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ABSTRACT

Objective: This study investigates the feasibility of employing a pre-trained deep learning 
wave-to-vec model for speech-to-text analysis in individuals with speech disorders arising 
from Parkinson’s disease (PD).
Methods: A publicly available dataset containing speech recordings including the Hoehn and 
Yahr (H&Y) staging, Movement Disorder Society Unified Parkinson’s Disease Rating Scale 
(UPDRS) Part I, UPDRS Part II scores, and gender information from both healthy controls 
(HC) and those diagnosed with PD was utilized. Employing the Wav2Vec model, a speech-to-
text analysis method was implemented on PD patient data. Tasks conducted included word 
letter classification, word match probability assessment, and analysis of speech waveform 
characteristics as provided by the model’s output.
Results: For the dataset comprising 20 cases, among individuals with PD, the H&Y score 
averaged 2.50±0.67, the UPDRS II-part 5 score averaged 0.70±1.00, and the UPDRS III-part 
18 score averaged 0.80±0.98. Additionally, the number of words derived from decoded text 
subsequent to speech recognition was evaluated, resulting in mean values of 299.10±16.79 
and 259.80±93.39 for the HC and PD groups, respectively. Furthermore, the calculated degree 
of agreement for all syllables was based on the speech process. The accuracy for the reading 
sentences was observed to be 0.31 and 0.10, respectively.
Conclusion: This study aimed to demonstrate the effectiveness of wave-to-vec in enhancing 
speech-to-text analysis for patients with speech disorders. The findings could pave the way 
for the development of clinical tools for improved diagnosis, evaluation, and communication 
support for this population.
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INTRODUCTION

Speech disorders can arise from a variety of medical conditions affecting the neurological, 
structural, or functional components of speech production.10,27) Neurological disorders such 
as stroke, traumatic brain injury (TBI), and Parkinson’s disease (PD) disrupt the central 
or peripheral nervous system’s control over the muscles involved in speech articulation, 
resulting in dysarthria characterized by slurred speech, imprecise articulation, and reduced 
intelligibility. Structural abnormalities like cleft lip and palate, vocal fold paralysis, and 
structural damage from trauma or surgery interfere with the anatomical integrity or mobility 
of the speech organs, leading to articulatory difficulties, phonatory disturbances, or 
resonance issues.4,13,21,30) Functional disorders such as developmental speech and language 
disorders, stuttering, and psychogenic speech disorders stem from cognitive, psychological, 
or behavioral factors affecting speech production, manifesting as disruptions in fluency, 
rhythm, or prosody.4,13) These diverse etiologies disrupt the complex processes of speech 
production, including phonation, articulation, resonance, and prosody, resulting in a wide 
range of speech impairments that require comprehensive assessment and intervention 
tailored to the underlying pathology and individual needs of the affected individuals.27)

In diagnosing PD, clinicians often employ standardized assessment tools such as the Hoehn 
and Yahr (H&Y) scale and the Unified Parkinson’s Disease Rating Scale (UPDRS) to evaluate 
various aspects of motor function, including speech disorders.10,12,24,28) The H&Y scale 
categorizes PD progression into stages based on motor symptoms’ severity, ranging from 
stage 1 (mild symptoms affecting one side of the body) to stage 5 (severe symptoms affecting 



both sides of the body and possibly requiring assistance for mobility).28) The UPDRS further 
assesses specific motor and non-motor symptoms, including speech disorders, through 
subjective ratings and objective evaluations.28) Speech disorders in PD commonly include 
hypophonia (reduced speech volume), dysarthria (impaired articulation and clarity), and 
monotone speech.10) Clinicians utilize standardized tasks such as reading a standard passage 
or counting to assess speech intelligibility, prosody, and phonation quality. Additionally, 
acoustic analysis tools may quantify speech characteristics such as pitch variability, speech 
rate, and pauses. Integration of H&Y and UPDRS scores, along with detailed speech 
assessment findings, contributes to a comprehensive diagnosis and monitoring of PD 
progression, facilitating tailored treatment strategies and interventions to address speech 
impairments and enhance overall quality of life for individuals living with PD.

