concomitant fast use of arginine and/or proline (Fig. EV5B). We
selected two of these populations, E11 (21, 4) and E3 (17, 32) and
followed their assimilation of arginine and proline in when growing
on arginine and proline as sole nitrogen sources and using
methylamine as NCR inducer. Both populations fermented better
than their parent strains (Fig. 7A), consistent with them being less
constrained by nitrogen access. Moreover, while their proline
uptake remained unchanged (Student’s t test, P > 0.05), the
retention of arginine in cells improved (Fig. 7B). Yeast store
arginine in the vacuole as a nitrogen reserve (Li and Kane, 2009),
and if a preferred nitrogen source is encountered before this reserve
has been mobilized, the arginine is instead actively exported
(Opekarova and Kubin, 1997). The two NCR evolved ALE
populations thus achieved their improved arginine retention by
avoiding an early export of this nitrogen reserve to the environ-
ment. Our results are therefore consistent with at least some of our
ALE populations reaching the desired improved arginine con-
sumption by relaxing NCR and avoiding early arginine export to
the environment.

ALE strains perform well in grape must fermentations

We next explored whether evolved ALE populations perform well
in larger cultures and in actual, rather than synthetic, grape must.
For this, we selected eight ALE populations with good growth in
high alcohol, high-sugar, or high fructose ALE environments. We
first tested whether populations adapted to high alcohol in the form
of 1.3% n-butanol, which resembles ethanol, but is less volatile and
remains in the solid medium (Ghiaci et al, 2013), also grew better
when exposed to high ethanol in microscale liquid cultures
(Bioscreen Inc.). We found four of the six tested ALE populations
to grow both faster (5–37%, Student’s t test P < 0.05) and to higher
(36–137%, Student’s t test P < 0.05) cell yield in 8% ethanol than
their parental lineages (Fig. EV5C). Two of these, T3 (13, 35) and

T3 (15, 35), also fermented the sugar in 50 mL liquid culture ~14%
more efficiently than their parents in the absence of added ethanol
(Student’s t test P < 0.0.5), and we selected both of these, along with
E9 (0, 7) with the lowest doubling time, for wine cellar experiments
(Fig. EV5D).

Next, we probed whether 18 ALE populations adapted to a high-
sugar content also fermented a high-sugar synthetic grape must
better when cultivated as 40 mL liquid cultures. Five populations
either left less sugar in the must at the end of the fermentation than
their parents or produced more ethanol per sugar molecule
consumed. We retained three of these five populations for wine
cellar experiments (Fig. EV5E, Student’s t test P < 0.05). Finally, we
cultivated ten ALE populations adapted to fructose use, in liquid
40 mL fructose cultures also containing the glucose analog
2-deoxyglucose. We found M12 (18, 23) to grow much faster, to
reach a higher cell yield, and to assimilate 35 g more fructose than
its parent (Fig. EV5F, t test P < 0.05).

We isolated and expanded single clones from the selected ALE
populations and inoculated these in 27% sugar White Grenache
(GR) grape must freshly harvested in DO Terra Alta (Spain). We
first fermented grape must in 5 L cultures using isolates from three
ALE populations adapted to high sugar and from one adapted to
high ethanol adapted ALE (n = 3). Fermentation progressed
without detectable defects in all ALE-adapted isolates, with one
isolate from the high-sugar adapted population E2 (26, 37)
consuming 2.4% more of the sugar than the parent strain (Fig. 7C).
We examined population dynamics of this E2 (26, 37) population
by comparing doubling times of 11 random single-clone isolates
and the ALE population on synthetic grape must and found minute
differences (Appendix Fig. S4). We accordingly selected and
expanded two additional clones (iso3, iso10) and used them to
ferment 80 L grape musts. Further, we isolated an extra random
isolate (iso12) for a third 80 L fermentation from a different
harvest. All three clones consumed the sugar fast, indicating that
the good fermentative performance of E2 (26, 37) may persist also
at larger scales (Fig. 7D; Appendix Fig. S5). We sequenced the
genomes of iso3 and iso12 and found these to share heterozygotic
missense single-nucleotide variants in the multi-functional mRNA
abundance regulator Not3 and in Fau1, which helps in folic acid
biosynthesis, as well as loss-of-heterozygosity segments (Appendix
Fig. S6; Dataset EV1; Table EV1). The shared variants were all
common in the ALE population and may have contributed to its
adaptation. Our highly parallelized ALE platform was therefore
capable of evolving strains that are likely to perform well also in
larger scale grape must fermentations.

Discussion

We here introduced a highly parallelized ALE platform for the
improvement of industrial microbes based on expanding ALE
populations over many generations as colonies on top of a
designed solid selection medium and accurately counting their cells
(Zackrisson et al, 2016). The parallelization allowed us to broaden
the evolutionary search spectrum relative if fewer samples had
been evolved by the same method, both by repeating ALE many
times from a fixed genetic start point and by expanding the
number of different such start points. Both expansions improved
the chances of obtaining ALE populations with better growth in
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the ALE environment and of finding ALE populations unburdened
by poor growth side effects. This agrees with population-genetic
expectation. New mutations emerge stochastically, and when still
young and present at only low frequencies, chance heavily affects
their fates, leading to divergence between replicated ALE popula-
tions. Genetic start-point variation is expected to amplify this
divergence, as the phenotypes encoded by new mutations often
depend on other variants that are already present (Chiotti et al,
2014; Wang et al, 2013b), such that the latter guide evolution down

different evolutionary paths (Blount et al, 2008; Gerstein and
Berman, 2020).

Arguably, the benefits of ALE parallelization depend on the
specifics of the selection regime. In our current design, the
relatively small population size (< 3 × 107 cells) means that strongly
beneficial mutations will manifest only relatively rarely (Sniegowski
and Gerrish, 2010). In larger ALE populations, the most
advantageous mutations will occur more often and this should
speed up adaptation, reduce the variation in adaptation across

Figure 7. ALE populations retaining adaptations in industry-like cultures.

