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Abstract
Background  Our previous study has demonstrated a decreased colonic CD8+CD39+ T cells, enrichment of granzyme 
A (GZMA), was found in pediatric-onset colitis and inflammatory bowel disease (IBD) characterized by impaired 
intestinal barrier function. However, the influence of GZMA on intestinal barrier function remains unknown.

Methods  Western blotting(WB), real-time PCR (qPCR), immunofluorescence (IF) and in vitro permeability assay 
combined with intestinal organoid culture were used to detect the effect of GZMA on intestinal epithelial barrier 
function in vivo and in vitro. Luciferase, immunoprecipitation (IP) and subcellular fractionation isolation were 
performed to identify the mechanism through which GZMA modulated intestinal epithelial barrier function.

Results  Herein, we, for the first time, demonstrated that CD8+CD39+ T cells promoted intestinal epithelial barrier 
function through GZMA, leading to induce Occludin(OCLN) and Zonula Occludens-1(ZO-1) expression, which was 
attributed to enhanced CDX2-mediated cell differentiation caused by increased glutathione peroxidase 4(GPX4)-
induced ferroptosis inhibition in vivo and in vitro. Mechanically, GZMA inhibited intestinal epithelial cellular PDE4B 
activation to trigger cAMP/PKA/CREB cascade signaling to increase CREB nuclear translocation, initiating GPX4 
transactivity. In addition, endogenous PKA interacted with CREB, and this interaction was enhanced in response to 
GZMA. Most importantly, administration of GZMA could alleviate DSS-induced colitis in vivo.

Conclusion  These findings extended the novel insight of GZMA contributed to intestinal epithelial cell differentiation 
to improve barrier function, and enhacement of GZMA could be a promising strategy to patients with IBD.
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Background
Inflammatory bowel disease (IBD) is a chronic, relaps-
ing inflammatory disorder of the gastrointestinal tract, 
including Ulcerative colitis (UC) and Crohn’s disease 
(CD), which is characterized by dysregulation of intes-
tinal barrier function [1–3]. The interaction between 
OCLN and ZO-1 has been showed to play a crucial role 
in the formation of tight junctions in IECs [4], serving 
as a critical barrier to effectively prevent the infiltration 
of harmful bacteria and toxins from the intestines into 
the body. Interestingly, a series of studies has revealed 
GPX4 and solute carrier family 7 member 1(SLC7A11; 
also called xCT)-mediated ferroptosis inhibition, an 
iron-dependent form of cell death, could promote CDX2 
expression [5], which further enhanced ZO-1 and OCLN 
expression, thereby maintaining intestinal barrier func-
tion [6–9]. However, the specific mechanisms through 
which regulates ferroptosis in IBD remained unclear.

Numerous studies have found that the occurrence of 
IBD is associated with excessive ferroptosis activation in 
the intestine. For instance, ferroptosis was prominently 
triggered by various signaling pathways, including endo-
plasmic reticulum stress signaling in IECs of both UC 
patients and DSS-induced colitis [10], while impaired 
GPX4 activity and signs of lipid peroxidation were 
observed in CD [11]. Interestingly, the work from Pan et 
al. showed that PDE4/cAMP/PKA/CREB cascade signal-
ing is critical for GPX4 expression in intestinal epithelial 
cells [12], and inhibition of PDE4 could enrich intestinal 
mucosal CD8+CD39+T cells, improving the intestinal 
inflammation and barrier function in IBD [13]. However, 
the possible role of intestinal mucosal CD8+CD39+T cells 
in improvement of intestinal barrier function has not 
been addressed yet.

Of note, our previous research has revealed an 
enrichement of GZMA levels in CD8+CD39+T cells 
[13]. Currently, the function of GZMA is largely focused 
on cancer and cell death. GZMA, a serine protease 
secreted by cytotoxic T lymphocytes (CTLs) and natural 
killer (NK) cells, could induce IL-6 production in macro-
phages, which in turn activates STAT3 phosphorylation 
to promote the development of colorectal cancer [14, 
15]. In addition, the killer lymphocyte protease GZMA 
can promote cell pyroptosis through perforin and trigger 
caspase-independent target cell death with morphologi-
cal features of apoptosis [16, 17]. CTLs induce apoptosis 
through the engagement of death receptors or the exocy-
tosis of cytolytic granules containing granzyme proteases 
and perforin [18]. Herein, we further demonstrated the 
novel role of GZMA in IBD that GZMA could promote 
intestinal epithelial barrier function, and established an 
unreported mechanism of GZMA promoted intestinal 
barrier function through GPX4-mediated ferroptosis.