Recent advancements in artificial intelligence (AI) have shown promise in aiding the 
diagnosis and grading of PD.5) Khan et al.17) employed machine learning algorithms to 
examine video recordings (13 patients), aiming to quantify tapping symptoms by analyzing 
the motion of index fingers (finger tapping; FT). Their approach stands out for its utilization 
of facial characteristics to adjust tapping intensity, ensuring normalization of distance 
discrepancies between the camera and the subject. In their study, the cross-correlation 
analysis of the normalized peaks revealed a robust Guttman correlation (μ2=−0.80) with the 
clinical ratings. Employing a support vector machine (SVM) classifier and implementing 
10-fold cross-validation, the classification of tapping characteristics accurately categorized 
patient samples across different UPDRS-FT levels with an 88% accuracy rate. Moreover, 
research has been conducted to explore the potential application of phonetic approaches for 
diagnostic purposes, involving the analysis of distinctive features among individuals afflicted 
with speech disorders.19,23)

Additionally, AI-based approaches offer the advantage of scalability and accessibility, as 
they can be deployed through smartphone applications or web-based platforms for remote 
monitoring and screening of PD symptoms.5)

The aim of this study is to investigate the feasibility of integrating speech recognition 
deep learning alongside acoustic analysis for converting speech to text among individuals 
experiencing speech impairments attributable to PD, stroke, multiple sclerosis, and TBI.

MATERIALS AND METHODS

Dataset
We used the open-source dataset of Mobile Device Voice Recordings at King’s College 
London from both early and advanced PD patients and healthy controls (HC).16) The dataset 
was collected at King's College London Hospital, situated in Denmark Hill, Brixton, London, 
during the timeframe spanning from September 26th to September 29th, 2017. Utilizing a 
conventional examination facility encompassing approximately 10 m2 and characterized by a 
typical reverberation duration of approximately 500 ms, voice recordings were conducted.16) 
The dataset has been partitioned into segments consisting of reading text and spontaneous 
dialogue. In this investigation, a collective sum of 20 datasets, encompassing 10 subjects 
from a healthy cohort and 10 from a cohort afflicted with PD, were employed from the 
reading text segment of the dataset (n=20).
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Dataset has the evaluation metrics for H&Y staging, Movement Disorder Society UPDRS 
Part I (Mentation, Behavior, and Mood), and UPDRS Part II (Activities of Daily Living) 
scores.16) First, H&Y stage is a 5-point scale that describes the overall severity of PD based on 
functional limitations.12,24) For example, an H&Y rating of 1 indicates early-stage PD. People 
at this stage may experience mild tremors or stiffness, but they are generally independent in 
their daily activities. Second, UPDRS is a more detailed scale that assesses various aspects of 
PD, including: UPDRS Part I for scores here evaluate non-motor symptoms like depression 
or cognitive decline.12) For example, a score of 2 is relatively low and suggests minimal 
impairment. And UPDRS Part II is a part assesses how PD affects daily tasks like dressing, 
bathing, and eating.24) A score of 2 suggests some mild difficulties but likely still manageable 
independence. Furthermore, UPDRS Part III is the most focused on movement and evaluates 
things like tremor, rigidity, and balance.28)

Speech-to-text analysis via Wav2Vec deep learning model
We implemented speech-to-text analysis method using Wav2Vec model in patient cases with PD 
dataset (FIGURE 1).3) And the process shows obtaining speech-to-text analysis outcomes using 
the Wav2Vec inference model to analyze the characteristics between PD and HC. The Wav2Vec 
model, fine-tuned for automatic speech recognition (ASR) tasks, is a model library that can 
perform feature extraction and classification in one step.3) To initiate the process of speech 
recognition for the dataset using Wav2Vec, the first step involves inputting the healthy group 
and PD data into the system in the second pipeline of FIGURE 1. This typically entails obtaining 
audio recordings of speech utterances, which can be sourced from various recording devices 
such as microphones or digital recorders. The quality of the recordings is crucial, as clear 
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FIGURE 1. Research flow chart and the process of obtaining speech-to-text analysis outcomes using the Wav2Vec inference model to analyze the features 
between PD and HC for this study. HC and PD group were used and encoding and decoding process were employed in speech analysis procedure. 
HC: healthy control, PD: Parkinson’s disease, H&Y: Hoehn and Yahr, UPDRS: Unified Parkinson’s Disease Rating Scale, CTC: Connectionist Temporal Classification.