(A, B) We cultivated two ALE populations selected for NCR relaxation and with consistently low ammonium uptake on selection medium in larger, liquid cultures. Founder
lineages are shown as references. Numbers in parenthesis: ALE population ID. (A) We tracked the fermentation (carbon dioxide production) by measuring the density of
cultures. Error bars: SEM (n= 3 biological replicates). (B) We tracked the net arginine uptake in 80mL cultures by measuring the residual arginine in the selection medium
by high-performance liquid chromatography (HPLC). Error bars: SEM (n= 3 biological replicates). (C) We cultivated clones drawn from ALE populations evolved for high
ethanol tolerance and three evolved for high-sugar tolerance in 5 L grape must and compared the fermentation capacity (residual sugar after 32 days) to that of their
parental lineages. Error bars: SEM (n= 3 biological replicates). Arrow: significantly better (one-sided Student’s t test, P < 0.05). (D) We cultivated three clones drawn from
ALE population E2 (26, 37) evolved for high-sugar tolerance in 80 L grape must and compared the fermentation capacity (residual sugar) to that of their parent. Residual
sugar at the end (360 h) of fermentation is shown. See Appendix Fig. S5 for complete sugar consumption dynamics. Panels: Cultivations performed with distinct grape
musts from different harvests (years). Source data are available online for this figure.
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replicated ALE populations, and consequently also diminish the
benefits of ALE parallelization. However, the strongest mutations
are often associated with side effects that impair growth in non-
selection niches (Chavhan et al, 2020). Moreover, they tend to be
incompatible with each other (Ono et al, 2017), leaving large
populations stranded on suboptimal local fitness peaks and
incapable of sustaining adaptation. Our current design, ALE of
many small populations, may therefore have advantages that ALE
of a single, or even many, larger ALE population will struggle to
match. The empirical data from our study indicates an average rate
of successful improvement (> twofold improvement in growth rate)
to be around 4 × 10−5 per generation (~60 improvements among
6664 lineages, with circa 200 generations per lineage). This is
remarkably low - a low throughput ALE with tens of parallel lines
of a single strain would in comparable environments require
multiple years for obtaining a single successful clone—attesting to
the advantage presented by massively parallel experimental
evolution demonstrated here.

Wine yeasts often inherit all, or the lion’s share, of their genome
from the Wine/European S. cerevisiae clade (Liti et al, 2009; Peter
et al, 2018) from which our parental lineages all descend. Despite
their close relatedness (mean pairwise nucleotide diversity, π:
0.00068), they nevertheless differed markedly in adaptation and
side effects, in line with differences in even a single gene often
altering evolution (Farkas et al, 2022). The power of highly
parallelized ALE will arguably increase with greater diversity
among genetic start points and inclusion of wine yeast with
admixed or hybrid genomes or carrying DNA introgressed or
horizontally transferred from other clades or microbes (Dequin and
Casaregola, 2011; González et al, 2006), may in this context be
particularly valuable. We note that an alternative ALE design,
pooling strains to generate diverse starting populations (Li et al,
2019), will not exploit the initial genetic diversity to the same
extent because strong early selection on the best pre-existing
variants will restrict the subsequent de novo mutation-based
evolutionary search (Vázquez-García et al, 2017b). Meiotic
recombination offers no easy workaround (Kosheleva and Desai,
2018; McDonald et al, 2016) as domestication has impaired the
sexual life cycle of most domesticated and industrial budding yeast
strains (De Chiara et al, 2022).

Despite the large body of literature reporting a decelerating
adaptation as populations become fitter (Couce and Tenaillon,
2015; Lukačišinová et al, 2020; MacLean et al, 2010a; Venkataram
et al, 2020) because of the weaker effect of new mutations in fitter
backgrounds (Chou et al, 2011; Khan et al, 2011; MacLean et al,
2010b; Wang et al, 2016), diminishing returns only explained a
minor fraction of the variation in doubling-time gains among our
ALE populations. Thus, our platform improved ALE outcomes
across the parental lineage performance spectrum, and the ALE
populations with the largest doubling-time gains often ended up
being among the best performers, and superior to all parents. The
moderate influence of diminishing-return adaptation is reassuring,
as it demonstrates that ALE is not restricted to compensating for
defects in poor-performing lineages, but can also improve the best-
performing wine strains, and thus, has potentially broad versatility.

Apart from the consistent point-mutation-based inactivation of
the ammonium and methylamine importer Mep2 during selection
for NCR relaxation, large copy number variants (CNVs) in the
form of complete or almost complete chromosome amplifications

emerged as the most likely drivers of the majority of ALE
adaptations, consistent with what has been observed in S. cerevisiae
lab strains (Dunham et al, 2002; Fontanillas et al, 2010; Gresham
et al, 2008; Pavelka et al, 2010; Rancati et al, 2008; Selmecki et al,
2015; Sunshine et al, 2015; Yona et al, 2012) and in drug-treated
fungal pathogens (Selmecki et al, 2006; Selmecki et al, 2009).
Because of their recurrence across populations, the detected CNVs
are also likely to explain the emergence of side-effect syndromes,
and in particular the common “good carbon use, poor nitrogen use”
side effect. This syndrome may stem from parent wine strains being
relatively poorly adapted to growing on synthetic wine must
medium, and therefore adapting to this background environment,
and in particular to the abundant (20%) sugar, during the ALE
regime. ALE adaptation to concentrated sugar may reroute
metabolic fluxes towards central carbon metabolism and fast
fermentation, while fluxes leading away from the central carbon
metabolism, to amino acid biosynthesis, are slowed. This could
conceivably lead to fast growth in environments where sugar,
regardless of type, at the cost of slower growth in nitrogen-limited
environments. The ancient duplication of the S. cerevisiae genome
and the concerted amplification of many glycolytic genes, is
believed to explain its good use of fermentable sugars (Conant and
Wolfe, 2007), and chromosome amplifications during ALE may
well have a similar effect. Implicit in this conjecture is that wine
yeasts are far from optimally adapted to environments rich in
concentrated sugar, likely being constrained by strong historical
selection for growth under nitrogen deprivation (Ibstedt et al,
2015).

