
INTRODUCTION

Approximately 9.2% of middle-aged adults of a large 
cross-sectional sample from UK Biobank suffered from 
chronic neuropathic pain [1]. Reports from Canada 

and the USA also have indicated a greater prevalence of 
chronic peripheral neuropathic pain (17.9% and 15.7%, 
respectively) [2,3].

Chronic peripheral neuropathic pain is caused by 
damage to the nerve or its branches, which triggers a 

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © The Korean Pain Society

Korean J Pain 2024;37(4):299-309
https://doi.org/10.3344/kjp.24171

pISSN 2005-9159, eISSN 2093-0569

Received May 24, 2024; Revised August 29, 2024; Accepted September 4, 2024

Handling Editor: Francis S. Nahm

Correspondence: Nunuk Purwanti
Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta No.1, Sekip Utara, Yogyakarta 
55281, Indonesia
Tel: +62-274-515307, Fax: +62-274-515307, E-mail: n_purwanti@mail.ugm.ac.id

Review Article

Methylcobalamin as a candidate for chronic 
peripheral neuropathic pain therapy: review of 
molecular pharmacology action
Amilia Ramadhani1,2, Indwiani Astuti3, Maria Goreti Widiastuti4, and Nunuk Purwanti5

1Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia 
2Department of Oral Biology, School of Dentistry, Faculty of Medicine, Jenderal Soedirman University, Central Java, 
Indonesia 
3Department of Pharmacology, Faculty of Medicine, Nursing and Public Health, Universitas Gadjah Mada, Yogyakarta, 
Indonesia 
4Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yoyakarta, Indonesia 
5Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia

Chronic peripheral neuropathic pain therapy currently focuses on modulating neuroinflammatory conditions. 
Methylcobalamin (MeCbl), a neuroregenerative agent, modulates neuroinflammation. This review aimed to explore 
the molecular pharmacology action of MeCbl as a chronic peripheral neuropathic pain therapeutic agent. MeCbl 
plays a role in various cellular processes and may have therapeutic potential in neurodegenerative diseases. 
Intracellular MeCbl modulates inflammation by regulating the activity of T lymphocytes and natural killer cells as 
well as secretion of inflammatory cytokines, namely, tumor necrosis factor-α, interleukin-6, interleukin-1β, epidermal 
growth factor, and neuronal growth factor. MeCbl can reduce pain symptoms in chronic neuropathic pain conditions 
by decreasing excitation and hyperpolarization-induced ion channel activity in medium-sized dorsal root ganglion 
(DRG) neurons and the expression of transient receptor potential ankyrin 1, transient receptor potential cation 
channel subfamily M member 8, phosphorylated p38MAPK, transient receptor potential cation channel subfamily V 
members 1 and 4 in the DRG, and the voltage-gated sodium channel in axons.
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sequence of actions leading to the regeneration of new 
nerves. Inflamed nerve tissue activates the immune sys-
tem, triggering regeneration and creating a new layer of 
myelin. This process results in nociceptor/peripheral 
sensitization, followed by ganglionic and central sensiti-
zation [4,5].

The gold standard therapy for chronic peripheral neu-
ropathic pain involves prescribing antidepressants, gaba-
pentinoids, or serotonin norepinephrine reuptake inhibi-
tors [6]. Improvements in pain intensity and frequency, 
with a minimum improvement of 50%, indicate success-
ful treatment [7]. However, chronic use of antidepres-
sants (> 3 years) can have several side effects. According 
to Cartwright et al. [8], withdrawal symptoms (73.5%), 
sexual difficulties (71.8%), and weight gain (65.3%) are 
the most common side effects. Emotional adverse effects, 
such as addiction, feelings of emptiness, and suicidal ide-
ation, have also been reported [8]. The current optimal 
therapy for chronic peripheral neuropathic pain should 
consider its cellular and molecular pathogenesis.