and intelligible speech facilitates more accurate recognition outcomes. Once the audio data 
is acquired, it needs to be preprocessed to ensure compatibility with the Wav2Vec2 model.2,3) 
Preprocessing of the voice data involves several steps aimed at preparing the audio signals 
for input into the Wav2Vec model. This includes standardizing the sampling rate of the audio 
files to match the requirements of the model, typically 16 kHz or 48 kHz. Additionally, any 
background noise or artifacts present in the recordings may need to be removed or attenuated 
through noise reduction techniques to enhance the clarity of the speech signal. Furthermore, 
the audio data may be segmented into smaller chunks or frames to facilitate processing by the 
Wav2Vec model. Once the voice data is appropriately preprocessed, it is ready for processing 
with the Wav2Vec model (also known as Wav2Vec2, short for Waveform-to-Vector 2). It operates 
by transforming raw audio waveforms into high-dimensional feature vectors, which are then 
fed into a neural network for further processing (FIGURE 1). The model consists of multiple 
layers of convolutional and transformer-based architectures, which learn to extract meaningful 
representations of speech features directly from the raw waveform for the PD and HC.

During inference, the preprocessed voice data is input into the Wav2Vec model, which 
generates a sequence of feature vectors representing the acoustic characteristics of the speech 
signal (FIGURE 1). These feature vectors are then passed through the model’s encoder layers, 
where they are transformed into a higher-level representation that captures the temporal 
and contextual information of the speech. Finally, the output of the Wav2Vec model can be 
further processed by downstream components, such as a language model or a classifier, to 
perform tasks as word letter classification, word match probability, and speech waveform 
analysis (FIGURE 1).

Programming environment
This study utilized Python version 3.8.3, PyTorch version 1.2.0, and TorchAudio version 
0.6.0, coupled with a GeForce RTX 4060 GPU for computational acceleration. The statistical 
analysis was performed using SPSS 21.0 for windows (SPSS Inc., Chicago, IL, USA).

RESULTS

Baseline characteristics
For the dataset comprising 20 cases, speech waveforms were processed using the Wav2Vec 
model followed by word count analysis. Subsequently, the baseline statistical findings are 
summarized, as presented in TABLE 1. Statistical analysis revealed significant effects (p-value 
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TABLE 1. Dataset characteristics (n=20)
Category HC p-value* PD p-value*

Number 10 N/A 10 N/A
Gender 0.686 0.642

Man 1 (10.00) 7 (70.00)
Woman 9 (90.00) 3 (30.00)

H&Y scores (mean, SD) 0.00±0.00 N/A 2.50±0.67 0.011
UPDRS II-part 5 0.00±0.00 N/A 0.70±1.00 0.000
UPDRS III-part 18 0.00±0.00 N/A 0.80±0.98 0.014
Speech time (minutes:seconds) 02:21±00:16 N/A 02:14±00:29 0.084
Number of words decoded from speech 299.10±16.79 0.119 259.80±93.39 N/A
Values are presented as number (%) or mean ± standard deviation.
HC: Healthy control, PD: Parkinson’s disease, H&Y: Hoehn and Yahr, UPDRS: Unified Parkinson’s Disease Rating 
Scale, N/A: not applicable.
*The p-value was obtained through the analysis of variance.



