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SUMMARY

Changes in sound-evoked responses in the auditory cortex (ACtx) occur during learning, but how 

learning alters neural responses in different ACtx subregions and changes their interactions is 

unclear. To address these questions, we developed an automated training and widefield imaging 

system to longitudinally track the neural activity of all mouse ACtx subregions during a tone 

discrimination task. We find that responses in primary ACtx are highly informative of learned 

stimuli and behavioral outcomes throughout training. In contrast, representations of behavioral 

outcomes in the dorsal posterior auditory field, learned stimuli in the dorsal anterior auditory 

field, and inter-regional correlations between primary and higher-order areas are enhanced with 

training. Moreover, ACtx response changes vary between stimuli, and such differences display 

lag synchronization with the learning rate. These results indicate that learning alters functional 

connections between ACtx subregions, inducing region-specific modulations by propagating 

behavioral information from primary to higher-order areas.
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In brief

Wang et al. develop an automated imaging system to identify mouse auditory cortex subregions 

that are differently recruited during discrimination learning. While stimulus- and behavioral-

related signals are both present in the primary auditory cortex throughout training, higher-order 

regions only encode such signals post-learning. Moreover, functional connectivity between regions 

strengthens with learning.

INTRODUCTION

Learning and performing a sensory task, such as a discrimination task, require that sensory 

stimuli evoke distinct neural response patterns. This learning process can change how the 

brain processes sensory information.1–8 Perceptual or associative learning of auditory tasks 

influences the processing and sensory representation of auditory stimuli in the auditory 

cortex (ACtx).9–13 The modulation of ACtx subregions during task performance differs 

among the primary ACtx (A1),14–20 the secondary ACtx (A2),21 the anterior auditory 

field (AAF),22 and other higher-order auditory regions23–26 in multiple species such as 

mice, ferrets, and cats. Moreover, ACtx subregions work in concert and are thought to 

support hierarchical processing of sound- and task-related signals, with higher-order ACtx 

regions showing greater task-related modulations, similar to other sensory systems.25,27,28 

In addition, the ACtx receives motor signals29–34; thus, task-related motion parameters 

might influence ACtx responses. Hence, learning and task performance can potentially 

alter individual areas and their functional interactions.35 However, most prior studies of 

learning-induced cortical changes have either focused only on single ACtx subregions36,37 
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or have only investigated certain time points during learning. Therefore, it is unclear how 

learning-induced modulations emerge in the processing hierarchy.

We hypothesized that learning to discriminate in an auditory discrimination task would 

enhance the differences in neuronal representation between learned stimuli. We also wanted 

to know when, where, and how such response saliency was improved during the learning 

process and speculated that the representation of behaviorally relevant signals (e.g., choice) 

would also change during learning.

To test our hypotheses, we longitudinally recorded ACtx activity by designing an automated 

head fixation training38 and widefield Ca2+ imaging system that enabled voluntary imaging 

of mouse ACtx during the entire learning process of a 2-alternative forced-choice auditory 

discrimination task. We imaged all ACtx subregions and investigated the responses in each 

subregion and the inter-regional response correlations between subregions across different 

training stages and behavioral outcomes. We constructed classification models based on 

long short-term memory (LSTM) networks39 to decode neural responses and identify how 

stimulus and behavioral choice were represented across the ACtx.

We find that across training, the tone-evoked response magnitudes increased in most ACtx 

subregions. Using the decoding model, we find that in the A1, throughout training, task-

related stimuli and behavioral outcomes were predictable immediately from the start of 

the trial, and the changes across training were subtle compared with higher-order auditory 

regions. As the training progressed, the representation of task-related stimuli was enhanced 

during correct, but not wrong, trials in the anterior ACtx, and the behavioral outcomes 

became predictable from intermediate training stages in the posterior ACtx. Moreover, 

functional connectivity within higher-order auditory regions or with A1 increased. Response 

changes between the two learned stimuli were asymmetric, and motion signals in the ACtx 

contributed to these asymmetrical response changes. In addition, we find that such neural 

response changes happened after the behavioral performance changes and that the response 

asymmetricity displayed lag synchronization with the learning rate. Altogether, our results 

suggest that learning a forced-choice auditory discrimination task induces region-specific 

modulations of both tone- and behavioral-related responses in the higher-order ACtx and 

alters functional connections between ACtx subregions, presumably by the task-related 

movement signals.

RESULTS

Mice learned a forced-choice auditory discrimination task during automatic head fixation 
and longitudinal widefield imaging

To investigate the changes in ACtx responses during learning, we constructed an automated 

head fixation training system38 combined with a widefield Ca2+ imaging system (Figure 

1A, top). This system allows longitudinal widefield Ca2+ imaging across the ACtx (>3 × 3 

mm2). The advantage of automated head fixation training is that animals are free to engage 

in the task, and it also reduces the potential influence of the experimenter.40,41 To ensure 

consistent imaging across sessions and days, the focal position for widefield imaging was 

automatically determined via an integrated autofocus system before the start of each training 
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session for each mouse, and the imaging fields were matched (see STAR Methods and 

Figure S1) after imaging. We used mice expressing the genetically encoded Ca2+ sensor 

GCaMP6s42 across all layers of the ACtx,43 including layers 2/3 and 4 (Figure S2), and 

analyzed fluorescence responses during voluntary task performance.

We trained mice (N = 8) on a 2-alternative forced-choice tone discrimination task (see 

STAR Methods) in which they had to turn a wheel to the left (positive degrees) when a 

low-frequency (10 kHz) tone was presented and to the right (negative degrees) when a 

high-frequency (40 kHz) tone was presented (Figure 1A, bottom). We also trained a separate 

cohort of animals (N = 6) with the opposite association (i.e., turn the wheel to the right 

when hearing a low-frequency tone, and vice versa) to exclude the potential effects of the 

asymmetric stimulus-motor association.

The ACtx in trained animals encodes both stimulus and behavioral choice,14,15,44 and 

disentangling the encoding of each and potential interactions between ACtx subregions 

requires behavioral paradigms that minimize the likelihood of mixing stimulus-related 

signals with choice- or movement-related signals.14,15,44,45 Thus, a hold period (1/3 s) 

was present in each trial, during which mice were trained not to execute any movement. 

Although the hold period was not long enough to cover the whole duration of the 

tone presentation, this hold period still enabled us to partially separate tone-related and 

movement-related signals. The period right after the hold phase but before the tone offset 

was considered the move phase. The training period lasted 25 days, and in most of our later 

analyses, we divided the whole training period into five stages of 5 days each to reduce 

potential variabilities across training days and to ensure enough trials (~500) in each stage 

for model training.

Rotary trajectories of an example mouse are shown for the first and last training stages 

(Figure 1B). Turning directions of the wheel were distributed randomly across two 

frequencies at the first training stage but were well separated at the last training stage, 

in that rotary trajectories went up for most low-frequency trials and down for high-frequency 

trials.

To determine whether mice had learned the task after training, we calculated the sensitivity 

index (see STAR Methods), d′, which measures discriminability,46 for each mouse on 

each training day (Figure 1C). A threshold of 1 was chosen for d′ to indicate the ability 

of mice to discriminate between low- and high-frequency tones. On the last training 

day, all mice showed a higher likelihood of giving correct over wrong responses, with a 

discrimination ability of 1.64 ± 0.53 (N = 8, mean ± standard deviation) (Figure 1C). The 

cohort trained with the opposite association achieved a similar performance (Figure S3A). 

These behavioral results indicate that all mice could discriminate between low- and high-

frequency tones after training, with high response rates, and most correct decisions were 

made close to the start of the choice window (Figure 1D). The number of trials performed by 

each mouse was also kept consistent over training (Figure 1E).
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The tone response magnitude in multiple ACtx regions changed across training

We first sought to identify which ACtx subregions showed altered responses over training. 