Methods and materials
Reagents and antibodies
Recombinant Human GZMA (YA9870) was purchased 
from atagenix (Wuhan, China); RSL3 (HY-100218  A), 
Rp-cAMPS (HY-100530D), Dipyridamole (HY-B0312) 
and FITC-Dextran(HY-128868  A) were purchased from 
MedChemExpress (Shanghai, China); GPX4-shRNA 
plasmid, CREB1-shRNA plasmid, CDX2 promoter plas-
mid and GPX4 promoter plasmid were purchased from 
Youbio (Changsha, China); Lipofectamine 8000(C0533) 
was purchased from Beyotime(Shanghai, China); 
Antibodies targeting CD8α(ab251596, 1:1000 for IF), 
CD39(ab300065, 1:250 for IF), Human Granzyme A 
ELISA Kit (ab255728) and cAMP ELISA Kit(ab138880) 
were purchased from Abcam (UK). Antibodies target-
ing GPX4(67763-1-Ig, 1:400 for IF, 1:2000 for WB), 
SLC7A11(26864-1-AP, 1:200 for IF, 1:2000 for WB), 
CDX2(60243-1-Ig, 1:2000 for WB), CREB1(12208-1-AP, 
1:200 for IF, 1:2000 for WB), PRKACA(27398-1-AP, 
1:2000 for WB), ZO-1(21773-1-AP, 1:1000 for IF, 1:5000 
for WB), Occludin(13409-1-AP, 1:1000 for IF, 1:2000 for 
WB), GAPDH(10494-1-AP, 1:5000 for WB), Granzyme 
A (11288-1-AP, 1:200 for IF) were from Proteintech 
Company (Wuhan, China); PRKACA(ER1706-65, 1:200 
for IF), EpCAM(EM1111, 1:200 for IF) was purchased 
from HUABIO (Hangzhou, China); a-tublin(RM2007, 
1:5000 for WB), b-actin(RM2001, 1:5000 for WB) 
were purchased from Ray antibody biotech (Beijing, 
China); Phospho-CREB1(Ser133) (YP0075, 1:2000 
for WB), PDE4 (YP0668, 1:1000 for WB), Phospho-
PDE4(Ser133/119/190) (YP0668, 1:2000 for WB, 1:200 
for IF) were from Immunoway Research (Plano, USA); 
Phospho-PKA C (Thr197) (4781, 1:1000 for WB) was 
from Cell Signaling Technology (Danvers, USA); Lamin 
A/C (sc-376248, 1:3000 for WB) was from Santa Cruz 
Biotechnology (Dallas, Texas, USA); PE anti-human 
CD3 (300408, clone UCHT1), FITC anti-human CD4 
(317407, clone OKT4), PerCP/Cyanine5.5 anti-human 
CD8α (300923, clone HIT8a) and APC anti-human CD39 
(328209, clone A1) were from Biolegend (San Diego, 
USA). CDX2 monoclonal antibody(14H6) (YM3057, 
1:200 for IF), Alexa-488- and 594-conjugated secondary 
antibodies were from Immunoway (Beijing, China).

Cell culture and transfection
Caco-2, HT-29 and HEK293T cells were purchased from 
the American Type Culture Collection (ATCC, Manassas, 
USA) and cultured in DMEM (Dulbecco’s Modified Eagle 
Medium) supplemented with 10% Fetal Bovine Serum 
(FBS), 100 mg/ml streptomycin and 100 U/ml penicillin. 
Cells were maintained in a carbon dioxide (CO2) incuba-
tor set to a standard culture condition of 37  °C and 5% 
CO2. The plasmids were delivered into cells with lipo-
fectamine 8000 according to manufacturer’s instruction.
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Enzyme-linked immunosorbent assay (ELISA)
Peripheral blood, human colon tissues, mouse colon tis-
sues, Caco-2 cell lysates were collected. Human GZMA 
level in Peripheral blood and human colon tissues, and 
cAMP content in mouse colon tissues and cell lysates 
were measured using corresponding elisa kit according to 
the manufacturer’s instructions.

RNA extraction and quantitative real-time PCR
Total RNA was isolated from Caco-2 and HT-29 cells, 
as well as from mouse colon tissues, using the EZ-press 
RNA Purification Kit (B0004D). Reverse transcripted 
into cDNA was performed using PrimeScript™ RT Mas-
ter Mix (TAKARA, Japan). Quantitative PCR (qPCR) 
was carried out using the TB Green Premix Ex Taq ™ 
II (TAKARA, Japan) according to the manufacturer’s 
instructions. The Primer sequence used in this study are 
listed in supplementary Table 1.