<0.05) for H&Y score, UPDRS part II score, and UPDRS part III score within the PD cohort. 
The analysis encompassed 10 participants each from the HC and PD cohorts. Among 
individuals with PD, the H&Y score averaged 2.50±0.67, the UPDRS II-part 5 score averaged 
0.70±1.00, and the UPDRS III-part 18 score averaged 0.80±0.98. Additionally, the number of 
words derived from decoded text subsequent to speech recognition was evaluated, resulting 
in mean values of 299.10±16.79 and 259.80±93.39 for the HC and PD groups, respectively.

Speech-to-text analysis in time domain for HC and PD
The inference outcomes for the speech sound model output are depicted in FIGURES 2 & 3.  
FIGURE 2 illustrates the inference findings for instances identified as female, H&Y 0, 
UPDRS II-part 5 score of 0, and UPDRS III-part 18 score of 0 within the HC group. We 
visually represented the corresponding class for each of 500 frames along the time axis of 
the waveform (FIGURE 2A). In this context, the classification is informed by the phonetic 
and linguistic attributes of the English language. Each symbol correlates with specific 
phonemes, which serve as the fundamental units of sound differentiation within a language, 
distinguishing one word from another. The alphabetical characters A to Z denote the 
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FIGURE 2. Visualization and analysis of inference results for speech sound model output in HC. (A) The inference findings for instances identified as female, H&Y 
0, UPDRS II-part 5 score of 0, and UPDRS III-part 18 score of 0 within the HC group. The corresponding class for each of 500 frames along the time axis of the 
waveform. (B) The trajectory for detecting words decoded from vocalized sounds is visually depicted. (C) The probability at the detection juncture in the time 
domain. (D) The decoded words are superimposed onto the waveform within the time domain. And a maximum delay (tmax), 3.15 seconds was identified. 
HC: healthy control, H&Y: Hoehn and Yahr, UPDRS: Unified Parkinson’s Disease Rating Scale, tmax: maximum delay time.



recognition of individual speech sounds, encompassing consonants and vowels in English 
vocabulary. Furthermore, symbols such as | (pipe), - (hyphen), and ' (apostrophe) may 
signify diverse linguistic elements including word delimiters, pauses, or distinctive speech 
phenomena such as glottal stops or aspiration. In FIGURE 2B, the trajectory for detecting 
words decoded from vocalized sounds is visually depicted. The probability at the detection 
juncture in the time domain is presented in FIGURE 2C, showcasing a detection accuracy 
ranging between 60% to 80%, barring the initial ‘EY’ word (FIGURE 2C). Subsequently, the 
decoded words are superimposed onto the waveform within the time domain (FIGURE 2D). 
And a maximum delay (tmax, maximum delay time), 3.15 seconds was identified.

The inference outcomes of a case among PD for the speech sound model output are depicted 
in FIGURE 3. FIGURE 3 illustrates the inference findings for instances identified as male, 
H&Y 4, UPDRS II-part 5 score of 3, and UPDRS III-part 18 score of 3 within the PD group. We 
visualized the corresponding class for each of 500 frames along the time axis of the waveform 
(FIGURE 3A). In FIGURE 3B, the trajectory for detecting words decoded from vocalized 
sounds is visually depicted. The probability at the detection juncture in the time domain 
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FIGURE 3. Visualization and analysis of inference results for speech sound model output in PD. (A) The inference findings for instances identified as male, H&Y 
4, UPDRS II-part 5 score of 3, and UPDRS III-part 18 score of 3 within the PD group. The corresponding class for each of 500 frames along the time axis of the 
waveform. (B) The trajectory for detecting words decoded from vocalized sounds is visually depicted. (C) The probability at the detection juncture in the time 
domain. (D) The decoded words are superimposed onto the waveform within the time domain. In contrast to the scenario observed in the HC group, a maximum 
time delay, 5.45 (tmax) seconds was identified. 
PD: Parkinson’s disease, H&Y: Hoehn and Yahr, UPDRS: Unified Parkinson’s Disease Rating Scale, HC: healthy control, tmax: maximum delay time.



is presented in FIGURE 3C, showcasing a detection accuracy ranging between 60% to 90% 
(FIGURE 3C). Subsequently, the decoded words are superimposed onto the waveform within 
the time domain (FIGURE 3D). Notably, in contrast to the scenario observed in the HC group, 
a maximum delay (tmax), 5.45 seconds was identified (FIGURE 3C & D).