We identified ACtx subareas47,48 guided by the tone-evoked cortical responses on the 

first training day (Figure 2A). We used miss trials to avoid movement- and decision-

related confounds (see STAR Methods and Figure S4). We then derived pixelwise average 

fluorescence response (ΔF/F) maps (see STAR Methods) for low-frequency correct (LC) or 

high-frequency correct (HC) trials at the first and last training stages during the entirety of 

the hold or move phase (Figure 2B). The neural responses during the hold and move phases 

changed in most ACtx subregions from the first to the last training stage, especially in 

AAF, the non-response DA, and the dorsal posterior auditory field (DP) (Figure 2B, yellow 

arrows). Thus, training changed the tone-evoked responses in multiple ACtx subregions, 

especially in the dorsal regions.

The changes in ΔF/F maps (Figure 2B) suggest that the magnitude of responses during 

different phases might have changed at various training stages. Thus, to investigate the 

responses in more detail, we examined the average fluorescence (ΔF/F) traces of LC or HC 

trials for each ACtx subregion at each training stage (Figure 2C). At the second training 

stage, the A1, A2, and AAF had decreased response magnitudes during both the hold and 

move phases in LC trials compared to the first training stage. In contrast, we did not observe 

such decreases for HC trials. Meanwhile, in HC trials, most ACtx subregions, especially 

the A1, AAF, and DA, displayed increased response magnitudes during the move phase at 

later training stages. We observed similar response increases for the cohort with the opposite 

training association except that responses in LC trials increased more compared to HC trials 

(Figure S3B). These results suggest that learning our auditory task modulates tone-evoked 

response magnitudes in most auditory subregions, consistent with prior studies.14,24–26 In 

addition, our results indicate that asymmetrical changes exist in the response magnitudes to 

low and high frequencies.

Representation of the task-related tone frequencies was enhanced in most ACtx 
subregions after training

Animal performance improved over training, and we speculated that the altered responses 

in the ACtx with training reflect the emergence of a more discriminable representation of 

the learned stimuli. To examine this notion and if such representation varies across subareas, 

we built a classifier based on LSTM networks (Figure 3A) to decode cortical responses and 

predict the presented tone frequencies (see STAR Methods), the performances of which were 

used to interpret the representation of the cortical responses to the learned stimuli. We chose 

bidirectional LSTM architecture due to its strength in handling temporal data and learning 

long time dependencies.49

We first focused on LC and HC trials from each training stage for the model training 

and testing. Pixels of each ACtx subregion were considered features of their corresponding 

subregion, and the fluorescence values of each pixel during specified time intervals were 

treated as time series data. For the training of models for each animal (8 mice in total), 

time series data of 5 consecutive frames (1/6 s in each model, from −1/2 to 1 s with 

regard to [w.r.t.] the tone onset, 9 time intervals in total) from each ACtx subregion (14 
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ACtx subregions as well as the whole ACtx to comprise 15 regions in total) and from 

each behavioral training stage (5 training stages) were used in a 10-fold leave-one-out 

cross-validation process (10 times training and testing on non-overlapping testing datasets). 

We used the area under the receiver operating characteristic curve50 (AUC) as the evaluation 

metric. We averaged AUCs across different validation processes and time intervals for each 

mouse and each subregion and at each behavioral training stage. AUC is an appropriate 

evaluation metric because it balances the trade-off between sensitivity and specificity at the 

best-chosen threshold, making it exclusively suitable for evaluating model performance on 

an imbalanced dataset.51

As the training progressed, the model performance showed an overall increase in the 

prediction accuracies for the presented tone frequencies (Figure 3B; Table S1). Similar 

results were also found for the cohort with the opposite training association (Figure 

S3C). Responses from the A1 showed higher decoding performance for the presented tone 

frequencies at the first training stage and displayed consistent prediction performance across 

the training period. In contrast, during the first training stage, responses from the higher-

order ACtx regions (e.g., DA and the non-response DP [DPn]) did not yield performance 

results as good as the A1. However, the model performance results increased over the 

training and peaked at the last training stage, especially in DA. The model performance 

results mirrored the changes in the response magnitudes across the behavioral training 

stages. Thus, learning an auditory discrimination task increases the representation of the 

presented tone frequencies in the neural activity of the higher-order ACtx areas.

Wrong trials showed a less faithful representation of the task-related tone frequencies 
than correct trials

To investigate if the representation of the learned stimuli varies between different behavioral 

outcomes, we trained the models similarly on low-frequency wrong and high-frequency 

wrong trials. Because the numbers of correct and wrong trials differed across training, 

we matched the training sample size between correct and wrong trials for each model to 

eliminate the effects of sample sizes on the performance of the models and retrained the 

models on LC and HC trials with the matched data size for each class. We chose 5-fold 

leave-one-out cross-validation here to ensure that data points from all classes were presented 

in the testing dataset during each validation process and that AUCs could be calculated as 

evaluation metrics for model performance.

We find that the differences between the performance of models trained on correct and 

wrong trials differed across different behavioral phases at later training stages, especially in 

the anterior part of the ACtx, as suggested by the pairwise comparison (Figure 3C; Table 

S2). Similar results were also found for the cohort with the opposite training association 

(Figure S3D). Our results indicate that the representation of the task-related tone frequencies 

is unreliable in wrong trials at later training stages, and we speculate that this unreliability 

(i.e., lack of or incorrect information about the stimulus) leads to the wrongly performed 

trials.
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A1 activity predicted behavioral outcomes across all training stages, while DPn activity 
predicted behavioral outcomes at later stages

A1 neurons can encode behavioral outcomes.14 To identify if other ACtx subregions encode 

behavioral outcomes and when such information might emerge, we next aimed to decode 

behavioral outcomes from ACtx responses. We combined both correct and wrong trials 

during model training. Models were trained to predict behavioral outcomes of either correct 

or wrong trials separately in each animal (8 mice in total), for each ACtx subregion (14 

subregions as well as the whole ACtx for a total of 15 regions), from each behavioral 

training stage (5 training stages), and from time series data of 10 consecutive frames (1/3 

s in each model, from −1/3 to 1 s w.r.t. the tone onset, 4 time intervals in total). We also 

chose 5-fold leave-one-out cross-validation here for the same reasons as described above. 

Average AUCs in predicting behavioral outcomes (Figure 3D) were plotted for each mouse, 

each subregion, and each time interval of the data and at each behavioral training stage. 

We compared the performance of models trained on each time interval within the 0 to 1 s 

period with those trained on the −1/3 to 0 s period to determine if any model could achieve a 

performance accuracy higher than the chance level (Table S3).

The A1 showed a consistent and reliable decoding capability of behavioral outcomes across 

all behavioral training stages (Figure 3D). Meanwhile, as the training progressed, DPn 

displayed an increasing predictability of behavioral outcomes (Figure 3D; Table S3). Similar 

results were also found for the cohort with the opposite training association (Figure S3E). 

We then calculated the differences between the performance of models trained on data from 

each ACtx subregion and the performance of models trained on all ACtx data to compare 

the predictability of behavioral outcomes among different ACtx subregions. We observed 

significant differences between the performance of models trained on data from the DAn and 

those trained on all ACtx data across all time bins at the last training stage (Table S4), which 

suggests that the DAn does not present as much information about behavioral outcomes as 

other subregions.

Altogether, these results suggest that A1 reliably encodes information about behavioral 

outcomes throughout the training stages, and such information is encoded in the DPn at later 

training stages.

Enhancement of inter-regional correlations of the tone-evoked responses with higher-
order areas

Auditory areas do not work in isolation, and we speculated that in addition to the changes in 

specific regions, task learning might also change the interaction between ACtx subareas. We 

thus calculated the activity correlations between ACtx subareas during the hold or the move 

phase.

At the first training stage, the A1, A2, and AAF are highly correlated in both correct and 

wrong trials (Figure 4A), especially during the hold phase. In contrast, the correlations of the 

dorsal auditory regions between each other and with other areas were relatively low. As the 

training progressed, correlations between the primary and the higher-order areas increased 

after slight decreases in the second training stage (Figure 4A) in correct trials, especially 
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between the A1 and DA, the AAF and DA, and the A1 and DAn during the hold phase 

and between the DA and DPn during the move phase (Figure 4B, left and right; Table S5). 