Western blotting (WB) analysis
For protein extraction, Caco-2 and HT-29 cells were 
lysed using a RIPA lysis buffer (Biosharp, China) con-
taining protease inhibitors and quantified by the BCA 
kit. Nuclear and cytosolic proteins were separated by 
nuclear extraction kit (Beyotime, China). equal amounts 
of protein samples were loaded onto SDS-PAGE gels 
and subjected to electrophoresis. The proteins were then 
transferred onto a nitrocellulose membrane, which was 
further blocked to prevent non-specific binding. Next, 
addition of the primary antibodies to incubate indicated 
band overnight at 4  °C, subsequently, the further incu-
bation with secondary antibodies was performed after 
washing. the protein bands were visualized using a che-
miluminescent substrate (Perkin Elmer).

ROS detection
The intracellular ROS level was analyzed using the Reac-
tive Oxygen Species Assay Kit (BL714A, Biosharp, Anhui, 
China) according to the manufacturer’s instruction.

In vitro permeability assay
As described previously [19], a total of 1 × 105 Caco-2 
cells were seeded onto 0.4  μm porous Transwell poly-
carbonate membranes  (Transwell 3401; Corning, NY, 
USA) pre-inserted in 12-well plates. Subsequently, the 
cells were cultured and media was refreshed every two 
days. After confluence (18–21 days after seeding), cells 
were exposed to GZMA (500 nM) or RSL3(5 µM) for 
48 h. 1 mg/mL fluorescein isothiocyanate (FITC)-dextran 
(4 kDa) was added to insert to incubate for 2 h at 37 °C. 
The permeability of the monolayer to FITC-dextran was 
assessed by quantifying the fluorescence intensity in the 
lower chamber using an excitation wavelength of 485 nm 
and an emission wavelength of 535 nm. The fluorescence 

values were converted into FITC-dextran concentrations 
(pg/mL) using a standard curve. A total of three indepen-
dent experiments were conducted.

Luciferase reporter assay
HEK293T cells were co-transfected with the Luc-GPX4 
or Luc-CDX2 promoter plasmid and internal control 
plasmid  (pGL4.74) using Lipofectamine 8000 according 
to manufacturer’s instruction. After 24 h of transfection, 
GZMA (500 nM) was added into the cells to incubate for 
another 24  h. The RLU were measured using Duo-Lite 
Luciferase Assay System (Nanjing, China).

Immunofluorescence (IF) analysis
HT-29 and Caco-2 cells were digested and reseeded at 
a density of 0.5*105/mL in 6-well plates overnight. After 
GZMA treatment, cells were fixed in 4% paraformalde-
hyde for 15 min, washed three times with PBS for 5 min-
utes and then blocked in 10% goat serum for 1  h. Cells 
were incubated with the primary antibodies overnight 
at 4  °C. For the tissue slides, after deparaffinization, the 
blocking solution (PBS with 5% normal donkey or goat 
serum and 0.3% Triton X-100) was used to incubate for 
30 min at room temperature. The further incubation was 
performed with the primary antibody overnight at 4  °C. 
The next day, secondary antibody was used to incubate 
for 1 h at room temperature after washing. The coverslips 
were mounted onto glass slides with prolong gold reagent 
after staining the nuclei with 4′,6-diamidino-2-phenylin-
dole (DAPI). Stained cells were visualized using a laser 
scanning fluorescent microscope.

Immunoprecipitation
After treatment with GZMA (500 nM) or DIP (5 µM) for 
1 h, HT-29 or Caco-2 cells were lysed in RIPA for 15 min 
and incubated with antibodies targeted PKA or IgG at 
4  °C overnight. The next day, Protein A/G beads (LSK-
MAGAG10, Millpore) was added into the lysate mixture 
to incubate another 2 h. The lysate was centrifugated to 
remove the supernatant, the mixture was lysated with 
loading buffer and analyzed by western blots.

Flow cytometry
PBMCs from healthy donors were isolated by Ficoll den-
sity gradient. For surface staining, single-cell suspensions 
were incubated with FACS antibodies in FACS buffer, 
which consisted of PBS with 2% BSA and 5 mM EDTA, 
for 20  min at 4  °C. The antibodies used for staining 
included PE anti-human CD3 (300408, clone UCHT1), 
FITC anti-human CD4 (317407, clone OKT4), PerCP/
Cyanine5.5 anti-human CD8a (300923, clone HIT8a), 
APC anti-human CD39 (328209, clone A1). Flow cytom-
etry was performed using a cytometer (FACSAria fusion, 
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BD) and the acquired data were analyzed using FlowJo 
v.10.0.7 software.