Our ALE platform offered not only parallelization but also could
generate improved wine strains that expressed the desired traits in
larger, liquid cultures. Hence, not only does it bring evolutionary
engineering into the realm of high-throughput science but may also
open a new fast-track lane for optimizing microbes for industry-
desired traits. And because the platform works well with microbes
covering broad swaths of the tree of life, including bacteria (Alalam
et al, 2020), it has the potential to be of value across many
biotechnological sectors.

Methods

Reagents and tools table

Reagent/resource
Reference or
source Identifier or catalog number

Experimental models

L 71B (E1) Commercial
wine yeasts

Lalvin 71B®. Isolated by INRA-Narbone
(France)

L CLOS (E2) Commercial
wine yeasts

Lalvin CLOS®. Isolated by URV in DOQ
Priorat wine region (Spain)

L QA23 (E3) Commercial
wine yeasts

Lalvin QA23®. Isolated by UTAD in
Vinhos verdes wine region (Portugal).
S. cerevisiae bayanus

LEC (E4) Commercial
wine yeasts

Lalvin EC1118®. Isolated in Champagne
wine region (France). S. cerevisiae
bayanus

L T73C (E5) Commercial
wine yeasts

Lalvin T73®. Isolated by IATA-CSIC in
DO Alicante wine region (Spain). S.
cerevisiae bayanus

U VN (E6) Commercial
wine yeasts

Uvaferm VN®. Isolated by IVICAM
(Spain) in DO La Mancha wine region
(Spain)

U BC (E7) Commercial
wine yeasts

Uvaferm BC®. Isolated by Institute
Pasteur (France). S. cerevisiae bayanus
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Reagent/resource
Reference or
source Identifier or catalog number

U BDX (E8) Commercial
wine yeasts

Uvaferm BDX®. Isolated by U.
Bordeaux (France)

U CS2 (E9) Commercial
wine yeasts

Uvaferm CS2®. Used as the control
strain throughout the phenotyping
experiments.

U EXE (E10) Commercial
wine yeasts

Uvaferm EXENCE®. Isolated by IWB in
Stellenbosch (South Africa), result of
the crossing of two Sc strains.

U WAM (E11) Commercial
wine yeasts

Uvaferm WAM®. Isolated by U.
Valladolid in DO Rueda wine region
(Spain).

U 43 (E12) Commercial
wine yeasts

Uvaferm 43®. Isolated by Institute
Inter Rhône (France). Fructofilic yeast.
S. cerevisiae bayanus

U CEG (D12) Commercial
wine yeasts

Uvaferm CEG®. Isolated by
Geisenheim Research Station
(Germany)

V BMW58 (D11) Commercial
wine yeasts

Velluto BMV58®. Isolated by IATA-
CSIC in DO Valencia wine region
(Spain). S. uvarum

Cross Evolution (D10) Commercial
wine yeasts

Cross Evolution®. Selected by IWB in
Stellenbosch (South Africa), result of
the backcrossing of two Sc strains.

SL6 (G1) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB2 (G2) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB1 (G3) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB3 (G4) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB5 (G5) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB4 (G6) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB7 (G7) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB6 (G8) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB10 (G9) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB9 (G10) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SFB8 (G11) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SL4 (G12) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

SL3 (F12) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Ferrer-Bobet winery)

M2 (M2) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M3 (M3) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M4 (M4) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M5 (M5) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M6 (M6) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M7 (M7) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M9 (M9) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M10 (M10) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M11 (M11) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M12 (M12) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

M13 (M13) Local cellar
isolates

Natural isolate from DOQ Priorat wine
region (Mas Perinet winery)

T3 (T3) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

Reagent/resource
Reference or
source Identifier or catalog number

T4 (T4) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

T5 (T5) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

T6 (T6) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

T7 (T7) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

T8 (T8) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

T14 (T14) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

T15 (T15) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

T19 (T19) Local cellar
isolates

Natural isolate from DO Terra Alta
wine region

Recombinant DNA

Antibodies

Oligonucleotides and sequence-based reagents

PCR primers: delta 12 5’-
TCAACAATGGAATCCCAAC-3’

Eurofins

PCR primers: delta 21
5’CATCTTAACACCGTATATGA-3’

Eurofins

Chemicals, enzymes, and other reagents

Gelrite (gellan gum) Sigma-Aldrich G1910

2-Deoxy-D-glucose Sigma-Aldrich D6134

Diamide Sigma-Aldrich D3648

Methylamine hydrochloride Sigma-Aldrich M0505

Software

PRECOG http://
precog.lund-
berg.gu.se/
Pages/
Content/
GettingStarted

Fastqc v. 0.11.4 (https://
www.bioinformatics.babraham.ac.uk/
projects/fastqc)

https://
www.bioinfor-
matics.babra-
ham.ac.uk/
projects/fastqc

cutadapt v. 1.10 https://
pypi.org/
project/
cutadapt/

Picard Tools v. 1.129 https://
broadinstitute.-
github.io/
picard/

Scan-o-matic, version 1.5.7 https://
github.com/
Scan-o-Matic/
scanomatic

Matlab (R2017b v. 9.3.0, R2019b, v.
9.7.0)

https://
www.mathwor-
ks.com/
products/
matlab.html

R v. 4.0.3 https://www.r‐
project.org

Python (v. 3.6, v. 3.6.13) https://
www.pytho-
n.org/

fastSTRUCTURE v. 1.0 https://
rajanil.githu-
b.io/
fastStructure/

GATK4 Mutect2 v. 4.1.0.0 https://
gatk.broadinsti-
tute.org/hc/
en‐us

Other

NEBNext DNA Ultra2 Library
Preparation Kit

New England
Biolabs, USA
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Reagent/resource
Reference or
source Identifier or catalog number

Epson Perfection V800 PHOTO
scanners

Epson
Corporation,
UK

Kodak Professional Q-60 Color Input
Target

Kodak
Company, USA

2100 BioAnalyzer Agilent
Technologies

HiSeq 2000, HiSeq2500 Illumina

Singer RoToR HDA robot Singer
Instruments,
UK

SBS-format PlusPlates Singer
Instruments,
UK

Oxygen-permeable film (Breathe-
Easy).

