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Abstract

When an optical beam passes through a thin slice of a homogeneous material, the change of 

its phase and amplitude is characterized by the material’s linear and nonlinear susceptibility, the 

latter also known as the hyperpolarizability. The standard method for measuring the nonlinear 

susceptibility is the Z scan. This widely used method is sometimes applied outside of its range 

of validity, leading to systematic errors. These errors are illustrated for a two-level system with 

parameters taken from atomic rubidium. The present paper proposes a method called the phase 

retrieval of modes to determine the nonlinear susceptibility without an assumption about its 

functional form, in contrast to both the Z-scan method and variants intended to apply in cases of 

saturation. In brief, a Gaussian beam passes through a thin sample and is detected on three planes 

in a focal scan. Phase retrieval methods are used to find coefficients of the modes which in turn 

determine the optical nonlinear susceptibility. Nearly exact recovery of the nonlinear susceptibility 

is shown numerically in the no-noise case. Additionally, two types of noise are considered: shot 

noise on the detector and intensity fluctuations of the input.

I. INTRODUCTION

The manipulation of light by light has been a key theme for optics research in recent years 

[1,2]. For example, hot atomic vapors are good sources of nonclassical light [3]. In a typical 

experiment in nonlinear optics, a high-power beam known as the pump prepares the system 

in some state. Other beams with names such as the probe and conjugate, or the signal and 

idler, enter and interact with the medium, possibly with a time delay. The beam of interest 

may emerge nearly instantaneously, or after a delay of microseconds to milliseconds in 

quantum memory [4]. The beams may have specified frequency, phase, intensity, and timing 

relations to each other as in the “counterintuitive pulse sequence” used for the adiabatic 

transfer of electrons in a three-level system [5].

The Kerr effect—the change of the index of refraction with the intensity of the light—is 

arguably the simplest nonlinear optical phenomenon since it involves a single beam at a 

single frequency without modulation such as an atomic frequency comb [6] or a chirp 

[7]. Atomic vapor systems can be saturated under common laboratory conditions [8]. A 

good starting point for a theory able to make predictions in quantum optics is the ability 

to describe the saturated Kerr effect. In principle, it is possible to predict these values by 

examination of a density matrix determined by a Lindblad master equation [9]. The rate 

equations offer a simpler alternative [10], albeit one with a smaller range of validity.
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The Z scan is a widely used method to measure Kerr coefficients [11,12]. The Z-scan 

method is relatively simple to implement since it requires moving a sample through the 

focus of a laser beam with a single-channel detector in the far field. The method assumes 

that the Kerr coefficient is not saturated, i.e., that the index of refraction obeys

n(I) = n0 + n2
(u)I

(1)

where n0 is the linear index of refraction, n2
(u) is the unsaturated Kerr coefficient, I is the 

optical intensity, and n(I) is the intensity-dependent index of refraction. Both n0 and n2
(u) are 

complex numbers which are independent of the intensity. For the Z scan to be valid, the 

functional form of Eq. (1) must hold and n2
(u)I < < 1.

The Z-scan method has been used for many measurements of the Kerr coefficient. In most 

cases, the third-order nonlinearity is weak and the assumptions of the method are valid. 

However, the Z-scan method has also been used to measure the saturated Kerr coefficient 

n2
(s) which is a function of I and the assumption of a weak nonlinearity is not always 

valid. Restricting attention to cases in which the Kerr coefficient was saturated, there are 

still many measurements including rubidium [8,13], cesium [14,15], ruby and alexandrite 

[16], GaSb and GaInAsSb [17], tin diselenide [18], PbO [19], poly (3-hexadecylthiophene) 

[20], and polydiacetylene single crystals [21]. This list is representative, but not exhaustive. 

Refinement of the Z-scan method remains a topic of current research interest [22].

Oliveira et al. [16] and Bian et al. [23] generalized the Z scan to a particular functional 

form suitable for a two-level system, still requiring a small contribution to the nonlinear 

index. While this represents some progress, even two independent two-level systems with 

different parameters will follow a more general rule, and more general model forms for the 

optical nonlinear susceptibility have been proposed [24]. In another variant of the Z scan, 

Gao et al. [25] analyze the use of Gaussian-Bessel beams in the Z-scan method to improve 

understanding of saturation in Rb vapor, generalizing the original incident Gaussian beam. 

