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A ssessment of right ventricular (RV) systolic
function with 2-dimensional echocardiogra-
phy is limited, and calculation of RV ejection

fraction (RVEF) is not recommended in guidelines1

due to inaccuracy. Instead, surrogate echocardio-
graphic markers such as RV free wall longitudinal
strain (FWS), fractional area change (FAC), and
tricuspid annular plane systolic excursion (TAPSE)
are recommended but poorly correlate with RVEF.1

Advances in artificial intelligence (AI)-enabled
waveform analysis can quantify RVEF from 12-lead
electrocardiograms (ECG).2 We hypothesized that
combination of ECG waveform and echocardiographic
markers would outperform echocardiographic
markers alone for low RVEF determination (RVEF <

40% by gold standard cardiac MRI [CMRI]).
What is the clinical question being addressed?
Can AI-enabled ECG analysis of RVEF aid in RV
assessment by echocardiography?

What is the main finding?
Combination of RV systolic assessment from ECG with
echocardiography improves prediction of low RVEF and
is robust to poor imaging windows compared to
echocardiography alone.
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Furthermore, we hypothesized that ECG data are
robust to factors causing imaging artifact, and incor-
poration of ECG would be informative in patients
with poor imaging windows.

We performed automated measurements of FWS,
TAPSE, and FAC from RV-focused apical 4-chamber
echo video using an AI software package we previ-
ously validated in patients with paired echocardio-
gram, ECG, and CMRI data.3 We categorized image
quality through physician review as A, B, or C; where
A is highest quality with full visualization of the RV
free wall and apex, B has some areas of poor visuali-
zation, and C is very limited visualization or non
RV-focused.3 We utilized our published method2 to
predict the probability of RVEF <40% from ECG
waveforms using a convolutional neural network
(CNN). We then trained 2 models to predict
RVEF <40% utilizing a gradient boosted decision
trees algorithm (XGBoost): 1) an “Echo-only” model
combining echocardiographic measures FWS, FAC,
and TAPSE; and 2) an “EchoþECG” model in which
prediction probabilities from the ECG CNN model
were added to the features of the echo-only model to
create a stacked ensemble model. XGBoost is a flex-
ible nonlinear supervised-learning algorithm that
works by combining predictions from multiple deci-
sion trees to efficiently achieve accurate prediction.4
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FIGURE 1 Ensemble Model Performance

(A) Receiver-operating characteristic for ECGþECHO model (blue line) and echo-only model (green line), displayed as average � 1 standard

deviation (gray) of repeated 5-fold cross-validation test sets. (B) Average precision recall curve displayed similarly to above. Baseline

prevalence demarcated by red dotted line. AUROC ¼ area under the receiver-operating characteristic curve; AUPRC ¼ area under precision-

recall curve; ECG ¼ electrocardiogram; ECHO ¼ echocardiogram; RVEF ¼ right ventricular ejection fraction.
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Evaluation metrics were average � standard
deviation of area under the receiver-operating char-
acteristic curve (AUROC) and area under the
precision-recall curve from 200 repeats of 5-fold
cross-validation with outcome-stratified splitting.
Due to small sample size, we did not reserve a single
holdout test set because a random unfavorable split
might diminish estimates of generalizability. It was
ensured that none of the patients were included in
ECG CNN model training set, no patient was included
within both test and train sets in a single cross-
validation fold, and that hyperparameter selection
was nested within each training fold to avoid data
leakage. Model AUROCs across test-set cross-valida-
tion folds were compared with corrected resampled t-
test.5 Mount Sinai Hospital Institutional Review
Board approved this study.

We included 220 independent patients with paired
echo, ECG, and CMRI data. Cardiac diagnoses
included 55% with hypertension, 41% heart failure
with reduced LVEF, 11% heart failure with preserved
LVEF, 35% with coronary artery disease, 25% with
pulmonary hypertension, 21% with a history of atrial
fibrillation/flutter, and 94% of patients were in sinus
rhythm at imaging. The indication for CMRI was car-
diomyopathy in 76% of patients, and post-myocardial
infarction in 12%. Median RVEF was 52% (IQR: 43%-
60%) and 46/220 (21%) had RVEF<40%. Image quality
grades were grade A (highest) in 42 (19%), grade B in
76 (35%), and 102 (46%) grade C (lowest). There was
no difference in the proportion with low RVEF across
imaging grades (P ¼ 0.91). There was a significant
univariate difference in median RVEF between
normal vs decreased RVEF for all included features:
FAC (29% vs 19%; P < 0.001), FWS (18% vs 12%;
P < 0.001), TAPSE (1.3 cm vs 0.85 cm; P < 0.001), and
ECG predicted probability (0.4 vs 0.27; P < 0.001).
AI model performances are shown in Figure 1.
The EchoþECG model outperformed the Echo-only
model by AUROC (0.93 � 0.04 vs 0.82 � 0.07;
P ¼ 0.001) and area under the precision-recall curve
(0.77 � 0.13 vs 0.53 � 0.14). At 90% sensitivity,
ECHOþECG achieved higher specificity (82% vs 59%),
positive predictive value (57% vs 37%), and negative
predictive value (97% vs 96%) compared to Echo-
only. When stratified by imaging grade, the Echo-
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only AUC for grade C decreased by 17% compared to
grade A, but the EchoþECG model decreased by only
3%. The most important feature in EchoþECG model
was the ECG model probability (46%) followed by FAC
(21%), FWS (17%), and TAPSE (17%).

This novel approach to RV systolic functional
assessment combines multiple independent echo-
cardiographic parameters and anchors them to
quantitative gold standard CMRI, rather than eval-
uating them in isolation compared to reference
standards. Integration of ECG data with echocar-
diographic data further improved performance,
especially in patients with poor echocardiographic
windows. This significant conceptual advancement
addresses a gap in assessment of RV function and
implies that integration of information across mul-
tiple data domains improves prediction. Promising
applications of this precision medicine approach
include screening for RV dysfunction to identify
those in need of further evaluation, or to evaluate
those with poor imaging windows and/or those
unable to obtain advanced diagnostics such as
3-dimensional echocardiography or CMRI, which is
resource- and personnel-intensive. Our model uti-
lized AI methods for echocardiogram and ECG
analysis that one day could possibly integrate into
existing workflows for improved RV assessment
(recognizing present-day technical challenges in
integration across multiple data sources). The
strength of this work is the novel conceptual
approach to integrate multiple traditional
diagnostics (ECG and 2-dimensional echocardio-
gram) to improve quantification of RV function
measured by an advanced diagnostic (CMRI).
However, this work is limited by its single-center
nature without external validation to confirm the
generalizability of the reported model accuracy,
which is essential for clinical applicability. Future
work will externally validate these findings and
test this precision approach in subpopulations in
which RV monitoring is crucial such as those with
idiopathic pulmonary hypertension and congenital
heart disease.
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