Meanwhile, in wrong trials, despite similar increases in the correlations between the A1 and 

DA and the AAF and DA, we also found correlations between the A1 and AAF and the DA 

and DP, as well as the A1 and DPn, to be increased in the hold phase and the AAF and DA in 

the move phase (Figure 4B, middle and right; Table S5). Results were similar for the cohort 

with the opposite training association (Figure S3F).

These results indicate that during correct trials, tonal-responsive subregions decorrelate with 

higher-order subregions during early training stages, consistent with the observed decrease 

in the response magnitudes in the A1 but not in the dorsal medial auditory field (DM), the 

DA, or the DP (Figure 2C). At later training stages, the higher-order subregions showed 

increased response magnitude (Figure 2C) and correlated activity with the A1 in both correct 

and wrong trials. Thus, our results indicate that training has differential effects on network 

processing in the ACtx, and the primary and higher-order regions become more functionally 

connected during learning.

Behavioral-related motion signals attributed to the asymmetries in the response changes

So far, our results have shown that learning affects both subregional responses and inter-

regional correlations, and we noticed asymmetries in the response magnitude changes 

between the two stimuli. We then asked where those asymmetries arise from and whether 

such asymmetries are related to the learning process. Given that our task is asymmetric, 

which requires the mice to spin the wheel in a specific direction, behavioral bias, e.g., 

‘‘handedness,’’52 could contribute to our results and introduce asymmetries in neural 

response. We therefore first investigated whether the differences in the response changes 

between the two stimuli could be partially due to a behavioral bias of the animals. Hence, 

for each animal, we quantified its behavioral bias on each training day by calculating the 

difference between the hit rates for low- and high-frequency trials, and we quantified the 

response asymmetry on each training day by calculating the average ΔF/F between LC and 

HC trials for each ACtx subregion during either the hold or the move phase. Across all mice 

on all training days, we found no strong correlations between the behavioral bias and the 

asymmetries in response changes between the two frequencies (Figure S5). These results 

indicate that the observed response bias is not due to the animals’ intrinsic behavioral bias.

Given that movement signals are present in the ACtx,29–34 and since our task had an 

asymmetric association between tone frequency and spin direction, we speculated that such 

signals could contribute to the asymmetrical response changes we observed, as the control 

of sensory processing was found to be shaped by the task reward structure in addition to the 

required sensory discrimination as a neural coding strategy to maximize the discriminability 

between two learned stimuli.17 For example, the stereotyping of behavioral movements 

could induce response differences between the two sound frequencies. Thus, we investigated 

whether the asymmetrical changes always happened to one stimulus (e.g., only increased 

responses to high-frequency tones) or whether such changes were driven by a specific 

behavioral motion (e.g., only increased responses to the right-wheel-turning trials).
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To test this possibility, we trained a separate cohort of animals (N = 6) with the opposite 

stimulus-wheel-spin association (i.e., turn the wheel to the right when hearing the low-

frequency tone, and vice versa). From the average ΔF/F traces of LC or HC trials in each 

ACtx subregion across training, we notice that, contrary to the previous results, tone-evoked 

response magnitudes increased more in LC trials than in HC trials (Figure S3B). To measure 

the asymmetricity of the response changes in either case (stimulus-wheel-spin association), 

we first calculated the averaged ΔF/F traces from either LC trials or HC trials and averaged 

them during each time interval (the hold or the move phase) for each animal in each ACtx 

subregion and at each training stage. We visualized the differences in responses to low and 

high frequencies by plotting the average response in LC versus the average response in HC 

(Figures 5A and 5B, each dot corresponds to data from one animal at each training stage). 

For each training stage, we then averaged the dots across animals (Figures 5A and 5B, larger 

dots) and performed linear regression across stages 1–5. In the regression plot, we pointed 

the direction from the dot corresponding to the first training stage toward the dot for the last 

training stage and regarded the vector direction w.r.t. the line y = x as the asymmetricity of 

the response changes (Figures 5A and 5B, vectors are shown by black arrows, and line y = 

x is shown in dashed line). We find that the asymmetries in the tone-evoked responses were 

reversed when the animals were trained on the opposite association (Figure 5B). Thus, the 

wheel-turning direction matters, and we conclude that motion signals in the ACtx contribute 

to the asymmetrical response changes between learned stimuli that we observed in the ACtx.

The response discrepancy between different stimuli correlated with the learning rate

Given that the task-related movements existed throughout the training but the motion-

affected response changes happened only at specific training stages (Figures 2, 3, and 4), we 

asked whether learning is the driving force for the tone-evoked responses to be modified by 

the motion signals to improve the discriminability between two learned stimuli. To quantify 

the response discrepancy for two stimuli (see STAR Methods), we calculated the average 

absolute difference between the mean ΔF/F traces of LC and HC trials during each time 

interval (the hold or the move phase) for each animal in each ACtx subregion and on each 

training day (Figure 6A, left, green lines).

If this response discrepancy were necessary for good performance or would have been 

induced by learning, we would expect it to correlate with the performance or the learning 

rate over training. Therefore, we defined the learning rate by the changes in behavioral 

discriminability (Δd′) and plotted it together with the response discrepancy (Figure 6A, 

magenta lines). We find that the changes in the response discrepancy displayed high 

synchronicity with the learning rate, with a lag of more than 3 days (Figure 6A, right). 

Similar results were also found for the cohort with the opposite training association 

(Figure S3G). To evaluate this apparent relationship, we then calculated the cross-correlation 

between the response discrepancy and the learning rate (Figure 6B). We find that response 

discrepancy during the hold phase showed a higher lagged correlation with the learning rate 

in the A2, DM, and DP with a lag of around 5 days, while during the move phase, a higher 

lagged correlation was observed in the DM and DAn with a shorter lag of approximately 3 

days.
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Altogether, our results suggest that in the ACtx, instead of the changes in neural response 

amplitude leading to increased behavioral performance, the neural response changes lag the 

behavior changes.

ACtx showed persistent learning-induced changes not due to movements

We find that motion signals in the ACtx contributed to the asymmetrical response changes 

between learned stimuli that happened after the behavior changes (Figures 5 and 6) and 

that the representation of task-related stimuli was enhanced after training (Figure 3). Given 

that the movements became stereotyped (Figure 1B) as the animals learned the task, it is 

possible that such motion signals could be the main cause of the changes we observed (e.g., 

the enhanced neural representation of the stimuli could be just due to the distinct motion 

signals in the ACtx for different movements instead of the solely tone-related responses 

being differentiated for different stimuli). We wanted to know whether the lagged response 

changes reflected any long-term alternations to the tone-evoked responses in the ACtx that 

were irrelevant to the behavioral movement.

We thus investigated the average tone-evoked responses from miss trials (Figure 7A) and 

found that although the responses were weaker for miss trials compared to correct trials, 

the same trend of response amplification after training was still noticeable. Like the original 

paradigm (Figure 2C), responses to high-frequency tones in both the A1 and DAn increased 

after training in miss trials. Thus, the increase in sound-evoked responses over training 

existed even without the presence of movements (response changes to the passive hearing 

of the tones). We next investigated the changes to the inter-regional response correlation 

in miss trials (Figure 7B). We find that, like the changes in correct trials, the primary and 

higher-order regions also became more functionally connected in trials without movements. 

We then tested if the changes in the neural representation of the stimuli were dependent on 

the movements. We again used the decoding models trained from correct trials to decode 

tone frequencies from miss trials (Figure 7C). At the last training stage, subregions that 

were found to have increased representation of tone frequencies (e.g., DAn) in correct trials 

also showed such increases in miss trials, and the performances in correct and miss trials 

were similar (Table S6). Our results suggest that the learning permanently alters the response 

and functional connectivity of the ACtx subregions and results in a more discriminable 

representation of the learned stimuli and that such changes are not merely due to the 

encoding of motion signals.

In conclusion, these results suggest that during the learning of an auditory discrimination 

task, behavioral-related motion signals emerge in the ACtx. Correlations between hearing 

a specific tone and turning the wheel in a specific direction are gradually established 

(or stereotyped). Such modulation eventually alters (enhances) the ACtx circuits to better 

represent (or perceive) the tone frequency.