Sigma-Aldrich Z380059

Glutathione assay kit Sigma-Aldrich CS0260

Bioscreen C Growth Curves
Ltd, Finland

Epicentre MasterPure Yeast DNA Purification Kit

Strains and growth medium

We obtained 15 commercial wine yeasts marketed by Lallemand
Inc. (Canada) and 33 noncommercial wine yeasts. We isolated the
latter from grapes or vineyard soil in the DOQ Priorat wine-
making region in Catalonia and identified them as S. cerevisiae
using restriction fragment length polymorphisms (Padilla et al,
2016). Strains are listed in Appendix Table S1. Strains were stored
long-term at -80 C in 20% (v/v) glycerol. Experiments in Figs. 2–6
and EV1–4; Appendix Figs. S1–S3 were performed in synthetic
grape must medium(Beltran et al, 2004). Vitamins (100×; pH
adjusted to 3.3 with NaOH), amino acids (10×; pH adjusted to 3.3
with NaOH, buffered with 2% (w/v) Na2CO3), oligo-elements
(1000×) and anaerobiosis factors (1000×; ergosterol, oleic acid,
Tween 80 and ethanol) were stored as separate, sterile filtered stock
solutions at 4 °C (amino acids <2 weeks; vitamins at −20 °C). To
prepare the synthetic grape must, glucose (100 g/L), fructose
(100 g/L), citric acid (5 g/L), malic acid (0.5 g/L), tartaric acid
(3 g/L), KH2PO4 (0.75 g/L), K2SO4 (0.5 g/L), MgSO4.7H20
(0.25 g/L), CaCl2.2H2O (0.155 g/L), NaCl (0.2 g/L), and NH4Cl
(0.153 g/L) were dissolved in H2O, autoclaved, and pH were set to
3.3 with NaOH. For solid medium experiments, a separate solution
of the gelifying agent gelrite (gellan gum), which have better
retention of water, less phenolic contamination and better light
transmission properties than the classical agent agar (Huang et al,
1995; Jaeger et al, 2015; Lin and Casida, 1984), and CaCl2.2H2O
(initiates gelification) were then prepared, adjusted to pH=3.2
(NaOH), autoclaved, and added to the medium (final concentra-
tions: gelrite=8 g/L, CaCl2.2H2O = 1.155 g/L). The volume was set
to 1 L (w. sterile H2O). For solid medium, the medium was stirred
on a heater (at 50 °C) and 50 mL was poured into the same lower
left corner of each Plus plate (Singer, UK). Plates were dried
overnight and used, with no additional storage. For particular
experiments, variations to the basic synthetic grape must were
made, as described in Appendix Tables S2 and S3. Scale-up
experiments (5 L and 80 L) shown in Fig. EV5 and Appendix
Figs. S4 and S5 were performed in White Grenache (GR) grape
must harvested just before experiment start in D. O. (Denomina-
tion of Origin) Terra Alta (Spain).

Adaptive laboratory evolution (ALE)

Each of the 48 parent strains to be ALE evolved was stored as two
separate populations, both of which had been clonally expanded
from the same single cell, in 20% (v/v) glycerol in 96-well format.
The 96 frozen stocks were thawed, re-pinned 12× onto solid,
synthetic grape must medium using long-pin pads (Singer) to
generate 1152 colonies in a 1536 array and cultivated for 72 h, all as
shown in Appendix Fig. S1. This pre-culture was repeated once to
further standardize the physiological states of populations. We
maintained one in every four positions empty to continuously
survey cross-contamination and to allow inclusion of fixed controls
in the growth measurement stage. Standardized pre-cultures were
re-pinned (1536 short pin transfer) onto eight ALE selection
environments to generate in total 9216 ALE yeast populations. The
eight selection media were synthetic grape must with: (i) 20% (w/v)
fructose as the sole sugar, together with 2 g/L 2-deoxyglucose
(fructose utilization), (ii) 10% of the regular amino acid
concentration, i.e., 10 mg N/L (nitrogen starvation), (iii) glycine,
glutamine and cysteine as the sole nitrogen sources, together with
1.5 mM diamide (glutathione production), (iv) arginine and proline
as the sole nitrogen sources together with 1% (w/v) methylamine
(Nitrogen Catabolite Repression (NCR) relaxation), (v) 35% (w/v)
sugar with equal proportion of fructose and glucose (high-sugar
tolerance), (vi) 1.3% (v/v) 1-butanol (ethanol tolerance), (vii)
valine, iso-leucine, and phenylalanine as the sole nitrogen sources
(aroma production), and (viii) 1% of the regular vitamin
concentration (vitamin starvation). The ALE environments are
further described in Appendix Table S2. Synthetic grape must was
used as pre-culture for the selection media (i), (v), and (vi), while
synthetic grape must with low nitrogen (N) content (30 mg N/L)
was the pre-culture for the rest of the selection media. We passed
populations through a batch-to-batch selection regime of 30
consecutive growth cycles. In each cycle, we clonally expanded
populations for 72 h from around n = 105 cells. We subsampled the
mostly stationary phase populations using 1536 short pin transfers,
and deposited samples (n = 105 cells) on fresh selection medium.
Each growth cycle corresponded to a mean of 6.6 population
doublings for a total of ∼200 doublings (corresponding to cell
generations, assuming no cell death). We observed no invasions of
empty colony positions during any stage of the evolution, or
cultivation after storage, process. This is consistent with what has
been observed in earlier papers relying on the same protocol
(Persson et al, 2022; Stenberg et al, 2022) and suggest that cross-
contamination in association with the ALE protocol is extremely
rare. There is a nonzero risk for contamination in the manual
handling and liquid cultivation steps required for follow-up
experiments. To estimate this risk, we manually revived and
cultivated 65 fast-adapting endpoint populations and their parents
in liquid medium, extracted their DNA and performed a restriction
fragment length polymorphism (RFLP) of interdelta elements. This
showed that a substantial majority (n = 56) of adapted lineages
retained the parental RFLP pattern, whereas an unequivocal call
could not be made for the remaining nine. Thus, we cannot exclude
that contamination affects a small minority of our follow-up
experiments.