Crypt isolation, culture, and the generation of organoids
As described in our previous work [5], euthanizing the 
mice according to ethical regulations, the intestinal tis-
sues were aseptically harvested. The surrounding mes-
entery and adipose tissues were removed by washing the 
intestines with cold DPBS. The intestinal tissues were 
then cut into 2  mm-wide sections and digested using 
Gentle Cell Dissociation Reagent cGMP (STEMCELL, 
100–0485) on a shaker with a speed of 300 rpm at 4  °C 
to release crypts. The tissue suspension was filtered 
through a 70  μm filter, and the collected tissue suspen-
sion passed through the filter and suspended with intes-
tiCult™ Organoid Growth Medium (Mouse, STEMCELL, 
06005)  for culture. GZMA (500 nM) and RSL3 (5 µM) 
were added to observe the effect on intestinal organoids 
generation.

DSS-induced chronic colitis model
As described in our previous study [20], mice aged 6–8 
weeks were induced by 2% (w/v) dextran sulfate sodium 
(DSS, Millipore Corporation, Billerica, MA, USA) in 
drinking water for 7 days, and followed by GZMA, RSL3 
or vehicle treatment. GZMA was administered via intra-
peritoneal injection at a dose of 20 µg per mouse on day 
0, day 2, day 4, and day 6. RSL3 was administered at a 
dose of 10  mg/kg via intraperitoneal injection on the 
same days. The body weight changes and overall survival 
were recorded daily. On day 7, mice were scarified, and 
the colon was isolated for pathological analysis.

Histopathology
The intestinal samples were initially fixed in 10% forma-
lin, followed by embedding in paraffin and slicing into 
4  μm thick sections for histopathological examination. 
Hematoxylin and eosin (H&E) staining was performed 
to visualize tissue structures and identify pathological 
changes. Slides were observed using a light microscope 
(DMI8, Leica), and images were captured for further 
analysis. The histopathological score for each section was 
referenced to previous studies. The criteria are listed in 
supplementary Table 2.

Statistical analysis
Statistical analyses were performed with GraphPad Prism 
9.0. Unless otherwise stated, data were presented as 
mean ± SD. P value < 0.05 was taken to indicate statistical 
significance.

Results
GZMA was decreased in patients with IBD and DSS-
induced colitis
To explore the change of GZMA expression in IBD, 
We firstly utilized ELISA to assess the concentration 
of GZMA in the serum and colonic tissues of patients 
with IBD. The results showed that a significant down-
regulation of GZMA levels was observed in compared 
to healthy controls in both the serum and colonic tissues 
of IBD patients. (Fig. 1A-B). In line with this, the GZMA 
mRNA level in the colon of DSS-treated mice was largely 
decreased compared to that in normal mice, indicative 
of a significant increase in IL-6 expression, a marker of 
intestinal inflammation(Fig.  1C). In addition, immuno-
fluorescence analysis further confirmed GZMA expres-
sion in CD8+CD39+ T cells was reduced in the intestinal 
mucosa of IBD patients (Fig. 1D).

GZMA induced intestinal epithelial cell differentiation
Previous studies have implied GZMA might have a role 
in cell differentiation due to the work showed that GZMA 
depletion led to a significant osteoclast differentiation 
[21, 22], which focused us to explore the possible effect 
of GZMA on intestinal epithelial cell differentiation. As 
shown in Fig. 2A, CDX2, a mastor of intestinal epithelial 
cell differentiation, was found to be significantly reduced 
in the intestinal mucosa, which focused us to explore the 
possible role of CD8+CD39+ T cells-derived GZMA on 
CDX2 expression. Next, the 21-day Caco-2 monolayer 
transwell system [19, 23–25] was employed to assess 
the effect of GZMA on intestinal epithelial cell integrity 
(Fig.  2B). As expected, a significant downregulation of 
trans-epithelial flux of FITC-dextran in polarized Caco-2 
cells was observed after GZMA treatment (Fig.  2C), 
which was attributed to enanced intestinal epithelial cell 
differentiation as evidenced by increased CDX2,  ZO-1 
and OCLN mRNA and protein level(Fig.  2D-F). In line 
with this, immunofluorescence analysis also confirmed 
that GZMA upregulated ZO-1 and OCLN expression in 
Caco-2 (Fig. 2G).