Speech decoding to text and accuracy calculation
Speech decoding was performed on one female and one male participant from the HC and PD 
cohorts. The female participant had a H&Y score of 0, a UPDRS II-part 5 score of 0, and a UPDRS 
III-part 18 score of 0. The male participant had H&Y score of 4, UPDRS II-part 5 score of 3, and 
UPDRS III-part 18 score of 3. Accuracy analysis was subsequently conducted (TABLE 2). The 
first column represents the original text read aloud by the participant, while the second column 
displays a compilation of words extracted through waveform decoding of the recorded speech. 
Subsequently, the third column presents the calculated degree of agreement for the entire syllable 
based on this process. The accuracy for the 2 sentences was noted as 0.90 and 0.95 for a female in 
the HC, compared to 0.31 and 0.10 for a male in the PD group, respectively (TABLE 2).

Participants in the HC and PD cohort were a mix of those who read “North Wind and the Sun” 
and those who read “Computer Applications in Geography Snippet.”16) The accuracy results were 
calculated for the first and second decoded sentences, respectively (TABLE 3). The HC group 
showed the mean accuracy of 0.94±0.03 and 0.94±0.02 when reading both sentences, whereas 
the PD group exhibited accuracy levels of 0.66±0.18 and 0.64±0.23 for the respective sentences.

DISCUSSION

ASR has the potential to revolutionize how clinicians interact with patients suffering from 
speech disorders.25,26,31,33) Wave-to-vec, used in this study, employs deep learning models to 
directly learn informative representations from raw speech waveforms.3) This bypasses the 
need for domain-specific feature engineering, which can be ineffective for speech disorders 
due to the unpredictable nature of the variations.3) The core concept of wave-to-vec involves 
training a neural network on large amounts of speech data. The network architecture 
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TABLE 3. Total mean accuracy for the first and second sentence decoded both HC (n=10) and PD (n=10)
Sentences HC PD
Decoded sentence 1 0.94±0.03 0.66±0.18
Decoded sentence 2 0.94±0.02 0.64±0.23
Values are presented as mean ± standard deviation. Sentences: sentences from the “North Wind and the Sun” 
and “Computer Applications in Geography Snippet.”13)

HC: healthy control, PD: Parkinson’s disease.

TABLE 2. The speech-decoded text from a case of HC (H&Y stage 0) and PD (H&Y stage 4) and its corresponding accuracy
Sentences Orthographic version Cohort Speech-decoded text of Case 8 Accuracy
Sentence 1 “�The North Wind and the Sun were 

disputing which was the stronger, 
when a traveler came along 
wrapped in a warm cloak.”

HC THE|NORTH|WIND|AND|THE|SUN|WERE|DISPUTING|WHICH|WAS|D|STRONGER|EH|WHEN| 
A|TRAVELER|CAME|ALONG|WRAPPED|IN|A|WARM|CLOAK|

0.90

PD WE|THE|NORTH|WIND|AND|THE|SUN|O|DISPUTING|WITH|DISTRANGER|LOR|EA|TICKING| 
WHEN|TRABLA|CAME|ALONG|WITH|THO|RA|IN|TO|WON|CLO|

0.31

Sentence 2 “�They agreed that the one who 
first succeeded in making the 
traveler take his cloak off should be 
considered stronger than the other.”