Methylcobalamin (MeCbl) is the active form of vita-
min B12. MeCbl acts as a catalyst for methylation events 
throughout the body, including the methylation of the 
basic protein myelin, which forms the myelin sheets. 
MeCbl also induces Schwann cell differentiation, im-
proves nerve conduction velocity (NCV), and boosts the 
secretion of brain-derived neurotropic factors (BDNFs), 
all of which contribute to axon regeneration [9]. MeCbl, 
apart from its role in nerve regeneration, can alleviate 
pain in neuropathic pain disorders. It has been approved 
as a neuropathic pain medication in Hong Kong, Abu 
Dhabi, and Australia, while not approved yet by US Food 
and Drug Administration [10]. Several clinical trials have 
been conducted to test its effectiveness in treating diabet-
ic neuropathic pain [11–13], herpetic neuralgia therapy 
[14–17], chemotherapy-induced peripheral neuropathy 
[18], chronic pain post-thoracotomy [19], and glossopha-
ryngeal neuralgia [20]. These trials have shown that treat-
ment with MeCbl, whether used alone or in combination 
with other drugs or nerve stimulation, can significantly 
reduce pain intensity [11–17].

However, to the best of the authors’ knowledge, no de-
tailed summary of the evidence regarding the molecular 
mechanism of action of MeCbl as a chronic peripheral 
neuropathic pain therapeutic agent is available. There-
fore, we aimed to review the evidence regarding the mo-
lecular mechanism of MeCbl to identify its underlying 
molecular pharmacological action in neuropathic pain 
conditions. The main objective of this review was to re-
veal the potential of MeCbl as a chronic peripheral neu-

ropathic pain therapeutic agent.

MAIN BODY

1. Pathogenesis of chronic peripheral neuropathic 

pain

Neuropathic pain arises from nerve damage, initiating 
a cascade of nerve regeneration processes involving in-
flammation, demyelination, neuroplasticity, and remy-
elination. The symptoms of heightened sensitivity linked 
to nerve injury are closely associated with prolonged 
neuroinflammation and impairments to remyelination 
[5,21]. The delay in optimal myelin sheath formation 
lengthens the internode distance of Ranvier over time. 
This causes disturbances during remyelination, resulting 
in increased electrical activity, abnormal sensitivity to 
various stimulants, and abnormal contact between adja-
cent axons resulting in ephaptic cross-talk [22].

Peripheral nerve injury triggers an inflammatory re-
sponse involving various cells, such as Schwann cells, 
mast cells, macrophages, and T cells. Once the mitogen-
activated protein kinase/extracellular signal-regulated 
kinase (MAPK-ERK) signaling pathway in Schwann cells 
is activated, inflammatory mediators that attract immune 
cells to the injured nerve are produced. Schwann cells 
also undergo dedifferentiation to initiate the degrada-
tion of the myelin sheath, which is necessary for nerve 
regeneration. Mast cells release inflammatory media-
tors that sensitize nociceptors and recruit neutrophils to 
the injury site. Neutrophils sensitize nociceptors, recruit 
macrophages and T cells, and are present shortly after 
the injury. Resident and circulatory macrophages are in-
volved in phagocytosis and can secrete proinflammatory 
cytokines/chemokines. T-helper cells release proinflam-
matory and anti-inflammatory cytokines. Sensory nerve 
endings release neuropeptides that further contribute to 
the inflammatory response. Changes in the local chemi-
cal environment affect not only the injured nerve fibers 
but also healthy ones, leading to hyperexcitability and 
neuropathic pain [5,23].

Peripheral sensitization occurs alongside inflammation 
after nerve injury. When cells are injured, they release 
molecular signals that cause upregulation of certain 
proteins such as interleukin (IL)-1β, tumor necrosis fac-
tor (TNF)-α, and IL-6. Inflammatory mediators such as 
prostaglandin E2, bradykinin, serotonin, and H+ ions then 
bind to receptors on nerve cell membranes, leading to 
the activation of protein kinases A and C. These proteins 
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phosphorylate ion channels involved in nociceptors, 
including the transient receptor potential cation chan-
nel subfamily V members 1 and 2 (TRPV1 and TRPV2, 
respectively), and voltage-gated sodium channel (VGSC). 
Consequently, the threshold for activating nociceptors 
decreases, and the excitability of the peripheral nerve ter-
minal cell membrane increases. These findings suggest 
that peripheral sensitization is closely linked to the in-
flammatory response and involves the modulation of ion 
channels in nerve cells. Understanding these processes 
can lead to the development of treatment strategies for 
pain [21].