DISCUSSION

We investigated learning-induced changes in ACtx processing. We find that learning a 

forced-choice auditory discrimination task recruits the higher-order ACtx, induces region-
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specific modulations of both stimulus- and behavioral-related responses in the ACtx, and 

increases functional connections between primary and higher-order areas.

We here used an automatic head fixation38 and imaging system. Automation removes 

variability introduced by the experimenter and lowers stress in the experimental 

subject.40,41,53,54 By restricting the total amount of daily training time per mouse, our 

training paradigm allows the efficient training of cohorts of mice. Our imaging system 

enables us to record the neural activity of the whole ACtx in one (left) hemisphere. In 

contrast to previous work focusing on single ACtx subareas,14–20,22,25,36 the advantage of 

mesoscale imaging is that we could track learning-induced inter-regional changes across the 

ACtx longitudinally. By observing all subregions simultaneously we revealed the change in 

individual subregions and the correlated activity between subregions.

We identify training-related changes in the primary and higher-order ACtx. We find that 

different ACtx subregions displayed diverse characteristics in the change of response 

profiles in behavioral contexts while learning an auditory discrimination task. Using LSTM 

models, we show that the representation of stimuli involved in the training and the 

behavioral outcomes varied among different ACtx subregions, indicating that learning an 

auditory decision-making task involves changes in multiple ACtx areas and that information 

about the stimulus and the behavioral outcome is represented differently across ACtx 

subregions.

In addition, we find that activity correlations between the primary and higher-order areas 

increased over training. Given that correlated activity can indicate functional connections, 

our finding suggests an increase in the inter-areal connectivity patterns and that training can 

alter how sounds are processed across the ACtx by changing ACtx circuits. This circuitry 

change was further supported by our results showing the enhanced representation of the 

learned stimuli in miss trials, which suggests long-term changes to the intrinsic sound 

processing circuits in the ACtx.

Moreover, our results show that the tone-evoked response magnitudes changed 

asymmetrically for the two learned stimuli in most ACtx subregions and that the 

associated wheel-turning direction determined the asymmetry direction. Consistent with 

other studies,29–34 our results confirm the existence of behavioral-related motion signals in 

the ACtx. However, as one would expect, such motion signals should occur concurrently 

with solely tone-related signals as the animals were performing the task, and if the observed 

asymmetrical response changes were merely due to the integration of the motion signals, 

it should happen synchronically and uniformly as long as the animals were performing 

the correct trials. Instead, we discover that the changes in the response discrepancy 

(asymmetricity) between two learned stimuli lagged the changes in the learning rate for 

3 to 5 days. Since the ACtx is actively involved in the consolidation of long-term memory, as 

supported by molecular studies,55,56 we speculate that once the animals start to ‘‘know’’ the 

task (acquire the strategy), a learning signal might be present together with the signals from 

the turning of the wheel in a specific direction and the solely tone-evoked responses in the 

ACtx that result in the lagged neural response changes.
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In terms of the functional specialization of ACtx subregions, we first notice that stimuli 

and behavioral choice could be better predicted from the A1 than higher-order areas 

from the onset of training. Moreover, in the A1, we find that the changes of decreasing 

response magnitudes happened at early training stages. Hence, they could represent neuronal 

adaptations to the repeated stimuli.36,57–59 Behavioral outcomes can also be predicted 

from the A1 at all training stages, consistent with prior reports.1,14,60 While it has been 

thought that there is hierarchical processing of stimulus- and task-related signals across the 

ACtx with higher-order areas showing larger task-related influences,61–64 our results instead 

support a more parallel processing view, suggesting that the A1 serves as the primary site 

for early auditory processing that is sensitive to new auditory experiences and behavioral 

signals might be propagated from the A1 to higher-order areas to facilitate the performing 

of the task, e.g., to improve the discriminability of the tones or to store memory,65–68 as the 

animals become more proficient at the task.

In the posterior part of the ACtx, e.g., the DP, we observe high predictability of the 

behavioral outcomes started from intermediate training stages, consistent with reports that 

the DP is involved in auditory perceptions in mice69 and humans.70,71 In the anterior 

part of the ACtx, e.g., the DAn, we find that the asymmetrical response changes were 

highly correlated with the behavioral learning rate, and the representation of tone-related 

frequencies was improved after training. The origins of the tone-frequency signals in those 

anterior parts might be the A1, as suggested by the increased functional connectivity. We 

further speculate that this enhanced representation of learned stimuli is achieved by the 

asymmetrical modulations of the tone-evoked responses by the behavioral-related motion 

signals, inferring the potential role of those anterior subregions in the ACtx in the refining 

of auditory perception through the integration of sensory and motor signals initiated by 

learning.

Limitations of the study

Our behavioral paradigm only partially separated solely tone-elicited signals (the first 1/3 

s) and motion-related signals (the remaining 2/3 s of the trial contain both tone-elicited 

and motion-related signals). A more segregated behavioral paradigm for the hold and move 

phases might result in an even better separation of tone-related and motion-related signals. 

However, it is challenging to train the mice to withhold movements for a prolonged period 

without any external cues (e.g., visual cues would introduce confounding factors). We used 

widefield imaging to record calcium signals from Thy1– GCaMP6s mice. Due to the nature 

of one-photon imaging, the overall signals likely reflect a mixture of neural responses from 

multiple cortical layers. The density of labeled layer 2/3 cell bodies is high in our Thy1 line 

(Figure S2). Thus, these cells likely contribute a large fraction of the signals we recorded. 

However, apical dendrites of deeper neurons, e.g., layer 5/6, reach into superficial layer 

1 and could also contribute to the imaged signals. Using layer-specific calcium indicator 

expression could aid in understanding better the laminar origins of the learning-induced 

changes in the future. In addition, auditory processing involves two hemispheres, and 

training-related changes might show hemispheric differences,72 which we did not investigate 

here. In our functional connectivity analysis, we only correlated ACtx responses in different 

subregions for different stimuli or behavioral outcomes but did not take other factors, such 
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as arousal, motivation, working memory, attention, etc., into account. Lastly, as correlation 

does not imply causality, loss-of-function (e.g., optogenetic inactivation) or stimulation 

experiments could be performed to confirm the role of the ACtx subregions that were found 

to have learning-induced changes in our current study.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Patrick O. Kanold (pkanold@jhmi.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Calcium imaging data and behavioral data have been deposited at the JHU 

Research Data Repository and are publicly available as of the date of publication. 

The DOI is listed in the key resources table.

• All original code has been deposited at the JHU Research Data Repository and 

is publicly available as of the date of publication. The DOI is listed in the key 

resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT PARTICIPANT DETAILS

Animals—For calcium imaging and behavioral training, we used 7 male and 7 female 

adult mice that were the F1 generation of C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J 

(JAX# 024275) crossed with B6.CAST-Cdh23Ahl+/Kjn mice (JAX#002756) in this study. 

The genotype of the mice we used is Tg(Thy1-GCaMP6s) positive and heterozygous for 

Cdh23Ahl+. The F1 generation has minimal hearing loss throughout their lifespan.73 These 

14 mice came from 6 litters. Littermates of the same sex were randomly assigned to 

experimental groups, and we balanced the number of male and female mice in each group to 

avoid any potential influence of sex. The mice used in this study ranged from 2 to 3 months 

old when training started. All mice were housed in a 12-h reverse light/dark cycle room in 

the institutional animal colony before and after the experiments, and all experiments were 

conducted during their dark cycle. For the immunohistochemistry experiment, we used a 

5-month-old female mouse with the same strain and genotype, just as the mice we used for 

the calcium imaging and behavioral training experiments. All protocols and procedures were 

approved by the Johns Hopkins Institutional Care and Use Committee.