Interestingly, GZMA treatment could increase the bud-
ding of intestinal organoids (Fig.  2H), and depletion of 
CDX2 expression in Caco-2 could reverse the effect of 
GZMA on ZO-1 and OCLN expression, indicating that 
GZMA modulated intestinal epithelial integrity through 
enhancing CDX2 expression (Fig. 2I). most importantly, 
addition of anti-GZMA in co-cultured system could res-
cue the influence of CD8+CD39+ T cells isolated from 
PBMCs from healthy donors’ peripheral blood on CDX2, 
ZO-1 and OCLN expression (Fig.S1F, Fig.  2J-K). Taken 
together, these data suggested that GZMA is critical 
mediator in CD8+CD39+ T cells-maintained intestinal 
epithelial barrier function through CDX2.
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GZMA promoted CDX2 expression through ferroptosis 
inhibition
Next, we sought to ask how GZMA regulated CDX2 
expression. Previous studies have found that ferropto-
sis is prominently triggered in IECs of both UC patients 
and DSS-induced colitis [10], which attracted us to study 
the relationship between CDX2 and ferroptosis. A time 
course of Caco-2 cells differentiation showed that GPX4 
expression was gradually enhanced during intestinal epi-
thelial cells differentiation characterized by increased 
CDX2 expression, despite no significant difference in 
SLC7A11 expression was observed (Fig.  3A). Further 
results revealed that CD8+CD39+ T cells-derived GZMA 
or GZMA alone could inhibit ferroptosis characterized 
by enhanced GPX4 and SLC7A11 mRNA and protein 
levels as well as reduced ROS level (Fig.  3B-E). More-
over, immunoblotting, intestinal organiods, the trans-
epithelial assessment and luciferase assay showed that 
activation of ferroptosis by RSL3 could reverse the pro-
motion of GZMA on CDX2-dependent ZO-1 and OCLN 
expression (Fig.  3F-H, Fig.S2A-2C). what’s more, the 
similar phenomenon was observed in IECs treated with 

GZMA after specific GPX4 slienced by shRNA plasmids 
(Fig.S2D).

To provide insights into the effect of GZMA and 
RSL3 in vivo, DSS-induced colitis model was employed 
to confirm the in vitro results combined with intraperi-
toneal injection of 20 ug GZMA or RSL3 at a dose of 
10  mg/kg on days 0, 2, 4, and 6. As shown in Fig. 2I-L, 
GZMA-treated mice were shown to be protected from 
experimental colitis, as evidenced by enhanced mean 
bodyweight and colon length as well as alleviation of 
intestinal inflammation, while RSL3 administration dis-
played an impaired effect against GZMA, including 
CDX2, ZO-1 and OCLN expression detected by IF analy-
sis. In summary, these work suggested GZMA induced 
CDX2-mediated IECs differentiation to improve epi-
thelial integrity through inhibition of GPX4-mediated 
ferroptosis.

GZMA-mediated ferroptosis required CREB
It has been demonstrated that CREB plays a role in the 
transactivation of GPX4 [26]. Therefore, we intended 
to investigate whether CREB is required in the regu-
lation of GZMA-mediated GPX4 expression in IECs. 

Fig. 1  Decreased GZMA in patients with IBD and DSS-induced colitis. (A-B) The level of GZMA in serum and colonic mucosa were measured by ELISA 
according to the instruction. Data was displayed as the means ± s.d. of three independent experiments and analyzed by two-sample t test for significance, 
***p < 0.001, **p < 0.01. (C) Real-time PCR was employed to assess colonic GZMA and IL-6 mRNA level in indicated group. Data was exhibited as the 
means ± s.d. of three independent experiments and analyzed by one-sample t-test for significance, ****p < 0.0001. (D) Immunofluorescence assay was 
performed to detect CD8, CD39, and GZMA expression in indicated group (Scale bar: 100 μm)
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Fig. 2 (See legend on next page.)
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Subcellular fraction isolation and immunofluorescence 
were performed to detect the nuclear localization of 
CREB in response to GZMA stimulation. As shown in 
Fig.  4A-B, nuclear CREB level and nuclear transloca-
tion was drastically increased in HT-29 and Caco-2 cells 
after GZMA treatment. What’s more, inhibition of CREB 
largely reversed the effect of GZMA on GPX4, CDX2, 
and downstream proteins (Fig.  4C, Fig.S3A). Further-
more, we found that the GPX4 transactivation induced 
by GZMA was reversed after CREB depleted in HEK293 
cells (Fig. 4D). Altogether, these results suggested GZMA 
promoted GPX4 expression through CREB.