After nerve injury, axon remyelination begins with the 
proliferation and migration of Schwann cells. These cells 
guide the direction of axon growth to form the band of 
Büngner. The migration of Schwann cells is facilitated by 
the interaction between laminin and neuregulin-1 (NRG-
1). Within the band of Büngner, Schwann cells secrete 
various growth factors and adhesion molecules that aid 
in remyelination. These include neurotrophins, BDNFs, 
neurotrophins 3, 4/5, and 6 (NT-3, NT-4/5, and NT-6), 
insulin-like growth factor (IGF-1), cilliary neurotrophic 
factor, glial-derived neurotrophic factor, neural cell adhe-
sion molecule, N-cadherin, and integrins. The repair of 
axon and Schwann cell interactions is crucial for success-
ful remyelination. NRG-1 and 3, IGF-1, and matrix metal-

loproteinase-9 influence the growth of myelin thickness 
and the distance between Ranvier’s nodes. If remyelin-
ation is disrupted, symptoms of neuropathic pain occur 
[24].

2. Chemical and physical structure of MeCbl

Vitamin B12, or cobalamin, is a water-soluble vitamin 
that cannot be synthesized independently by the human 
body. The chemical structure of vitamin B12 comprises 
a cobalt ion as the center of the structure, which binds to 
four nitrogen ions to form a corrin ring (Fig. 1) [25]. The 
lower ligand of the cobalt ion (beta) binds to the nitrogen 
ion of the dimethylbenzimidazole molecule. The upper 
ligand (alpha) of the cobalt ion binds to different groups 
resulting in four analogs of cobalamin, namely, cyano-
cobalamin, MeCbl, adenosylcobalamin (AdoCbl), and 
hydroxycobalamin (OHCbl) [26,27].

3. Pharmacokinetics and pharmacodynamics of 

MeCbl

1) Absorption of ingested MeCbl

Vitamin B12, whether ingested or taken orally, passes 
through numerous phases before reaching the target 
cells. Various binding proteins, including haptocorrin 
(HC/transcobalamin I [TC-I]), and intrinsic factor (IF) are 
involved in the initial binding and absorption of various 
forms of vitamin B12, including MeCbl. HC molecules are 
present in the saliva, and upper gastrointestinal system, 
where they initially bind to MeCbl. The cobalamin–HC 
complexes are degraded in the ileum, and the result-
ing free cobalamin molecules are bound by IF protein 
molecules released by gastric parietal cells. The IF–co-
balamin complexes bind to the apical region of intestinal 
epithelial cells via the cubam receptor, allowing them to 
be endocytosed into the cells’ lysosomes for degradation. 
The liberated free cobalamin molecules enter the cytosol 
and blood circulation via multidrug resistance protein 1 
or passive transport [27,28]. Because of its hydrophobic 
characteristics, MeCbl can enter the cell via passive diffu-
sion, enhancing its conversion in the cell [29]. Hanawa et 
al. [30] demonstrated that because of its high molecular 
weight (1,344.4 g/mol), MeCbl cannot penetrate the cho-
clea barrier but can be detected in the gracii muscle.

2) MeCbl in blood circulation
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Fig. 1. Chemical structure of methylcobalamin. The upper 
ligand consists of a methyl compound attached to a ring of co-
balt. Modified from PubChem (https://pubchem.ncbi.nlm.nih.
gov/compound/Methylcobalamin) [25].
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(TC-III) are three proteins that play a role in the distribu-
tion of cobalamin in the bloodstream. Once it enters the 
blood circulation, approximately 75%–90% of circulating 
MeCbl binds to non-specific TC-I, whereas the remainder 
binds to TC-II with a high affinity to enter the cells [27,28]. 
TC-III tends to remove cobalamin analogs from the tis-
sues and bloodstream, convey them to the liver for elimi-
nation in bile [31].