METHOD DETAILS

Surgery—All surgeries were performed under anesthesia using isoflurane (4% induction, 

1.5% maintenance, VetOne). To prevent brain swelling during cranial window implant, 0.1 

mL of dexamethasone (2 mg/mL, VetOne) was injected subcutaneously 0.5 to 1 h before 

surgery.74 Right before each surgery, 0.1 mL of dexamethasone (2 mg/mL) and 0.05 mL of 
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atropine (0.4 mg/mL) were injected subcutaneously. Hair on the top of the head was first 

removed, followed by removing skin and soft tissues underneath using disinfected scissors 

and scalpel blades. The dorsal and caudal sides of the skull were then exposed by removing 

muscle on the surface. Cranial window surgery was then performed on the left side of the 

skull. The center of the window location was determined by landmarks on the skull. A 

circular area of the skull with a diameter approximately equaling 3.5 mm was then removed 

around the center by a dental drill. After cleaning the exposed brain surface using sterile 

saline, a custom-made cranial window was placed on top. The window was made with a 

layer of 3 mm round coverslips (catalog #64–0720-CS-3R, Warner Instruments) stacked at 

the center of a 4 mm round coverslip (catalog #64–0724-CS4R, Warner Instruments) and 

secured with optic glue (catalog #NOA71, Norland Products). The edge of the window 

was then sealed with Kwik-sil (World Precision Instruments), and dental cement (C&B 

Metabond) was then applied to secure the window to the skull.74 To prepare mice for 

automated head-fixation training and imaging, custom-designed headplates were mounted to 

their skull38 after the cranial window surgery. Repeated measurements of the z axis reading 

of the lambda and bregma landmark on the skull were then made to adjust the horizontality 

of the head until the difference between readings of the two landmarks was less than 200 

μm. A headplate was then attached to the skull by super glue such that both the midline 

of the headplate and the midline of the head were aligned, and the front of the headplate 

was aligned with the lambdoid sutures.38 Dental cement was used to cover the exposed 

area of the skull (C&B Metabond). To implant the RFID tag, a small incision was made 

over the skin covering the right abdomen, and the RFID tag was inserted before suturing 

the skin. After the surgery, 0.05 mL cefazolin (1 g/vial, West Ward Pharmaceuticals) and 

0.01 mL carprofen (0.5 mg/mL, Zoetis) per gram of mouse body weight were injected 

subcutaneously, and the mouse was placed under a heat lamp for recovery of 30 min before 

being placed back in the home-cage. The same amounts of cefazolin and carprofen were also 

injected subcutaneously 3 days, 7 days, and 14 days after surgery. Training began 14 days 

after surgery was performed.

Automated training with one-photon imaging—The automated training apparatus 

was assembled in the same way as in our previous study.38 Mice were put into the training 

cage (Figure 1A, top) and were allowed to voluntarily get head-fixed for training. Once a 

mouse got into the tunnel, the unique RFID of the mouse could be read by an RFID scanner 

to recognize the identity of each mouse during training. Automated head-fixation would 

then be initiated after the presence of the mouse head was detected by beam break sensors 

(Adafruit, product ID 2168).

A CMOS camera (Thorlabs CS505MU) was used to record fluorescence signals at 30 Hz, 

16-bit 488 × 408 pixel resolution, with the excitation by blue LED (Thorlabs M470L5) 

driven by T-Cube LED Driver (Thorlabs LEDD1A). A Plano-Convex lens (Thorlabs 

LA1951-A) was placed between the LED and an excitation filter (Chroma ET470/40) 

where excitation lights converged and were later reflected to the tissue by a dichroic mirror 

(Thorlabs MD499) placed in an Epi-Illuminator module (Thorlabs WFA2002) followed 

by an objective (Olympus UPlanFl 4×/0.13). The emission light is passed through the 

objective, the dichroic filter, an emission filter (Chroma AT535/40m), and a camera tube 
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(Thorlabs WFA4102–0.5×) before entering the CMOS camera. The whole imaging parts 

were mounted at 45° on a motorized breadboard driven by a T-Cube DC Servo Motor 

Controller (Thorlabs TDC001) with an Actuator (Thorlabs Z812B).

Matching of the region of interest (ROI)—Determination of imaging plane: The focal 

position for widefield imaging was automatically determined after automated head-fixation 

was done. For a newly registered mouse, the imaging setup is first moved for a range of 

10 mm with a 1 mm step size, and a single widefield image will be recorded at each 

position (Figure S1A, bottom, five example images taken at each position as indicated 

by orange arrow). An index that measures the degree of focus was then calculated for 

each image (Figure S1A, top, plot showing index calculated at each position). Widefield 

images were normalized individually by dividing the subtraction of the minimum intensity 

within an image from each pixel by the difference between the maximum and minimum 

pixel intensities. Histogram equalization was then performed for each image to enhance the 

contrast. The concentric area with 30% of the width and 30% of the length of the image was 

then cropped as a m × n matrix X for calculating the index. Fast Fourier Transform was then 

performed:

Yp + 1, q + 1 =
j = 0

m − 1

k = 0

n − 1
e−2πjpi/me−2πkqi/nXj + 1, k + 1

where i is the imaginary unit and p, q are indices running from 0 to m − 1 and n − 1; 

respectively. The Fourier transform Y was then rearranged to Y′ by swapping its first 

and second quadrants with the third and fourth accordingly to shift the zero-frequency 

component to the center. The index was eventually computed as:

index = ∑
j = m/2 − r

m/2 + r
∑

k = n/2 − r

n/2 + r
Y′j,k / 2r + 1 2

where r controls the sensitivity of the index to the degree of focus and was set to 8 during 

application to achieve the best performance. The step size was then changed to 0.05 mm 

to search for the position with the highest index within the range of – 0.5 mm to +0.5 mm 

with respect to the position with the highest index in the previous search. The position with 

the highest index was now considered the focal position for widefield imaging of the mouse 

(Figure S1A, indicated by the middle vertical arrow), and was recorded and updated before 

each later imaging session as the center position for 0.05 mm step size focal position search. 

The focusing process takes less than 10 s once the initial searching position is given.

Matching of the imaging field of view: Unlike focal position (z axis), which was determined 

before each imaging session, the field of view (x axis and y axis) of each imaging session 

was separately matched afterward. For a typical imaging session, motion correction75 was 

first performed, and an average image was computed (Figure S1B, upper left, first row). 

The same normalization and histogram equalization as discussed in the previous paragraph 

was then performed on the average image (Figure S1B, upper left, second row), followed 
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by convolution with a Gaussian filter with a standard deviation of 2 (Figure S1B, upper 

left, third row) to eliminate effects of minor vasculature changes over time to the matching 

process while only focus on major vasculatures as landmarks for the field of view matching 

to the template. The template image underwent the same pre-processing to yield the 

template m × n matrix, T. The pre-processed average m × n image, X, was then moved around 

the center of the template matrix (Figure S1B, lower left) with shifts in x axis, ix, and y axis, 

iy, both ranging from −30 to 30 pixels in the application. Shifts with the minimum average 

absolute intensity differences of the overlayed area between X and T (Figure S1B, upper 

right, dark blue point in the heatmap) were used to translate the motion-corrected imaging 

data I x, y, t  to match the field of view of the template (Figure S1B, lower right):

I′ = I x + Δx, y + Δy, t : Δx, Δy = argmin
ix, iy j = max 1, 1 + iy

min m, m + iy

k = max 1, 1 + ix

min n, n + ix
Tj, k − Xj − iy, k − ix /

m − iy ⋅ n − ix

Behavioral training paradigms—Mice were water-restricted throughout the training. To 

ensure the survival and normality of the mice, we would deliver them free water if the body 

weights were less than 80% of their initial weights at the end of each training day. Mice 

were first put into the training chamber for 3 to 5 days, with no actual training taking place 

for acclimation. During the first 1 to 2 days, mice were rewarded with water at the end of the 

tunnel without head-fixation. For later 1 to 3 days, mice were head-fixed for every entry, and 

5 drops of water (opening the pump for 200ms for 1 drop, approximately 20 μL per water 

drop) were given with 2 s delay between each drop. On each acclimation training day, each 

mouse would stay in the chamber until it consumed 1 mL of water, which was determined 

by the change in its body weight. Once a mouse got used to the training chamber and 

head-fixation (was able to consume 1 mL of water within an hour), auditory discrimination 

training would begin.