The ALE procedure was standardized to minimize bias as
follows. Solid media was cast in polystyrene plates from a single
batch (Singer Instruments, SBS-format PlusPlates). Each plate was
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cast on top of the same perfectly level surface with precisely 50 mL
of synthetic grape must medium at 50 °C. Medium was poured in
the same lower left corner on all plates. All plate preparations
were performed in the same environmentally controlled space
(room temperature 23 °C). Pinning transfers were performed
using 1536 short pin pads from the same production batch (Singer
Instruments, UK), and a Singer RoToR HDA robot (Singer
Instruments, UK). All transfers were performed using a single
robot, standing in the same environmentally controlled space
throughout the experimental series and a single production batch
of Plus plates and pin pads. The robotic workspace was sterilized
by prolonged UV exposure before each use and routinely cleaned
with ethanol. All evolution plates were kept in the same
temperature-controlled (30.0 C) thermostatic cabinet. We stored
a frozen fossil record of populations in glycerol in 96-well plates,
by pinning from agar to liquid medium using the Singer RoToR
HDA robot. After 3 days of incubation at 30 °C, we added glycerol
to a final concentration of 20% (v/v) and stored samples at
−80 °C.

Counting cells in growing parents and ALE
endpoint populations

To monitor population size expansion of parent (t = 0 growth
cycles) and endpoint (t = 30 growth cycles) populations, we used a
high-resolution microbial growth phenotyping platform, Scan-
o-matic, version 1.5.7 (Zackrisson et al, 2016). First, we measured
the growth of parent populations in many environments at high
replication (n = 24) by thawing of frozen stocks, pre-cultivation
(2×), subsampling and deposition on fresh plates, as described
above. Second, we thawed frozen stocks of parent and endpoint
populations, pre-cultivated these (2×) in parallel, subsampled pre-
cultures deposited subsamples on each of 18 different environ-
mental plates and measured their doubling time. Experimental
populations in the two set-ups were handled and analyzed
identically. Using a custom-made RoToR pinning program, we
deposited 384 control samples, subsampled from a 384 pre-culture
array of genetically identical control colonies (strain E9), in the 384
interleaved empty positions on each target plate. We recorded
population size at 20 min intervals for 3 days using high-quality
desktop scanners (Epson Perfection V800 PHOTO scanners, Epson
Corporation, UK) connected via USB to a standard desktop
computer. We performed transmissive scanning at 600 dpi using
8-bit gray-scale. Plates were fixed in place by custom-made acrylic
glass fixtures. Pixel intensities were normalized and standardized
across instruments using transmissive scale calibration targets
(Kodak Professional Q-60 Color Input Target, Kodak Company,
USA) which were fixed to each fixture. Pixel intensities were
estimated and summed across each colony, the local background
was subtracted, and pixel intensities due to cells were converted
into cell counts by calibration to independent cell number estimates
obtained using spectrometer and flow cytometry. Raw measure-
ments of population size were smoothed, and the steepest slope in
each growth curve was converted into a population size doubling
time. Noisy growth curves were flagged, visually inspected for
artifacts and 0.3% of doubling-time estimates were rejected as
potentially incorrect. Doubling times were log2 transformed and
normalized to those estimated for each position using the
384 spatial controls on each plate, thereby producing log2

doubling-time ratios that account for systematic variations in
doubling times across and between plates. We estimated the
adaptation for each ALE population as the difference in normalized
doubling time between its evolution endpoint (t = 30 growth cycles)
and start point (t = 0 growth cycles). We estimated how much of
the total variance in adaptation, across all ALE populations, that
can be explained by variance between selection environments,
between strains (genotypes), and between replicate ALE of
individual strains. We projected the data into the selection
dimension, the strain dimension, and the replicate dimensions
respectively, and calculated their corresponding variances. We
extracted the technical variance as the residual variance after other
variances had been subtracted from the total variance. We
expressed the estimated variances as the fraction of the total
variance they explain, by dividing with the total variance. We
calculated t-distributed stochastic neighbor embedding (t-SNE) of
strains based on similarity in side effect using Matlab and separated
clusters using k-means, with the k specified by counting the
number of clusters by hand.

Sequencing and sequence analysis

Total genomic DNA was extracted from parental lineages grown in
YPD using phenol-chloroform-based extraction and from evolved
populations grown in YPD using Epicentre MasterPure Yeast DNA
Purification Kit. The DNA quality was evaluated with electrophor-
esis in a 1% (w/v) agarose gel and DNA concentrations were
evaluated using Qubit (Thermo Fisher Scientific, USA). An equal
amount of DNA from each sample was used for library preparation
with the NEBNext DNA Ultra2 Library Preparation Kit (New
England Biolabs). The library preparation was performed on an
automated liquid handling system (Hamilton Robotics) and the
quality of the library was tested on a 2100 BioAnalyzer (Agilent
Technologies). Paired-end Illumina short read sequencing was
performed at the Genomics Core Facility (EMBL Heidelberg) on
HiSeq 2000 and HiSeq2500 platforms (Illumina, San Diego, USA)
for 150 bp (average insert size: 245 bp) and 250 bp (average insert
size: 616 bp) reads, respectively. The data is deposited in the
European Nucleotide Archive (ENA) at EMBL-EBI under accession
number PRJEB41108 (https://www.ebi.ac.uk/ena/browser/view/
PRJEB41108).

The quality of the sequencing reads was controlled using Fastqc v.
0.11.4 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/;
Andrews, 2010). The reads were trimmed by removing adapters and
filtering low-quality reads using cutadapt v. 1.10 (Martin, 2011;
https://pypi.org/project/cutadapt/). The trimmed reads were aligned to
the S. cerevisiae EC1118 wine yeast regenome assembly (Novo et al,
2009) with the Burrows-Wheeler Aligner v. 0.7.12 (Li, 2013; Li and
Durbin, 2009) using default parameters. Picard Tools v. 1.129 (https://
broadinstitute.github.io/picard/) were used to process (read groups
addition, sorting, reordering, and indexing) the alignments and mark
duplicate reads.