3) MeCbl enters the cell

The TC-I–MeCbl complexes bind to nonspecific, multi-
functional receptors on the cell surface, such as asialo-
glycoprotein receptors and hepatic-specific proteins, to 
enter liver cells for storage. On the contrary, only TC-
II–MeCbl complexes can enter the peripheral cells via 
the specific TC-II receptor (CD 320) or passive diffusion 
because of their hydrophobic nature [29]. MeCbl uptake 
in neuronal cells is higher than in other cells because 
megalin receptors are present on the surface of neurons. 
These receptors are susceptible to TC-II. Megalin recep-
tor activation is controlled by NRG-1 expression via the 
PI3-Kinase pathway [32].

4) MeCbl inside the targeted cell

Once inside the cell, the TC–MeCbl complex undergoes 
degradation in lysosomes, releasing free MeCbl into 
the cytosol using membranes called ABCD4 (cblf ) and 
LMBD1 (cblF). MeCbl reacts with MMACHC (CblC pro-
tein), resulting in the release of methyl groups through 
dealkylation. Subsequently, the free cobalamin is con-
verted into intracellular MeCbl to perform its functions 
[27,28]. The transformation of cobalamin to intracellular 
MeCbl in the cytosol requires a methyl donor from the 
reaction of tetrahydrofolate to 5-methyltetrahydrofolate 
and is affected by methionine synthase. In neurons, en-
hanced intracellular MeCbl conversion occurs because of 
increased glutathione formation due to elevated cysteine 
uptake triggered by excitatory amino acid transporters 
activation due to NRG-1 expression [33].

5) Excretion of MeCbl

From the ingested MeCbl, the liver stores 0.5–5.0 µg of 
the vitamin daily. This stored vitamin is then secreted in 
the bile and reabsorbed by the body, primarily in ileal en-
terocytes. Any unabsorbed MeCbl from food or bile is pri-
marily excreted in feces, leading to an estimated daily loss 
of 0.1% of the body’s reserves. Excess MeCbl in the blood, 

such as after an injection, is eliminated in the urine [34].
Genetic abnormalities affect the activity of enzymes 

involved in absorption and the binding capacity of vita-
min B12 to binding proteins during distribution and/or 
proteins involved in intercellular metabolism [35]. Muta-
tions of aspartate 757 or serine 810 decrease the reactivity 
of the MeCbl cofactor to the binding site of methionine 
synthase [36].

4. Cellular and molecular action of MeCbl

Cobalamin present in the cell is converted into two co-
enzymes, namely, MeCbl and AdoCbl. MeCbl acts as a 
catalyst in methylation reactions throughout the body. 
These conversions ensure that cobalamin can perform its 
vital roles as a coenzyme in various enzymatic reactions 
[37,38]. MeCbl acts as a methyl donor for methionine 
synthase, which is important for the conversion of homo-
cysteine to methionine. Methionine is then converted to 
S-adenosyl methionine, a key methyl donor in various 
methylation reactions in the body [9].

Cobalamin and its various analog forms help regulate 
acute and chronic inflammatory conditions by directly 
controlling the secretion of inflammatory cytokines, such 
as TNF-α, IL-6, epidermal growth factor, and neuronal 
growth factor. Cobalamin can also modulate immune 
reactions through its effects on T lymphocyte and natural 
killer cell activity [39,40].

Table 1 summarizes research conducted on MeCbl’s 
cellular and molecular function in various types of cells. 
A study on Plasmodium falciparum revealed that MeCbl 
exerts an antimalarial effect. Chemaly et al. [41] found 
that the 5,6-dimethylbenzimidazole side chain inhibited 
the production of β-haematin. Weinberg et al. [42] dem-
onstrated that MeCbl exerts a mild inhibitory activity on 
nitric oxide synthases (NOS); however, light activation 
converts MeCbl into OHCbl, which has the strongest NOS 
inhibition action. MeCbl is beneficial in treating neuro-
degenerative illnesses involving tau aggregation, such as 
Alzheimer’s disease. MeCbl binds and caps the cysteine 
residues of tau protein, thereby preventing fibrillation 
and aggregation [43].

Combining MeCbl and AdoCbl significantly increased 
trophoblast cell proliferation and viability by upregu-
lating EGFr mRNA expression, downregulating TNF-α 
mRNA expression, and decreasing homocysteine levels 
and oxidative stress at normal and supraphysiological 
concentrations of folic acid [44]. In silico experiments 
revealed that exogenous MeCbl may decrease viral repli-
cation of SARS-Cov-2 by inhibiting the RNA-dependent-
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RNA polymerase activity of SCV2-nsp12 enzyme [45].