For the tone discrimination task, mice were trained to turn the wheel to one (e.g., left) 

direction when hearing a 70 dB sound pressure level (SPL) 1 s 10 Hz fully amplitude-

modulated low-frequency (10k Hz) tone and to the other direction (e.g., right) for 70 

dB SPL 1 s 10 Hz fully amplitude-modulated high-frequency (40k Hz) tone. All sound 

waveforms were generated by NI-USB6215 (National instrument) and routed to an ED1 

speaker driver (Tucker-Davis Technologies) for presentation using an ES1 speaker (Tucker-

Davis Technologies). Tones of different frequencies were calibrated in situ with a B&K 

microphone (Bruel & Kjaer 4944-A). Choices were considered made once the wheel was 

turned to pass a threshold of 10° in either direction. Any decisions made during the hold 

period (0–1/3 s from tone onset) were considered early response trials where a buzzer was 

activated for 1 s as punishment. Correct trials were rewarded with a drop of water (opening 

the pump for 200ms, approximately 20 μL) right after tone offset or when a decision 

was made, whichever came later, whereas the wrong trial was punished with a prolonged 

time-out duration from 4 s to 20 s. Trials with no decision made during the choice period (4 

s after the end of the hold period) were considered miss trials.
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A training session was delivered once the automated head-fixation and focusing process 

were finished, and imaging triggers were synchronized with behavioral triggers. The 

duration of the training sessions consistently changed during the training process. Initial 

minimum and maximum session durations were 2 min. The minimum session duration 

would increase with a step size of 0.25 min for every 5 instances of head-fixation (training 

sessions) until it reached 3 min, and the maximum session duration would increase with 

a step size of 0.5 min for every 5 instances of head-fixation (training sessions) until it 

reached 24 min. A training session would end only if it had passed the maximum session 

duration or 5 consecutive unrewarded trials (early trials, wrong trials, and miss trials) were 

presented with the session time exceeding the minimum session duration. Within a training 

day, each mouse was put into the training chamber for approximately an hour, during which 

the mouse was allowed to freely initiate multiple training sessions until the allocated training 

time ended. During each training session, low-frequency trials and high-frequency trials 

were presented randomly with a minimum base inter-trial-interval (ITI) of 4 s plus time for 

reward consumption (2 s) or prolonged time-out duration for wrong trials (from 4 to 20 s) 

if applicable. A new trial would only be delivered when it passed ITI from the end of its 

previous trial, and the animal held still for at least 0.5 s (changes in rotary readouts not 

passing a threshold of 5° in either direction within 0.5 s).

Immunohistochemistry and imaging—An adult (5-month-old) mouse (F1 generation 

of C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J (JAX# 024275) crossed with B6.CAST-

Cdh23Ahl+/Kjn mice (JAX#002756)), just as what we used in our study, was transcardially 

perfused with cold phosphate buffered saline (PBS) and 4% paraformaldehyde (Electron 

Microscopy Sciences) under deep anesthesia (Fluriso, VetOne). The perfused brain was 

fixed in 4% paraformaldehyde for 24 h before being transferred to a PBS solution. The 

brain was sectioned with a vibrating microtome in the coronal plane at a thickness of 

50 μm and stored in PBS until use. To identify GFP-immunopositive cells, we performed 

immunohistochemistry using standard protocols. A blocking solution was prepared with 

5% normal goat serum (Cat no. 5560–0007, SeraCare) and 0.3% Triton X-100 (Sigma). 

We incubated selected brain slices in the blocking solution at room temperature for 90 

min before incubating overnight in chicken-anti-GFP (1:1000, ab13970, Abcam) at 4°C. 

We washed the slices three times before incubating them in secondary antibodies (goat anti-

chicken, labeled with Alexa Fluor 488, 1:500, A11039, Invitrogen). We eventually mounted 

slices with an antifade mounting medium containing DAPI (H-1200, Vectashield). The slices 

were imaged with a fluorescence microscope (BZ-X710, Keyence; 10 × Plan APO lens) 

and a confocal microscope (LSM 800, Carl Zeiss; 10 × Plan APO lens). Images were 

then processed with Fiji software. Fluorescence intensities were modified for visualization 

purposes.

Behavioral analysis—To determine whether mice learned the task after training, we 

calculated the sensitivity index, d’, that measures discriminability,46 for each mouse on 

each training day by: d′ = z LCR − z HWR . Here, z refers to the normal inverse cumulative 

distribution function while LCR and HWR stand for low-frequency-trial correct-choice rate 

and high-frequency-trial wrong-choice rate, respectively. LCR was calculated by dividing the 

number of all LC trials by the sum of all LC and LW trials. Similarly, HWR was calculated 
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by dividing the number of all HW trials by the sum of all HW and HC trials. The sensitivity 

index will be the same if it is alternatively calculated by: d′ = z HCR − z LWR , where 

HCR and LWR stand for high-frequency-trial correct-choice rate and low-frequency-trial 

wrong-choice rate, respectively. In most of our data analysis, we divided the whole training 

period of 25 days into five stages, with 5 days in each to reduce potential variabilities across 

training days and to ensure a sufficient number of trials (~500) in each stage for model 

training. We did not unevenly divide the training stages based on the performance of each 

animal as it is more subjective and could introduce bias to our results. In addition, the results 

would also not be comparable with uneven time bins. Moreover, from the performance plot 

(Figure 1C), we can see that the differences among mice in terms of d’ are just within days. 

Such small variations will not affect our interpretation of the results.

Pre-processing of calcium fluorescence data—Widefield imaging data F x, y, t
were processed to acquire ΔF/F data by choosing the average intensity of 1 s (30 

frames) before the onset of each tone (stimulus) i (at time ti) as baseline intensity: 

Fi, 0 x, y = F x, y, [ti − 1, ti)  and computed ΔF/F of each frame of interest j (at time tj) of 

stimulus i: F′ x, y, tj = F x, y, tj − Fi, 0 x, y /Fi, 0 x, y . To reduce computational burden and 

eliminate potential vascular artifacts, imaging data were then spatially down-sampled to 

have a pixel distance of 75 μm, and a 3×3 median filter was applied. Displayed intensity 

of average ΔF/F map, I x, y , was then obtained by normalizing average ΔF/F data with: 

I x, y = max minF′ x, y, t /IMax, 1), 0 , where IMax was subject to change in different occasions.

Dividing of subregions in the auditory cortex—Subregions of ACtx were determined 

based on tone-related cortical responses as revealed by ΔF/F changes. Miss trials from the 

first training day were averaged from 0 to 1 s after the tone onset to generate average ΔF/F 

maps for low-frequency tone response (Figure S4A, left) and high-frequency tone response 

(Figure S4A, right) accordingly. A 3 × 3 mean filter was applied on each of the average 

ΔF/F maps, and local maximum points were searched on each average ΔF/F map. Only local 

maxima points with ΔF/F value higher than a specific percentile (75% in most cases) of all 

ΔF/F values within each average ΔF/F map were considered as tone-related response centers 

for later analysis. Local maxima points in both the average low-frequency response map 

(Figure S4B, blue points with intensity corresponding to ΔF/F value at each point) and the 

average high-frequency response map (Figure S4B, red points with intensity corresponding 

to ΔF/F value at each point) were then combined as expanding centers for each group of 

tone response region in the following analysis to include all tone-related response areas 

in each frequency. During each expansion step, vertically and horizontally adjacent pixels 

for each group were considered candidates to be included in that group. For each pixel, 

an index was calculated by dividing the ΔF/F value of that pixel by the ΔF/F value of the 

center point of the group, and a threshold was then chosen such that any pixel with an 

index value higher than the threshold was considered tone response pixel of that group, 

whereas those failed to meet the criteria were dropped out. The threshold was determined 

by 50% × ci
cmax

, where ci is the ΔF/F value of the center point of the group, and cmax is the 

maximum ΔF/F value among all group centers of each corresponding tone frequency. Pixels 

that met inclusion criteria for more than one group were included in the group with the 
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highest index value. Expansion steps were repeated five times or until none of the expanding 

pixels met inclusion criteria during a step, whichever came earlier. Subregions of the ACtx 

were then manually determined from expanded groups (Figure S4C, blue, red and green 

groups) based on the frequency response areas map48,76 and anatomical positions, including 

low-frequency response areas in the primary auditory cortex (A1L), high-frequency response 

areas in the primary auditory cortex (A1H), low-frequency response areas in the secondary 

auditory cortex (A2L), high-frequency response areas in the secondary auditory cortex 

(A2H), low-frequency response areas in the anterior auditory field (AAFL), high-frequency 

response areas in the anterior auditory field (AAFH), the dorsal medial auditory field (DM), 

the dorsal anterior auditory field (DA), and the dorsal posterior auditory field (DP). Regions 

not responding to tone stimuli but were within the minimum convex enclosing polygon of 

all tone response regions were then processed by convolving the subtraction of all tone 

response regions from the area of the polygon with a 3 × 3 all-ones kernel and by taking 

the inverse of convolved image. Non-response dorsal anterior auditory field (DAn), and 

non-response dorsal posterior auditory field (DPn) were then separated manually (Figure 

S4C, gray groups).