A more radical alternative from the Z scan and its generalizations is a spectral method to 

measure the saturated nonlinear susceptibility [26].

In the present paper, the systematic errors which result if the standard Z-scan method is 

applied to the measurement of the saturated Kerr coefficient for a two-level system are 

detailed in Sec. II. Such errors can amount to 100% errors in practical cases. Given the 

motivation to reduce such errors, a measurement method called the phase retrieval of modes 

(PROM) is proposed. The method allows an accurate measurement of the saturated Kerr 

coefficient regardless of the functional form of the nonlinear susceptibility. The hope is that 

PROM will lead to higher precision measurements of the saturated nonlinear susceptibility 

of atomic vapors. Such measurements, in turn, can be compared to results from fundamental 

theory [9,10].
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II. Z-SCAN METHOD

A. Statement of the problem

When light passes through a thin sample of a nonlinear medium at normal incidence, in the 

absence of absorption, the medium changes the phase of the light at its exit face. Thereafter, 

beam propagation is described by Fresnel diffraction. In the far field, the Fresnel diffraction 

takes on the limiting form of the Fraunhofer diffraction formula: the intensity is given by a 

Fourier transform of the input with appropriate scaling [27]. A given point in the observation 

plane will have a strong dependence on an ever-increasing portion of the sample as the 

sample-detector distance increases, including the entire illuminated section of the exit face 

in the far-field limit. Differences in the phase across the exit face influence the intensity 

downstream, so the linear susceptibility, related to n0, is not measurable using a single beam. 

Although the Z-scan method is typically implemented with a small aperture detector in 

the far field, the signals reaching the detector depend on the phase induced over the whole 

region illuminated by a Gaussian beam, not simply the value at the maximum. In order 

for a single-channel measurement to determine the nonlinear susceptibility, there must be a 

known functional form for the susceptibility, namely Eq. (1) in the original method [11,12]. 

In the following, I will give an example of the consequences of assuming Eq. (1) holds for 

a two-level system, where it does not. The systematic errors which can arise in practice [8] 

motivate the development of an experimental method which makes fewer assumptions about 

the functional form of the nonlinear susceptibility.

B. The Z-scan method for the Kerr coefficient in the low-intensity limit

In the Z-scan method [11,12], a TEM00 Gaussian mode is incident on a thin Kerr medium, 

positioned at z1 with a detector located in the far field. The Z-scan method is intended to 

apply if there is an ideal Kerr susceptibility, given by Eq. (1). The incident wave EA gives 

rise to a second wave EB which is first order in n2
(u). Functional forms are given in Appendix 

A. The transmission T  is the ratio of intensities detected on axis by a small aperture detector 

with and without the medium and is given by

T = EA
(0) + EB

(0) 2

EA
(0) 2

= 1 + 2 ReEB
(0)

EA
(0) + O n2

(u) 2

(2)

where the superscript (0) indicates the fields are taken on axis. (“Transmission”, as defined 

in the Z-scan literature, may exceed 1.) The final term is neglected in the Z-scan method, 

as it is in holography. The Kerr coefficient can be found experimentally by fitting to the 

function

T = 1 + 4Z1ΔΦ0

1 + Z1
2 9 + Z1

2

(3)
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where ΔΦ0 is the phase change due to the central field at the focus and Z1 = z1/zR is the 

position of the Kerr medium relative to the laser focus in units of the Rayleigh length, given 

in Eq. (B2). An experimental Kerr coefficient can be found by fitting to the function in Eq. 