5. Molecular pharmacological action of MeCbl as a 

chronic peripheral neuropathic pain therapy

Table 2 presents the molecular pharmacological effi-
cacy and pain recovery after MeCbl treatment in diverse 
chronic peripheral neuropathic pain models by modify-
ing inflammatory conditions, peripheral and central sen-
sitization, and nerve fiber remyelination. A single MeCbl 
injection before and during the generation of neuropath-
ic pain owing to cancer therapy with vincristine sulfate 
decreased thermal hyperalgesia and nerve damage. The 
reduction in nerve damage is attributed to decreased 
loss of intra-epidermal nerve fibers and the reduction 
of atypical mitochondria. Observations on the spinal 
dorsal horn revealed suppression of the NF-κB pathway, 
decreased activity of nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases (NOXs), decreased TNF-α, 
and increased IL-10. The study suggested that the anti-
nociceptive effect of MeCbl is mediated by a decrease in 
NOXs activity; however, how MeCbl can reduce NOXs 
activity is not known yet [46].

MeCbl can alleviate low back pain and lumbar stenosis 
syndrome caused by prolonged compression of the dorsal 
root ganglion (DRG). MeCbl administered intraperitone-
ally at 2.5 mg/kg daily for 28 days alleviated mechanical 
allodynia symptoms by lowering spontaneous activity in 
type A DRG neurons and hyperpolarization-induced ion 
channel activity in medium-sized DRG neurons [47].

MeCbl (100 µg) injected twice a week for 14 weeks in a 
rat model of neuropathy reduced VGSC expression and 
appearance, resulting in decreased mechanical allodynia 
and threshold value for mechanical stimulation [48,49].

Oral treatment with MeCbl at a dose of 15 μg/kg twice 
a day for 21 days alleviated neuropathic pain symptoms, 
such as heat, cold, and mechanical hyperalgesia. In addi-
tion, the levels of several nociceptor i.e.: transient recep-
tor potential ankyrin 1 (TRPA1), transient receptor poten-
tial cation channel subfamily M member 8 (TRPM8), and 
phosphorylated p38MAPK were decreased in the DRG, 
whereas the levels of TRPV1 and TRPV4 were not signifi-
cantly altered compared with those in normal conditions. 
Lower serum levels of IL-1β, IL-6, and TNF-α were asso-
ciated with neuropathic pain symptoms [50].

MeCbl also affects neurite outgrowth and neuronal cell 
survival. It is thought to cause methylation of Ras proteins 
(H-Ras, K-Ras4A and 4B, and N-Ras), which activate ERK 
and PI3K/Akt proteins. Phosphorylated ERK and Akt can 
activate mTOR proteins, resulting in neurite outgrowth Ta
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and neuronal survival [51].
MeCbl promotes Schwann cell development by block-

ing the Erk1/2 pathway, which increases myelin basic 
protein (MBP) and lipid synthesis. Lipid and MBP syn-
theses are needed to increase the thickness and density 
of the myelin sheath during remyelination [52].

In an end-to-side neurorrhaphy model of the damaged 
musculocutaneous nerve, MeCbl accelerates the devel-
opment of the restored motor units of the injured nerve, 
resulting in greater conduction velocity and better syn-
chronization when activated. MeCbl increases neuron-
specific cytoskeleton molecule βIII tubulin expression, 
promoting axonal sprout growth in the receiving nerve. 
MeCbl also increases the activity of Schwann cells, which 
are responsible for most axonal degeneration-associated 

debris removal [53]. A study on the molecular action of 
MeCbl and chronic peripheral neuropathic pain showed 
that MeCbl has various abilities within the targeted cell 
to control the neuroinflammatory condition that affects 
sensitization after nerve injury (Fig. 2).