Single-nucleotide polymorphism (SNP), and insertion–deletion
(indel) variant calling of parent samples (excluding strain D11 with
low-quality sequencing sample) was performed with GATK4 v.
4.1.0.0 HaplotypeCaller in GVCF model using the S. cerevisiae
EC1118 (Novo et al, 2009) as the reference with DISCOVERY
genotyping mode, ploidy 2, and minimum base quality score 20.
The individual GVCF files were then combined using
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CombineGVCFs, and jointly genotyped using GenotypeGVCFs with
ploidy 2 and standard minimum confidence of calling 20. Using
SelectVariants and VariantFiltration tools the called SNPs and
indels were filtered separately. SNPs were filtered with QD < 2.0,
FS > 60.0, MQ < 40.0, MQRankSum <−12.5, ReadPosRankSum
<−8.0, GQ < 30, DP < 5. Indels were filtered with QD < 2.0, FS >
200.0, MQ < 40.0, ReadPosRankSum < -20.0, GQ < 30, DP < 5.
Then, the SNP sites were further filtered using vcftools v. 0.1.14
for sites which miss more than 50% of the data (max-missing, 0.5),
for other than biallelic sites (max-alleles, 2; min-alleles, 2), for sites
with minor allele frequency less than 0.05 (maf, 0.05), and for sites
not in Hardy–Weinberg equilibrium (HWE, 0.00001). To estimate
average nucleotide diversity among the parental lineages vcftools v.
0.1.14 was used. A neighbor-joining tree of the parental lineages
was created from the filtered set of 42599 segregating sites using R
v. 4.0.3 (R Core Team (2020). R: A language and environment for
statistical computing. R Foundation for Statistical Computing) and
packages ape v. 5.4.1 (https://github.com/emmanuelparadis/ape)
and SNPrelate v. 1.24.0 (http://github.com/zhengxwen/SNPRelate).
First, individual dissimilarities (derived from relative coancestry)
were estimated for each pair of individuals with the snpgdsDiss
function. The individual dissimilarities were then used as
distances for the bionj function. Model-based Bayesian algorithm
fastSTRUCTURE v. 1.0(Raj et al, 2014) was used to detect
and quantify admixture in the 47 parental lineage genomes
(excluding strain D11 with low-quality sequencing sample).
fastSTRUCTURE was run on the filtered set of 42,599 segregating
sites, varying the number of parent populations (K) between 1 and
10 using the simple prior implemented in fastSTRUCTURE. K = 4
was found to be optimal, i.e., scoring the highest marginal
likelihood.

Single-nucleotide variant (SNV), and small insertions-deletions
(indel) in ALE populations were called using GATK4 Mutect2 v.
4.1.0.0 (Van der Auwera et al, 2013), default parameters and a
panel-of-normals approach. We created the high-coverage
sequence panel using 47 parental lineages (excluding D11) and
the CreateSomaticPanelOfNormals tool. We called variants in each
ALE endpoint relative to the panel using FilterMutectCalls and
default parameters, including a tumor-lod of 5.3. Copy number
variants in ALE populations (CNV) were called analysis using
ATK4 v. 4.1.0.0 tools. Read for 1000 bp intervals were counted
with CollectReadCounts and read counts were denoised and
matched to that of its corresponding parental lineage sample
using DenoiseReadCounts. The allelic counts were collected using
CollectAllelicCounts and combined with the binned read count
ratios for modeling the CNV segments using ModelSegments with
number-of-change-points-penalty-factor of one (1) or ten (10) for
HiSeq 2000 and HiSeq2500 samples respectively. CNVs were
called using CallCopyRatioSegments. Called CNV segment copy
ratios were further re-centered to the corresponding sample
medians. The sample H2, with a high noise copy ratio comparing
to the corresponding parental lineage and whose contigs were
smaller than 10 kb was excluded. Loss-of-heterozygosity in ALE
populations was called as baf zero/one segments across sites for
which the corresponding parental lineage was called as hetor-
ozygotic (baf~0.5). The degree of heterozygosity in parental
strains was calculated as a ratio of observed heterozygotic snps
to observed homozygotic snps using vcftools v. 0.1.16 --het
(Danecek et al, 2011).

Fermentation validation of ALE endpoints

Selected ALE endpoint populations were validated at lab scale by
fermenting them and their respective parental lineages in a
synthetic grape must (pH 3.3) as described in Beltran et al (Beltran
et al, 2004), with the nitrogen content varying between fermenta-
tions. The control synthetic grape must contain 200 g/L of sugar
(100 g/L glucose and 100 g/L fructose) and 300 mg of yeast
assimilable nitrogen/L (120 mg/L inorganic and 180 mg/L organic
nitrogen).

All fermentations were performed in biological triplicates at
22 °C with agitation (120 rpm) in laboratory-scale fermenters:
250-mL flasks containing 200 mL of medium and capped with
closures that enabled carbon dioxide to escape and samples to be
removed. Fermentations were performed in semi-anaerobic condi-
tions, with small amounts of oxygen entering cultivation flasks
during sampling only. The initial yeast inoculum consisted of
2 × 106 cells/mL taken from YPD stationary phase cultures (48 h).
Sugar consumption was monitored throughout the fermentation
process by measuring decrease in fermentation medium density
using a densitometer (Densito 30PX, Mettler-Toledo, Switzerland).
In the later stages of the fermentation, when the sugar contribution
to medium density is limited, sugar consumption (glucose and
fructose) was assayed using enzymatic kits (Roche Applied Science,
Germany). Fermentation was considered to be completed when
residual sugars were below 2 g/L. Yeast cell counts were determined
by measuring optical density at 600 nm. Yeasts cells were harvested
at different time points for measurement of the nitrogen, sugar or
total glutathione content. Cell pellets were transferred to Eppendorf
tubes, frozen immediately in liquid nitrogen and kept at −80 °C
until they were analyzed. The supernatant was stored at −20 °C for
later analysis of their remaining nitrogen content.