GZMA triggered PDE4/PKA/CREB cascade signaling
The above results indicated that CREB is crucial for 
GZMA-mediated ferroptosis in IECs, highlighting its sig-
nificance. PKA phosphorylated CREB to enhance CREB 
nuclear translocation to initiate target genes expression 
[27]. Therefore, we tried to investigate the impact of 
the cAMP/PKA/CREB cascade signaling in response to 
GZMA due to the previous work from our lab demon-
strated that this pathway was critical for GPX4 expres-
sion [12]. As shown in Fig. 5A, cAMP level was increased 
in colon tissue from DSS group after GZMA administra-
tion in vivo, and in vitro also confirmed GZMA could 
induce cAMP gerentiation. What’s more, addition of 
Rp-cAMPS, a PKA inhibitor, largely blocked the effect of 
GZMA on ferroptosis and CDX2 as well as downstream 
targets expression in Caco-2 cells(Fig. 5B). Of note, fur-
ther work showed that GZMA could suppress PDE4 
phosphorylation, leading to increase cAMP generation 
in vivo and in vitro, which further triggered PKA/CREB 
activation, while no significant changes of AC6 was 
observed (Data not shown) (Fig. 5C). Most importantly, 
GZMA-induced endogenous PKA/CREB complex co-
localization was enhanced after PDE4 inhibitor dipyri-
damole (DIP) (Fig.  5D-E). These results suggested that 
GZMA inhibited ferroptosis through activation of PDE4/
PKA/CREB signaling pathway.

Ferroptosis inhibition caused by GZMA administration 
ameliorated DSS-induced colitis
In vitro work has demonstrated GZMA alleviated PDE4-
mediated ferroptosis to promote CDX2 expression pro-
viding insights into the effect of GZMA on ferroptosis 
in vivo, DSS-induced colitis model combined with intra-
peritoneal injection of 20 μg GZMA on days 0, 2, 4, and 6 
was employed to confirm the above results. As shown in 
Fig. 6A-B, GZMA-treated mice was exhibited to be pro-
tected from experimental colitis as evidenced by mean 
bodyweight and colon length. Further work showed that 
decreased ferroptosis, characterized by enhanced GPX4 
and xCT in IECs labeled with EpcAM was observed after 
GZMA administration in DSS group, which was attrib-
uted to PDE4 phosphorylation inhibition confirmed by 
immunofluorence (Fig. 6C). Taken together, these results 
suggested that GZMA is critical for improvement of 
intestinal barrier function through modulating PDE4-
mediated ferroptosis.

Discussion
In this study, as shown in Fig. 6D, our work extended the 
role of GZMA in IBD and presented evidence to sup-
port the promotion of GZMA on IECs differentiation. 
Mechanically, GZMA suppressed phosphorylation of 
PDE4, leading to trigger PKA/CREB cascade signaling, 
which further enhance CREB nuclear translocation and 
the binding of CREB to GPX4 promoter, subsequently 
induced GPX4-dependent CDX2 expression to improve 
intestinal barrier intergrity. What’s more, ferroptosis 
inhibition or GPX4 depletion could overcome the effect 
of GZMA in IECs. Most importantly, intraperitoneal 
injection of GZMA could rescue the symptoms of DSS-
induced colitis in vivo. These findings indicated the sig-
nificant role of GZMA in regulating IECs barrier intergity 
through the PDE4/PKA/CREB pathway.

Currently, there are ongoing studies investigating the 
role of GZMA in cell death during development, tissue 
maintenance, immune response, elimination of excess 
cells, defense against pathogens, and cancer prevention 