6. Clinical application of MeCbl in peripheral 

neuropathy

1) Methycobalamin for diabetic peripheral  

neuropathy (DPN)

Clinical trials have been conducted to study the use of 
MeCbl in treating DPN, either on its own or in combina-
tion with other treatments [11,12]. A meta-analysis of 

Fig. 2. (A) A schematic mechanism of pathogenesis of peripheral neuropathic pain. Peripheral nerve injury activates macrophage 
in-situ to phagocytize myelin debris. Schwann cells differentiate into non-myelinating cells and phagocytize myelin debris along 
with macrophage. Cytokines and chemokines release from recruited circulatory neutrophil, macrophage, and T-cell (1). Neuron dis-
charge of IL-1β, TNF-α, and IL-6 followed by histamine, serotonin (5-HT), Substance P, Bradykinin, and PG-E2 promotes peripheral 
and ganglion sensitization sequentially (2). Disruption in the remyelination process increase electrical activity, abnormal sensitivity 
to various stimulants, and abnormal contact between adjacent axons resulting in ephaptic cross-talk (3). (B) The action of MeCbl 
in modulating peripheral neuropathic pain. MeCbl reduces peripheral sensitization by regulating the NFKB activity of neutrophils, 
macrophages, and T-cells. MeCbl promotes remyelination by increasing the myelin binding protein expression and lipid synthesis of 
Schwann cells. MeCbl induces Ras protein methylation of neurons, enhancing the remyelination process. MeCbl regulates neuron's 
ion channel activation and controls peripheral and ganglionic sensitization. IL: interleukin, TNF: tumor necrosis factor, PG-E2: prosta-
glandin E2, MeCbl: methylcobalamin.
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clinical trials recommended the oral dose of MeCbl is 500 
µg three times per day, or 500–1,000 µg via intramuscular 
injection three times per week. The usage of MeCbl for 
1 to 24 weeks is safe [54]. Sil et al. [55] concluded that an 
intramuscular injection of 500 µg MeCbl three times per 
week is more effective in elevating the serum cobalamin 
levels than a single intramuscular injection of an ultra-
high 1,500 µg MeCbl dose. While the meta-analysis found 
no reduction in NCV, MeCbl effectively decreased DPN 
pain scores, including the neuropathic disability score 
and the neuropathic total symptom score. MeCbl, a wa-
ter-soluble vitamin, is relatively safe [54].

2) MeCbl for herpetic neuralgia

MeCbl has been clinically tested as a treatment for acute 
or subacute herpetic neuralgia and ophthalmic herpetic 
neuralgia [14–17]. In subacute herpetic neuralgia, local 
subcutaneous administration of MeCbl (1,000 µg 5–6 
times per week for 6 days to 4 weeks) has shown promis-
ing results in reducing pain and improving daily activities 
and quality of life [15]. Local injection of 1% lidocaine 
combined with 1,000 µg MeCbl effectively alleviated 
the ophthalmic and acute herpetic neuralgia symptoms 
[14,16,17]. MeCbl administration within 4–7 days after 
onset reduced the incidence of post-herpetic neuralgia 
[14]. The adverse effects encountered during clinical tri-
als were relatively mild to moderate in the injection area, 
such as redness, bleeding (stopping within 1 minute), 
and bruises (disappearing after 7 days) [14–17].

CONCLUSIONS

Chronic peripheral neuropathic pain is closely associated 
with chronic neuroinflammation caused by nerve injury 
and impediments to remyelination. MeCbl is a potential 
therapeutic agent that targets this fundamental aspect of 
pathophysiology, offering improved treatment options 
with enhanced therapeutic outcomes while minimiz-
ing adverse effects. MeCbl reduces inflammation in the 
damaged nerve region by regulating NFκB activity in im-
mune cells and neurons, which results in the reduction 
of TNF-α, IL-1β, and IL-6 levels and an increase in IL-
10 levels. MeCbl also controls peripheral and ganglionic 
sensitization, which affects nerve impulse transmission 
by inhibiting the ion channel activation in neurons. In 
addition, it modulates remyelination, including axonal 
development and myelin sheath thickness. It regulates 
neurite outgrowth and neuronal cell survival by activat-

ing mTOR proteins. Furthermore, MeCbl increases the 
thickness and density of the myelin sheath by blocking 
the Erk1/2 pathway in Schwann cells, which results in en-
hanced lipid and MBP syntheses.
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