HC THEY|AGREED|THAT|THE|ONE|WHO| 0.95
FIRST|SUCCEEDED|IN|MAKING|D|
TRAVELER|TAKE|HIS|CLOAK|OFF|SHOULD|BE|CONSIDERED|STRONGER|THAN|THE|OTHER|

PD THE|AGREE|THA|THE|FIRST|E|MAKING|TRAMBLING|WE|CLOCK|WE|TESIDE|NI|C|TOYO| 0.10
Orthographic version: sentence from the “North Wind and the Sun.”13)

Accuracy = (Number of Words Matching the Orthographic Version Among Words Detected by Speech Recognition)/(Total Number of Words in the Orthographic 
Version Sentence).
HC: healthy control, PD: Parkinson’s disease, H&Y: Hoehn and Yahr.



typically consists of convolutional layers that progressively extract local features from the 
waveform. These features are then passed through recurrent layers, allowing the network to 
capture the temporal dependencies within the speech signal. Finally, the network outputs 
a vector representation that encodes the essential characteristics of the speech segment. 
This learned wave-to-vec representation can then be used in conjunction with various ASR 
techniques. The Connectionist Temporal Classification decoder utilizes the wave-to-vec 
embedding to predict the most likely sequence of phonemes or words that corresponds to 
the input speech. The wave-to-vec method holds particular promise for speech recognition 
in patients with speech disorders. By learning directly from the speech waveform, the model 
can potentially capture the underlying speech information even when traditional acoustic 
features are unreliable. This paves the way for more robust and accurate ASR systems that can 
effectively recognize the speech of individuals with communication difficulties.

Meanwhile, Wav2Vec 2.0 model itself is language-agnostic. It processes raw audio waveforms 
to generate numerical representations. The pre-tokeninzer in the study is converting 
audio into English words or recognizing word classes in English. The applicability and 
precision of this approach may vary across languages. For instance, Korean and English 
exhibit substantial disparities in their linguistic structures. A primary distinction lies in the 
formation of phonemes: Korean operates at the syllable level, whereas English operates at 
the letter level. In Korean, syllables are segmented into initial, medial, and final consonants, 
with each syllable comprising a blend of consonants and vowels.8) Conversely, English relies 
on individual alphabet letters to construct words. In multi-language applications, a tailored 
pre-tokenization solution could be necessary. This involves training on multilingual datasets 
covering the intended languages and developing a pre-tokenizer capable of accommodating 
the unique phonetic elements and structural intricacies of each language.

Given the presence of speech impairments in PD, non-invasive speech analysis offers 
a valuable tool for facilitating the diagnosis and tracking disease progression.29,32) This 
methodology complements conventional assessments like the UPDRS, notably UPDRS II 
(Assessment of Mind and Activities of Daily Living) and UPDRS III (Motor Examination), 
by accentuating speech-related parameters. For instance, UPDRS includes items pertaining 
to voice characteristics, such as tone (UPDRS II 1.2).29) Various features, not only perceptual 
rating including intelligibility, perceptual score, fluency, and prosody but acoustic analysis 
including pitch, loudness, and jitter, can be extracted from speech samples utilizing 
techniques such as Mel-frequency cepstral coefficient or gammatone filter banks.1,22) Statistical 
scrutiny of these features may elucidate alterations in prosodic elements, such as diminished 
pitch modulation (monotonous speech) or reduced loudness (hypophonia), commonly 
observed in PD patients.10) Additionally, classification of speech samples according to PD 
likelihood can be accomplished through machine learning algorithms like SVM or Random 
Forest, trained on speech data correlated with predetermined UPDRS scores.14)