(See figure on previous page.)
Fig. 2  GZMA promoted intestinal epithelial cell differentiation. (A) Immunofluorescence assay was performed to detect CDX2 expression of colonic 
mucosa from clinical sample (Scale bar: 100 μm), quantitation was performed by Image J, and analyzed by two-sample t test, ∗∗∗p < 0:001. (B-C) Caco-2 
cells were seeded onto transwell polycarbonate membranes (0.4 μm pores). Upon confluence (21 days after seeding), the cells were treated with GZMA 
(500 nM) for up to 48 h. The permeability of the monolayer to FITC-dextran (4 kDa) was assessed by measuring the fluorescence intensity in the bottom 
chamber at Ex/Em = 485/535 nm. Data was displayed as means ± s.d. of three independent experiments and analyzed by two-sample t test for signifi-
cance, ***p < 0.001.(D) Real-time PCR and (E-F) western blotting as well as (G) immunofluorescence staining were conducted to analyze the indicated 
gene expression at mRNA and protein level in HT-29 and Caco-2 cells treated with or without GZMA (500 nM) for 48 h (Scale bar: 25 μm), Data was showed 
as the means ± s.d. of three independent experiments and quantified by one-sample t test for significance, ***p < 0.001, **p < 0.01, *p < 0.05. (H) intestinal 
crypt isolated from mice was used to explore the effect of GZMA (500 nM) on intestinal organoid generation, microscopic examination of organoids was 
employed to calculate the proportion of budding organoids among every average 100 organoids. Data was exhibited as means ± s.d. of three indepen-
dent experiments and analyzed by two sample t test, **p < 0.01 (Scale bar: 50 μm). (I) western blotting was conducted to analyze the indicated proteins in 
Caco-2 cells after transferred with sh-CDX2 plasmid, followed by stimulation with GZMA (500 nM) for 48 h, with β-actin serving as the internal control. (J-
K) CD8+CD39+ T cell subsets isolated from peripheral blood of healthy donors were cultured in medium for 24 h was collected to co-culture with Caco-2 
cells for 48 h combined with or without GZMA antibody supplementation. The total lysate was harvested to detect indicated proteins, Data was displayed 
as mean ± s.d. of three independent experiments and analyzed by one-sample t test for significance, ***p < 0.001, **p < 0.01
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Fig. 3 (See legend on next page.)
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[28]. Limited available work about the role of GZMA 
in IBD, despite our previous work revealed GZMA was 
enriched in CD8+CD39+ T cells, decreased in intes-
tinal mucosa in IBD. In line with this work that dem-
onstrated GZMA could promote the differentiation of 
IECs through ferroptosis, an observational study on UC 
received with etrolizumab treatment also showed that 
the higher GZMA level in colonic tissue was associated 
with increased clinical remission and mucosal healing, 
suggesting that GZMA could serve as a potential thera-
peutic target [29]. In contrast, another work found that 
GZMA was upregulated in the serum and colonic tis-
sue of DSS-induced mice, and the alleviation of intes-
tinal inflammation was observed after knocking out 
GZMA in DSS-induced mice [15]. What’s more, a pre-
vious study has found that the frequency of perforin or 
GZMA mRNA-expressing cells is increased several fold 
in the intestinal mucosa of patients with IBD compared 
with controls [30]. These studies indicated the differ-
ence in the intestinal environment between IBD patients 
and DSS-induced mice. Considering the intricate in vivo 
environment, further investigation was inquired to elu-
cidate whether there was a feedback loop in modulation 
of GZMA expression mediated by ferroptosis due to the 
fact that the differentiation of IECs was accompanied by 
an increase in GPX4 protein expression. In addition, the 
further study was required to discuss the work that how 
ferroptosis regulated CDX2 expression and elucidate 
the other possible forms of cell death, such as including 

disulfidptosis, necroptosis, cuproptosis signaling path-
ways involved in GZMA-mediated cell differenitation, 
the potential roles of GZMA on IBD, such as drug resis-
tance, gut microbiota, and intestinal fibrosis, would be 
explored in our next work.

Classical cAMP signaling is an essential intracellu-
lar messenger that regulates various cellular functions, 
including metabolism, cell proliferation, and signal trans-
duction [31–33]. Our previous research has found that 
targeting PDE4 with DIP to increase cAMP levels could 
alleviate intestinal inflammation [13], indicating that 
PDE4 is an important therapeutic target for IBD. In this 
work, we found GZMA could suppress PDE4 phosphory-
lation to activate PKA/CREB cascade signaling, of note, 
no significant changes of AC6 activation, a member of 
adenylyl cyclase (ADCY) enzymes responsible for the 
synthesis of cyclic adenosine monophosphate (cAMP) 
from adenosine triphosphate (ATP), was observed in 
response to GZMA, which suggested the critical role of 
PDE4 inhibition in improvement of IBD was reported 
in our previous work [12, 34]. Further research would 
be performed to address how GZMA regulated PDE4 
phosphorylation.

Conclusions
This study extended the novel role and mechanism of 
GZMA in improvement of intestinal epithelial integrity 
in IBD through inhibition of GPX4-mediated ferroptosis 
mediated by PDE4/PKA/CREB cascade signaling.