Qualification of response asymmetricity—To quantify the response discrepancy for 

two stimuli, we calculated the average absolute difference between the mean ΔF/F traces of 

LC and HC trials during each time interval (the hold or the move phase), for each animal, in 

each ACtx subregion, and on each training day. We smoothed the results by a median filter 

of size 5 and calculated the z-scores to normalize the responses relative to the baseline (1 s 

before the tone onset).

Calculation of inter-regional correlation—We calculated the Pearson correlation 

coefficient of determination for the average ΔF/F traces between any two subregions in 

ACtx for each trial at each training stage and during each phase.

Models for decoding cortical responses—Models for decoding presented tones based 

on responses from the auditory cortex were constructed based on Long Short-Term Memory 

(LSTM) networks.39 For the training of each model, imaging sequence data were flattened 

for each trial as a two-dimensional matrix with columns representing ΔF/F values at each 

time point, and rows standing for each pixel within the region of interest in the auditory 

cortex. Long Short-Term Memory (LSTM) network was used as a bi-direction LSTM layer 

in the network with 250 cells to train data from the input layer and was connected to 

a dropout layer with a dropout probability of 50%, a fully connected layer, a softmax 

layer and eventually the output layer. The model was trained using an adaptive moment 

estimation (Adam) optimizer with a gradient threshold of 2, maximum epochs of 50, 

minimum batch size of 32, and initial learning rate of 10−4 and with data shuffled every 

epoch. The above hyperparameters were tuned to minimize the difference between model 

performance results on the training dataset and validation dataset while maintaining high 

model performance. All training parameters were then kept the same for all models. The 

training dataset, validation dataset, and testing dataset were split by 70%, 20%, and 10% 

ratios. Leave-one-out cross-validation was performed during the training of each model 

to evaluate its performance, such that all data would have been used as a testing dataset 
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after 10-fold cross-validation. The area under the receiver operating characteristic (ROC) 

curve50,51 (AUC) was calculated as an evaluation metric after each validation. AUCs of 10 

validations were reported for each model for performance comparison. In our analysis of 

the representation differences in different behavioral outcomes, we first trained the model 

with matched sample sizes between correct and wrong trials. Because we only randomly 

down-sampled the larger dataset if the sample sizes were not matched, we did not use 

all the data in this analysis. We used 5-fold leave-one-out cross-validation here because 

the number of wrong trials was becoming increasingly low as the training progressed, and 

we wanted to ensure that during each validation process, datapoints from all classes were 

presented in the testing dataset. We then trained the model with data only from the last 

training stage correct trials and validated the model with data from all training stages and 

behavioral outcomes separately to interpret representation differences. We did not train the 

model with both correct and wrong trials because the kept-dropping ratio of the number 

of wrong trials to correct trials as the training progress might reduce the reliability of the 

models and affect our interpretation of the results. We only used a model trained with data 

from the last training stages because the representation of training-related stimulus in correct 

trials was enhanced to the utmost in the last training stage in all ACtx subregions and the 

results were more reliable when the performance of the model being used was high. Here, 

we used longer time interval (1/3 s) than the one we used before (1/6 s), because with more 

data frames being included in the training, the models can be more robust and yield more 

stable results. We did not use even longer time-intervals because we still wanted to keep 

the data from the hold and the move phases separated. Similarly, to decode responses from 

the auditory cortex for predicting behavioral outcomes, the same network as constructed 

above was adopted for training. Correct trials and wrong trials were being predicted from 

trials of all frequencies. Since the number of correct trials and the number of wrong trials 

were becoming increasingly imbalanced as the training stage advanced, we also used 5-fold 

leave-one-out cross-validation to ensure that during each validation process, datapoints from 

all classes were presented in the testing dataset and that AUCs could be calculated as 

evaluation metrics for the performances of models. No tunings of hyperparameters were 

involved in the model training process, so the training and testing datasets were split by 80% 

and 20% ratio.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as mean ± 95% confidence intervals for calcium traces, and mean ± SEM 

for all other data, if applicable. All statistical tests were performed in MATLAB R2021b. 

The Kolmogorov-Smirnov test was first used on each data group to see if the data followed 

a normal distribution. For groups of data that all followed a normal distribution, a two-tailed 

Student’s t-test was used to test whether the means of the two groups were equal. Should 

data from any group fail to follow a normal distribution, a two-sided Wilcoxon rank-sum 

test was performed. The Friedman test was adopted if multiple groups were involved during 

comparison, and the Tukey’s test was used as a post hoc test for multiple comparisons. For 

comparisons involving two categorical variables, two-way ANOVA was used. Fisher’s exact 

test was performed on behavioral results to determine the discriminability of each mouse 

in distinguishing different tone frequencies. Pearson correlation coefficient was calculated 

for average ΔF/F traces between any two subregions in the auditory cortex at each training 
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stage for low-frequency trials or high-frequency trials. All statistical data can be found in 

the supplementary tables (Tables S1–S6). All N values represent the number of mice in each 

group. Annotations of p-values were made by: ***p < 0.001, **0.001 % p < 0.01, and *0.01 

% p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Auditory learning recruits dorsal posterior (DP) and dorsal anterior (DA) 

auditory fields

• Neural representation of behavior and learned stimuli is enhanced in DP and 

DA, respectively

• Functional connectivity between the primary and higher-order auditory 

regions is enhanced

• Induced by learning, response modulation is also affected by task-associated 

movement
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Figure 1. Behavioral performance on an auditory discrimination task with longitudinal widefield 
imaging
(A) Top, an overview of the behavioral and imaging system. Bottom, the training paradigm 

of the tone discrimination task. In this task, the animals were required to turn a wheel to the 

left (positive degrees) when a low-frequency (10 kHz) tone was presented and to the right 

(negative degrees) when a high-frequency (40 kHz) tone was presented. The choice was 

considered made once the wheel was turned to pass a threshold of 10° in either direction. 

Any decision made during the hold period (0–1/3 s from tone onset) was considered an early 

response trial, where a buzzer was activated as punishment. A decision made during the 

choice window (4 s after the end of the hold period) was either correct (rewarded with water) 

or wrong (punished with prolonged timeout duration). A trial with no decision made during 

the choice window was considered a miss trial. Neural responses from the hold and move 

phases were used for analysis.

(B) Randomly selected rotary results at the first (top, training days 1–5) and the last 

(bottom, training days 21–25) training stages of an exemplar mouse. Thresholds are plotted 

as horizontal lines where a positive degree corresponds to the left turning of the wheel.
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(C) Behavioral performances as indicated by the sensitivity index. The shaded area 

represents the standard error of mean (SEM) of all mice (N = 8). Threshold at d′ = 1 

is plotted, which indicates the ability of discrimination. Fisher’s exact test results of each 

mouse on the last training day: ***p = 1.6e–15, ***p = 1.7e–11, ***p = 1.9e–8, ***p = 

3.8e–7, ***p = 7.9e–5, ***p = 2.3e–4, **p = 0.0097, and *p = 0.018.

(D) Histogram showing hit times of all correct trials from all mice (N = 8) on the last 

training day.