Low-volume liquid cultivations

We tested the ethanol tolerance of selected strains evolved for
better ethanol tolerance in low-volume liquid cultivations using
Bioscreen micro-cultivation stations (Bioscreen Inc.) and followed
the growth of cultures at 20 min intervals for 72 h. Honeycomb
microplates were loaded with 120 µL synthetic grape must
containing either 8% (v/v) ethanol or 1.3% (v/v) n-butanol. To
remove any spatial bias from differences in growth conditions
between well positions, e.g., in the form of e.g., ethanol evaporation,
plates were run without lids but covered with an oxygen-permeable
film (Breathe-Easy; Sigma-Aldrich). Initial OD600 ≈ 0.2 was set for
inoculation. Data was extracted from growth curves using
PRECOG (Fernandez-Ricaud et al, 2016).

Semi-industrial validations of ALE endpoints

Semi-industrial validations were performed using clonal colonies
expanded from single cells isolated from selected ALE endpoint
populations and their corresponding parental lineages, as listed in
Appendix Table S4. To select clones for 80 L scale-up experiments,
we subsampled the E2 (26, 37) ALE population, streaked for single
cells on synthetic grape must, and selected 11 colonies clonally
expanded from these single cells. We cultivated subsamples of these
11 colonies on synthetic grape must, while measuring their cell
doubling time using the high-throughput solid medium growth
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platform, as described above. Semi-industrial fermentations were
conducted in 100 L stainless steel tanks filled with 80 L of White
Grenache (GR) grape must from D. O. Terra Alta (Spain), as well as
in 5 L fermenters, filled with 4 L of the same grape must. The musts
had a density around 1100 g/L, pH = 3.31, and an initial yeast
assimilable nitrogen content of 163.8 mg/L. 80 L fermentations
(n = 1) and 5 L fermentations (n = 3). From each tank and
fermenter, daily samples were taken to monitor sugar concentra-
tion by measuring must density using an electronic densitometer
(Mettler-Toledo S.A.E., Barcelona, Spain), as well as yeast growth
(by counting of colony forming units). At the middle and endpoint
of the fermentation, S. cerevisiae isolates were typified by the
analysis of interdelta regions, as described by Legras and Karst
(2003) (Legras and Karst, 2003) using primers Δ12 and Δ21. The
final wines were stabilized for 30 days at 4 °C, 30 ppm of SO2 was
added as potassium metabisulfite, and the product was bottled and
stored for 2 months until the sensory evaluation took place.

Nitrogen content analysis

For experiments in Fig. EV5B, selected ALE endpoint populations and
their corresponding parents were cultivated as 80mL cultures. Free
amino acids and ammonia were analyzed using DEEMM derivatiza-
tions as in Gomez-Alonso et al (Gómez-Alonso et al, 2007) and with the
Agilent 1100 Series high-performance liquid chromatography (HPLC)
(Agilent Technologies, Germany). Separation was performed in an ACE
HPLC column (C18-HL) particle size 5 µm (250mm× 4.6mm)
thermostatized at 20 °C. Several dilutions of each sample were analyzed
and averaged. The concentration of each compound was calculated
using an internal standard, Agilent ChemStation (Agilent Technologies)
and expressed as mg N/L.

Glutathione measurement

For experiments in Fig. EV5A, total glutathione levels (intracellu-
larly and extracellularly) were established in the stationary phase, in
18 ALE endpoint populations and their parental lineages (Appen-
dix Table S5). Cells were pre-cultivated on 50 mL of glutathione
evolution medium (see above) at 28 °C with orbital shaking
(120 rpm) and after 48 h growing, cells were inoculated in 45 mL
of the same medium at initial OD600 = 0.2 (n = 2). Yeast
growth and media density were evaluated continuously by
spectrometry and electronic densitometry and glutathione was
measured after one week, with all cultures being well into the
stationary phase.

For glutathione extraction, the method described by Vázquez
et al, 2017 was used (Vázquez et al, 2017). Briefly, a cell density of
1 × 108 cells was centrifuged at 10,000 rpm to obtain a packed cell
pellet and the supernatant. Pellets were weighed and three volumes
of 5% (v/v) 5-sulfosalicylic acid (SSA) were added and vortexed.
The cell suspensions were then frozen and thawed three times
(using liquid nitrogen to freeze and a 37 °C bath to thaw),
incubated for 5 min at 4 °C and centrifuged at 800 × g for 10 min at
4 °C. The measurement of total glutathione (tGSH) was determined
(in pellets and supernatants) using the kinetic glutathione assay kit
(Sigma-Aldrich, Spain) in which catalytic amounts (nmoles) of
reduced glutathione (GSH) cause a continuous reduction of 5,5′-
diothiobis-2-nitrobenzoic acid to 5-thio-2notrobenzoic acid (TNB),
and the oxidized glutathione (GSSG) formed is recycled by

glutathione reductase and NADPH. The final TNB formed
(equivalent to tGSH) was measured spectrophotometrically at
412 nm. Other pellets (1 × 108 cells) were previously dried at 28 °C
for 48 h and weighed. Thus, the results are expressed as nmoles
tGSH/mg dry weight.

Data availability

Data presented in figures are available as Source Data files
(Figs. 1–4 and 6) and in Dataset EV1, Table EV1 (Fig. 5). Data
presented in Expanded View and Appendix figures are available as EV
source data files. All datasets produced in this study can be
downloaded from the following databases: Sequence data: European
Nucleotide Archive (ENA) at EMBL-EBI, PRJEB41108, https://
www.ebi.ac.uk/ena/browser/view/PRJEB41108. All other data: Mende-
ley, https://data.mendeley.com/datasets/685y557cth/1. Code: All ana-
lyses were performed using published code, as described in “Methods”.

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-024-00059-0.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00059-0.
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Expanded View Figures

Figure EV1. Population structure of parent wine strains, before ALE.

(A) We sequenced the genome of 47 commercial (●) and noncommercial (○) euploid diploids wine yeast lineages (Appendix Table S1) using Illumina and called 42,599
SNPs against the Lalvin EC1118® wine strain reference genome. We varied the number of populations (K) between 1 and 10 and show the population structure and
admixture for K= 4 (color). (B) Phylogeny (neighbor-joining tree) of 47 wine yeast lineages. Text color = non-admixed genetic groups identified by the admixture
mapping in (A). Admixed strains are left uncolored. Bar = SNP distance.
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Figure EV2. Strength of ALE selection.