(See figure on previous page.)
Fig. 3  GZMA promoted intestinal epithelial cell differentiation through inhibition of ferroptosis. (A) Lysate was extracted from Caco-2 at day 1/3/5/7 
post-confluence, and the expression of target proteins were analyzed by western blotting. Data was represented the mean ± s.d. of three indepen-
dent experiments and determined by one-way ANOVA for significance, ****p < 0.0001, ***p < 0.001. HT-29 and Caco-2 cells were treated with GZMA 
(500 nM) for 48 h, WB (B) and qPCR (C) were employed to determine indicated gene at mRNA and protein level. The control was normalized as 1. The 
band intensity and relative mRNA expression was represented as mean ± s.d. of three independent experiments and analyzed by one-sample t test for 
significance, ***p < 0.001, **p < 0.01, *p < 0.05. (D) After serum starvation for 24 h, Caco-2 cells were treated with GZMA (500 nM) for 48 h and the ROS 
level was detected. (E) immunoblotiting was performed to detect indicated protein in coculture model established by CD39+CD8+ T cell and Caco-2 
cells combined with or without anti-GZMA addition, Data was displayed as the mean ± s.d. of three independent experiments and analyzed using one 
sample t test for significance, ****p < 0.0001, ***p < 0.001. The control was normalized to 1. (F-G) HT-29 and Caco-2 cells were treated with GZMA (500 
nM) combined with or without RSL3 (5 µM) for 48 h, WB was conducted to analyze the indicated protein. Data was presented as the means ± s.d. of three 
independent experiments and analyzed by one-way ANOVA and Dunnett’s multiple comparison test, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. (H) 
After co-transfection with CDX2-luc plasmid and a control renilla luciferase vector for 12 h, 293T cells were treated with GZMA (500 nM) or GZMA (500 
nM) combined with RSL3 (5 µM) for 48 h, the relative luciferase unit (RLU) was measured. Data was presented as the means ± s.d. of three independent 
experiments and analyzed by one-way ANOVA, *p < 0.05,**p < 0.01. (I) Image of colon length and (J) body weight change in indicated group were ex-
hibited. the percentage of initial body weight at the start of the experiments as 100%. Statistical difference was determined by one way ANOVA analysis, 
****p < 0.0001, **p < 0.01. (K) HE staining of representative colon mucosa and scored to determine difference using one way ANOVA in indicated groups, 
*p < 0.05,**p < 0.01,***p < 0.001. (L) Immunofluorescence was performed to detect CDX2, ZO-1, and OCLN expression in indicated group



Page 10 of 13Niu et al. Cell Communication and Signaling          (2024) 22:474 

Fig. 4  GZMA modulated CREB nuclear translocation to promote intestinal epithelial integirty (A) HT-29 and Caco-2 cells were serum-starved for 24 h, 
followed by stimulation with GZMA (500 nM) for indicated time. Cell cytoplasmic and nuclear proteins were extracted to detect CREB. Data represent 
the mean ± s.d. of three independent experiments and were analyzed by one-way ANOVA with multiple comparisons, followed by Dunnett post hoc 
test for significance versus Control, ****p < 0.0001. the control was normalized as 1. (B) Immunofluorescence of CREB localization in HT-29 and Caco-2 
cells treated with or without GZMA for 1 h after serum starved for 24 h. (C) western blotting was conducted to analyze the expression of the specific 
proteins in Caco-2 cells after transferd with sh-CREB plasmid, followed by stimulation with GZMA (500 nM) for 48 h. Data represent the mean ± s.d. of 
three independent experiments and were analyzed by one-way ANOVA with multiple comparisons, followed by Dunnett post hoc test for significance 
versus Control, **p < 0.01, ***p < 0.001, ****p < 0.0001. The control was normalized to 1. (D) After co-transfected with indicated plasmids combined with 
GPX4-Luc plasmid, sh-CREB plasmids and a control Renilla luciferase expression vector for 48 h, 293T cells were treated with or without GZMA(500 nM) 
for 48 h, the relative luciferase unit (RLU) was presented as the fold activation relative to Renilla luciferase activity. Data represent the mean ± s.d. of three 
independent experiments and were analyzed by two-way ANOVA, followed by Dunnett post hoc test for significance versus Control. *p < 0.05, ***p < 0.01
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Fig. 5  GZMA modulated PDE4/PKA/CREB cascade signaling. (A) The level of cAMP was measured by Elisa according to the instruction. Data presented as 
the means ± s.d. of three independent experiments and were analyzed by one-way ANOVA (left panel) and two sample t test (right panel), *p < 0.05. (B) 
HT-29 and Caco-2 cells were serum-starved for 24 h, followed by stimulation with GZMA (500 nM) for 1 h followed by addition of with Rp-cAMPS (10 µM) 
for 48 h, WB was conducted to analyze the indicated protein. The band was quantified and analyzed by one-sample t test for significance, the control was 
normalized as 1, data represent the mean ± s.d. ***p < 0.001, **p < 0.01, ****p < 0.0001. (C) after starvation overnight, HT-29 cells were treated with GZMA 
for 1 h, and the total protein was collected to detect indicated protein, Data was presented as the mean ± s.d. of three independent experiments and were 
analyzed by one-way ANOVA (left panel) and two sample t test (right panel), **p < 0.01, ***p < 0.001. (D) Caco-2 cells were serum starved for 24 h after 80% 
confluence, then stimulated as indicated for 1 h. Immunoprecipitated (IP) was employed to analyze the interaction between PKA and CREB. (E) Immuno-
fluorescence of co-localization between PKA and CREB in Caco-2 cells treated with or without GZMA for 1 h after serum starved for 24 h. scale bar = 50 μm
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IP	� Immunoprecipitation
IBD	� inflammatory bowel disease
IF	� immunofluorescence
IECs	� intestinal epithelial cells
GZMA	� Granzyme A
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