(E) Plots showing the number of training sessions and the total trials performed by each 

mouse on each training day. Dashed lines show results from each mouse, with the shaded 

area representing the SEM of all mice (N = 8).
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Figure 2. Changes in tone-evoked response magnitudes
(A) Boundaries of the determined subregions in the auditory cortex (ACtx): A1, primary 

ACtx; A1L, low-frequency response area in A1; A1H, high-frequency response area in 

ACtx; A2, secondary ACtx; A2L, low-frequency response area in A2; A2H, high-frequency 

response area in A2; AAF, anterior auditory field; AAFL, low-frequency response area in 

AAF; AAFH, high-frequency response area in AAF; DM, dorsal medial auditory field; DA, 

dorsal anterior auditory field; DP, dorsal posterior auditory field; DAn, non-response DA 

area; DPn, non-response DP area.

(B) Imaging results of an exemplar mouse at the first and last training stages. Average 

ΔF/F maps during the hold or move phase for low- or high-frequency correct (LC or HC) 

trials are shown with intensities normalized by IMax = 2:5% in ΔF/F values for maps during 

the hold phase and IMax = 4:0% in ΔF/F values for maps during the move phase and are 

superimposed on the raw widefield images (scale bar, 1 mm).

(C) Average ΔF/F traces of different training stages and ACtx subregions. The shaded area 

represents the 95% confidence interval of all mice (for each trace in A1: N = 8, A2: N = 6, 

AAF: N = 7, DM: N = 8, DA: N = 5, DP: N = 7).
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Figure 3. Decoding capabilities for tone frequencies in different ACtx subregions and behavioral 
contexts and for different behavioral outcomes across training stages
(A) Schema of the long short-term memory network used for the model training. Imaging 

sequence data were flattened for each trial as a two-dimensional matrix with columns 

representing ΔF/F values at each time point and rows standing for each pixel in the ACtx or 

each subregion.

(B) Performance of models trained on various datasets of all correct trials for decoding tone 

frequencies. Average AUC results from different ACtx subregions are shown for all mice 

(for each box in ACtx: N = 8, A1: N = 8, DA: N = 5, DPn: N = 8) across different training 

stages for three different time intervals.

(C) Performance of models in predicting presented tone frequencies from correct or wrong 

trials at different training stages. Solid lines show the average testing results of all mice as 

a function of different time intervals involved in the model training. Statistical results are 

shown (Table S2), with *p < 0.05.
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(D) Decoding performance of behavioral outcomes from different ACtx subregions, training 

stages, and behavioral phases. For each image, the average AUCs from leave-one-out 5-fold 

cross-validation for models trained on four data time intervals, namely, from the −1/3 to 

0, 0 to 1/3, 1/3 to 2/3, and 2/3 to 1 s periods w.r.t. the tone onset, are presented as model 

performance results for each mouse as plotted as dashed lines. The average performance 

results of all mice asa function of different behavioral phases involved in the model training 

are plotted as solid lines. Statistical results are shown (Table S3), with *p < 0.05, **p < 0.01, 

and ***p < 0.001.
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Figure 4. Inter-regional correlations of the tone-related responses from correct or wrong trials 
over training
(A) Heatmaps showing the average values across mice of the Pearson correlation coefficient 

of determination for average ΔF/F traces between any two subregions in the ACtx for each 

trial at each training stage and during each phase. The first two rows are inter-regional 

correlations from LC or HC trials. The last two rows are inter-regional correlations from 

low- or high-frequency wrong (LW or HW) trials. Values below 0.4 are set to black in the 

heatmaps. The differences between correlations from the fifth and the first training stages are 

plotted to the right.

(B) Diagrams showing the changes of inter-regional correlations among all stages (main 

effect) or between each two training stages (post hoc multiple comparisons, the number at 

each end of a line) in correct or wrong trials during each phase (Table S5).
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Figure 5. Changes of responses across training for different associated wheel-turning directions
(A and B) To measure the asymmetricity of the response changes, we first calculated the 

averaged ΔF/F traces from either LC or HC trials and averaged the traces during each 

time interval (the hold or move phase), for each animal, in each ACtx subregion, and at 

each training stage. We then obtained different sets of response-character dots for different 

animals at different training stages for different phases and subregions, where the x attribute 

represents the average response in LC and the y attribute represents the average response in 

HC, with small dots corresponding to data from each animal and at each training stage. For 

each training stage, we then calculated the average response-character dot (larger dots) of all 

the animals (for A: A1: N = 8, DA: N = 5, DP: N = 8; for B: N = 6 in all subregions), and we 

performed linear regression for the average dots from stages 1–5. In the regression plot, we 

point in the direction from the dot corresponding to the first training stage toward the dot for 

the last training stage and regard the vector direction w.r.t. the line y = x (plotted as a dashed 

line) as the asymmetricity of the response changes.

Wang et al. Page 33

Cell Rep. Author manuscript; available in PMC 2024 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Synchronicity between the learning rate and the response discrepancy
(A) The learning rate and response discrepancy across training. Left, results for selected 

subregions plotted separately. Right, overlaid results of selected subregions. To quantify the 

learning rate, we filtered the d′ by a median filter of size 5 and then calculated the derivative 

of the d′ (Δd′). To quantify the response discrepancy, the average absolute differences 

between ΔF/F traces from LC trials and HC trials were calculated during each time interval 

(the hold or move phase), for each animal, in each ACtx subregion, and on each training day. 

We then filtered the results by a median filter of size 5 and performed the normalization by 

calculating the Z scores using the same values from baseline ΔF/F traces (1 s before the tone 

onset). Solid lines indicate the average results of all mice, and the shaded areas indicate the 

SEM of all mice (A1: N = 8, DP: N = 7, DAn: N = 7, DPn: N = 8, Δ d′: N = 8). The peak in 

each trace in the right images is shown by a solid dot.

(B) Cross-correlation results of the learning rate and the response discrepancy. Cross-

correlations were performed for each mouse, and the average results of all mice are shown 

(A1: N = 8, A2: N = 6, AAF: N = 7, DM: N = 8, DA: N = 5, DP: N = 7, DAn: N = 7, DPn: N 
= 8).
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Figure 7. The differences between changes in correct and miss trials
(A) Average ΔF/F traces for different training stages and selected ACtx subregions of correct 

or miss trials. The shaded area represents the 95% confidence intervals of all mice (for each 

trace in A1: N = 8, DAn: N = 7).

(B) The differences between the Pearson correlation coefficients of determination from the 

fifth and the first training stages.

(C) Validating models trained from correct trials on miss trials for decoding tone 

frequencies. Statistical results are shown (Table S6), with *p < 0.05, **p < 0.01, and ***p < 

0.001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Calcium imaging data This paper https://doi.org/10.7281/T1/J8UWFU

Behavioral data This paper https://doi.org/10.7281/T1/J8UWFU

Experimental models: Organisms/strains

Mouse: C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J The Jackson Laboratory JAX# 024275

Mouse: B6.CAST-Cdh23Ahl+/Kjn The Jackson Laboratory JAX# 002756

Software and algorithms

MATLAB MathWorks https://www.mathworks.com

Automated training Liu et al.38 https://doi.org/10.1101/2022.11.29.518279.

Automated region of interest matching This paper https://doi.org/10.7281/T1/J8UWFU

Motion correction https://github.com/flatironinstitute/
NoRMCorre

https://doi.org/10.1016/j.jneumeth.2017.07.031

Data analysis code This paper https://doi.org/10.7281/T1/J8UWFU

Other

CMOS camera Thorlabs CS505MU

blue LED Thorlabs M470L5

T-Cube LED Driver Thorlabs LEDD1A

Plano-Convex lens Thorlabs LA1951-A

excitation filter Chroma ET470/40

dichroic mirror Thorlabs MD499

Epi-Illuminator module Thorlabs WFA2002

objective Olympus UPlanFl 4×/0.13

emission filter Chroma AT535/40m

camera tube Thorlabs WFA4102–0.5×

T-Cube DC Servo Motor Controller Thorlabs TDC001

Actuator Thorlabs Z812B
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