Cell doubling times of wine yeasts in selection environments. (A) Central panel (heatmap): Cell doubling times (mean: n= 24 replicate ALE populations) of each wine yeast
normalized to the fixed control (color). No color: fixed control. Wine yeast names are colored based on population (see Fig. EV1). Upper panel: Hierarchical clustering of
wine yeast based on similarity in cell doubling times, using Pearson’s r and strain averages (for groups). Left panel: Variance across wine yeasts (n= 48 strains) in mean
cell doubling time (h). Right panel: Strength of selection, estimated as mean (n= 48 strains) difference (h) in cell doubling time in an environment, as compared to in
synthetic grape must (SGM). Error bars = SEM. Bottom panel: Some wine yeasts are general slow growers, reflecting limited adaptation to synthetic grape must. Mean of
normalized cell doubling times for each wine yeast, across all selection environments. Error bars = SEM (n= 8 environments). (B) Commercial (n= 15 strains) and
noncommercial (n= 33 strains) wine yeast grow equally well in all selection environments. Mean cell doubling times normalized to the fixed control are shown. Broken line
= linear regression. Source data are available online for this figure.
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Figure EV3. Adaptation of ALE wine yeasts.

(A) Extinct populations: stacked bar plot of number of extinct populations, in each environment. Inset: mean of (log2, normalized) cell doubling time for each wine yeast
(n= 24 replicate ALE populations, extinct populations excluded, in each environment) across all environments (n= 8 environments). Error bars: SEM (n= 8). (B)
Adaptation (n= 24 replicate ALE populations, extinct populations excluded) of wine yeasts E11 (left panel) and T7 (right panel) in selection environments (color). Box:
interquartile range, line: median: whiskers 1.5x interquartile range, outliers: populations outside interquartile range. (C) Histogram of adaptation for all commercial (black,
n= 2880 ALE populations) and noncommercial (white, n= 6336 ALE populations) ALE populations, totaled across all selection regimes and wine yeast lineages. Extinct
populations are excluded. (D) Adaptability has a genotype-by-environment component. Central panel (heatmap): Adaptation (mean: n= 24 replicate ALE populations) of
each wine yeast. No color: no adaptation. Wine yeast names are colored based on population (see Fig. EV1). Upper panel: Hierarchical clustering of wine yeast (Pearson’s r,
averages used to cluster groups) based on similarity in adaptation across eight selection regimes. Right panel: Variance in mean adaptation between wine yeasts, in each
environment. Bottom panel: Variance in adaptation between replicated populations (n= 24 replicate ALE populations), for each wine yeast in each environment. Lineages
mentioned in text are indicated (arrows). Source data are available online for this figure.
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Figure EV4. Side effects evolved by ALE wine yeasts.

(A) Side effects (top box) of evolution are smaller than adaptations (bottom box), in all environments. Data across all side effects (n= 18 environments), and across all
populations (n= 24 replicate ALE populations) of all lineages (n= 48 strains) in each ALE environment are shown. Box: interquartile range, line: median: whiskers 1.5×
interquartile range, outliers: populations outside interquartile range. (B) t-Distributed Stochastic Neighbor Embedding (t-SNE) clustering reducing the variance in side
effects to two dimensions (x, y-axes). Each dot represents one population of one lineage in one selection environment, or one starting population. The clustering is identical
to that in Fig. 4, but color here indicates lineage. For large clusters, the selection regime and the number of lineages in the cluster are indicated. Note: side effects do not
cluster by lineage and each cluster contains representatives of almost all lineages. Source data are available online for this figure.
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Figure EV5. ALE wine yeasts retain adaptations in more industrial cultures.

(A) Eighteen ALE populations selected for higher glutathione production. Arrows: populations producing more glutathione (one-sided Student’s t test, P < 0.05) than their
parental lineages in larger, liquid cultures. Total glutathione (nmol/mg dry weight biomass) at the end of a growth batch cycle (168 h) is shown. Error bars: SEM (n= 2
biological replicates). (B) Eleven ALE populations with improved growth in the NCR relaxation selection regime were cultivated in liquid synthetic grape must cultures
(250mL) with ammonium (43 mg N at start) as preferred nitrogen source and the residual ammonium was measured at the end of fermentation (360 h). The parental
lineage G4, as the best-performing noncommercial wine strain, is shown as reference. Error bars: SEM (n= 3 biological replicates). Arrows indicate ALE populations
selected for follow-up experiments. Note that non-ammonium nitrogen (total: 100 mg N at start) were present as arginine and proline. Inset: residual sugar bar plot (C) Six
ALE populations, evolved for higher ethanol tolerance, and their parental lineages, were cultivated in low-volume liquid cultures (Bioscreen Inc.) in the presence of 8%
ethanol. We tracked their growth continuously and extracted cell doubling times and cell yields. Error bars: SEM (n= 3 biological replicates). (D) We cultivated two ALE
populations evolved for higher ethanol tolerance and expressing this trait in liquid cultures (see Fig. EV5C) in 50mL synthetic grape must (n= 2–3 biological replicates)
and compared their fermentation efficiency, measured as the gram sugar consumed per ethanol produced, to that of their parental lineage. Error bars: SEM. Arrow: one-
sided Student’s t test (P < 0.05) (E) 18 ALE populations, evolved for better growth in high-sugar concentrations, were cultivated in 40mL liquid high-sugar grape must. We
tracked the sugar consumption and ethanol production in each. Two ALE populations showed faster sugar uptake (top panel) than their parental lineages and four showed
more efficient fermentation (bottom panel; gram ethanol produced per gram consumed). Error bars: SEM (n= 3 biological replicates) Arrow: significantly different (one-
sided Student’s t test, P < 0.05). (F) Top ALE populations T4 (1,40) and M12 (18,23), evolved for better fructose use, were cultivated in 40mL liquid fructose containing
synthetic grape must in the presence of the glucose analog 2-deoxyglucose. We compared their sugar fructose consumption to that of the parental lineages. Error bars:
SEM (n= 3 biological replicates). Inset: end fructose density of two tested populations (P= 0.05). The line plot shows density kinetics for M12. Source data are available
online for this figure.
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