The functionality for continuous text reading (UPDRS III 18) permits the transcription of 
spoken text employing ASR systems such as the dataset used in this study. This facilitates 
the automated derivation of metrics like reading speed (words per minute), fluency (number 
of pauses and hesitations), and pronunciation errors. Comparative analysis of these metrics 
against normative values or established UPDRS scores in healthy cohorts may delineate 
potential language impairments associated with PD. Moreover, within the domain of 
text reading speed and latency (UPDRS III 18), pauses can be delineated and subjected to 
detailed analysis regarding duration and frequency. Furthermore, the algorithmic detection 
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of hesitations and repetitions may signify bradykinesia (slowness of movement), which 
impinges upon speech production in individuals afflicted with PD. Examining the analytical 
outcomes presented in FIGURES 2 & 3, it was observed that the female participant classified 
as HC in FIGURE 2 exhibited delays between each word ranging from 0.5 seconds to less 
than 1 second while reading a sentence. Conversely, the analysis of the male participant 
categorized as PD in FIGURE 3 revealed delays ranging from 3.5 to 5 seconds. This acoustic 
analysis approach serves as an illustration of a metric capable of discerning the advancement 
of PD. Furthermore, it was ascertained that the accuracy, as analyzed in TABLE 2, exhibited a 
lower value in the PD group compared to a female in the HC group (TABLE 2, accuracy 0.31 
and 0.10, respectively). PD can impact speech communication, though it might not manifest 
in classic pronunciation errors or reading/speaking mistakes.10,12,29,32) Clinical observations 
and academic research point towards a decline in speech intelligibility for PD patients.6) 
This doesn’t necessarily mean they’re mispronouncing words or making grammatical errors. 
Instead, the core issue lies in how PD affects the physical aspects of speech production. 
People with PD often exhibit softer voices, imprecise articulation of consonants, and reduced 
variation in pitch and volume.7) These subtle changes can make it harder for listeners 
to understand the speech content, even if the words chosen and sentence structure are 
correct.20) This can lead to communication breakdowns and frustrations for both the PD 
patient and the listener struggling to decipher the message. It’s important to note that the 
severity of these speech changes can vary considerably depending on the individual and 
disease progression.

Although label probabilities were computed in FIGURES 2C & 3C, further research is needed 
to improve the accuracy of word recognition in recorded speech.

While more comprehensive perceptual evaluation and acoustic analysis are warranted, 
our findings suggest the potential of this approach as a clinical decision support tool for 
diagnosing and evaluating speech disorders resulting from conditions such as PD, stroke, 
multiple sclerosis, and TBI.

There are few challenges in this field of study. Speech characteristics can vary due to factors 
like age, gender, and dialect. And normalization techniques or speaker-specific models might 
be needed for robust analysis. Finally, training machine learning models often requires large 
datasets of speech recordings with corresponding UPDRS scores. And the data collection 
efforts focused on PD patients are crucial. Speech analysis has to be integrated with other 
modalities like facial expression recognition for a more comprehensive assessment.

Pre-trained models can struggle with diverse languages due to limited training data.9,18) However, 
this hurdle can be addressed through several techniques. Kim et al.18) studied to overcome 
the problem of using Wav2Vec 2.0, an English-centric speech recognition model, for Korean 
speech analysis. The study includes a multi-task architecture for syllables and phonemes, and 
a joint decoder to handle out-of-vocabulary words. The approach utilizes both fine-tuning and 
cross-lingual pre-training on the target language data, achieving state-of-the-art performance 
on speech recognition tasks. Multilingual fine-tuning broadens the model’s competency by 
retraining it on a dataset encompassing multiple languages.9) Adapter modules offer a more 
efficient approach by adding lightweight extensions to the model for specific languages.15)

Speech analysis tools that can be easily integrated into clinical settings could be developed.11) 
Investigation of the potential of deep learning architectures for more complex feature 
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extraction and disease classification can be conducted. Furthermore, exploration of the use 
of smartphone-based speech analysis applications for remote monitoring of PD patients can 
be performed.

CONCLUSION

This study investigates the feasibility of employing a pre-trained deep learning wave-to-vec 
model for speech-to-text analysis in individuals with language impairments. We evaluated 
the specific cases’ outcomes by inferring text from the audio waveforms of HC and patients 
diagnosed with PD. Additionally, we visualized the model’s detection probability within the 
time domain. Notably, male participants in the PD group with H&Y stage 4, UPDRS II-part 5 
score of 3, and UPDRS III-part 18 score of 3 exhibited voice delays ranging from 3.5 seconds to 
exceeding 5 seconds. Furthermore, the reading accuracy of the particular male in PD was 0.31 
and 0.10 for 2 sentences, respectively, which fell below the mean of 0.94 observed among the 
HC participants. While more comprehensive perceptual evaluation and acoustic analysis are 
warranted, our findings suggest the potential of this approach as a clinical decision support 
tool for diagnosing and evaluating speech disorders resulting from conditions such as PD, 
stroke, multiple sclerosis, and TBI.
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