(3). A formula for the scan with the detector at a finite position on axis is given in Appendix 

A. Equation (3) is the far-field limit of Eq. (A7).

C. Susceptibility of the two-level system

Equation (1) is not a fundamental principle, but rather a term in a Taylor expansion of the 

susceptibility as a function of intensity. To generate a realistic saturated Kerr susceptibility, 

I choose a two-level system. A solution is given in the text of Grynberg, Aspect, and Fabre 

(GAF) [28]. Slightly adapting GAF’s Eq. (2.188), the susceptibility is given by

χ = − nden
d2
ϵ0ħ

Δ+iΓsp
2

Ω1
2

2 + Δ2 + Γsp
2

4

,

(4)

where nden is the number density of atoms, d is the dipole moment of the transition, ϵ0 is 

the permittivity of free space, ħ is the reduced Planck’s constant, Γsp is the spontaneous 

emission rate, and Ω1 is the angular Rabi frequency defined in Eq. (B3). Equation (4) uses 

the detuning Δ = ω − ω0 where ω is the angular frequency of the light and ω0 is the angular 

transition frequency between the ground state and the excited state. The form given here 

assumes any decoherence is due to spontaneous emission, and not, for example, collisional 

broadening, as discussed in the text. GAF introduce the saturation parameter s,

s = Ω1
2

2Δ2 + Γsp
2

2

,

(5)

in GAF’s Eq. (2.189). GAF’s Eq. (2.180),

χ = χ1
1 + s,

(6)

follows from Eqs. (4) and (5), where χ1 is the Ω1 0 limit of Eq. (4). The saturation 

parameter is related to the intensity by s = I/Isat with Isat given by

Isat = ϵ0cħ2

d2 Δ2 + Γsp
2

4 .

(7)
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Equation (7) follows from setting s = 1 and using Eqs. (5), (B1), and (B3) from Appendix B, 

which also contains a table of parameters used in the calculation.

The saturated Kerr susceptibility is given by

n2
(s) = χ − χ1

2I = − χ1
2I

s
1 + s = − χ1

2Isat(1 + s)

(8)

where

n(I) = n0 + n2
(s)(I)I

(9)

which may be compared to Eq. (1). The unsaturated Kerr coefficient is given by the low-

field limit which is the same as the s 0 limit. Hence,

n2
(u) = − χ1

2Isat
.

(10)

D. The Z-scan method and the saturated Kerr coefficient

The Z-scan method was not designed to measure the saturated Kerr coefficient. Some 

examples of the systematic error which results from applying the Z-scan method in the 

saturated regime are given next. The susceptibility will be given by the two-level system, 

with parameters selected for Rb vapor [29]. See also Appendix B. Our procedure is as 

follows.

1. Choose a set of peak incident fields for the TEM00 Gaussian beams.

2. Find n2
(s) using the two-level system susceptibility.

3. Find the electric field at the exit face.

4. Expand the electric field at the exit face into Laguerre-Gauss basis functions.

5. Find the intensity at the detector.

6. Find the peak-valley difference in a Z scan for each peak incident field using an 

expansion into Laguerre-Gauss modes.

7. Relate the peak-valley difference to the maximum induced phase ΔΦ0, using Eq. 

(3).

8. From this phase and assumed system-geometry parameters, determine n2
(Z).

9. The theoretically known value of n2
(s) is compared to its counterpart as determined 

by the Z-scan method, as used by McCormick et al. [8].
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Of these steps, the first five are performed only in a simulation and the last four are 

performed either in simulation or in an experiment. Next, more details are given with 

specialization to the present case.

Step 1. Three examples are chosen bracketing the saturation field of 38 kV/m in the Rb-like 

example [29].

Step 2. For the two-level system, use the formulas presented in Sec. IIC.

Step 3. The TEM00 field incident on the thin Kerr medium is given by

E P, Z1
( − ) = E0

1
1 + iZ1

exp − P2
1 + iZ1

(11)

where Z1
( − ) and Z1

( + ) are the respective positions just before and just after entering the thin 

sample at Z1. Also, P = ρ/w0 is a dimensionless radial coordinate. (The symbol P  is chosen 

because it is a capital ρ.) The intensity is given by

I P, Z1 = c ϵ0
2 E0

2 1
1 + Z1

2 exp − 2P2
1 + Z1

2

(12)

using Eq. (B1). Variations of I P, Z1  within the thin Kerr medium are assumed to be 

negligible. Upon exit, the field is modified to

E P, Z1
( + ) = E0

1
1 + iZ1

exp − P2
1 + iZ1

× exp −in2
(s)(I)I 2π

λ δz

(13)

where λ is the free-space wavelength, δz is the thickness of the Kerr medium, and I is given 

by Eq. (12). To derive the Z-scan results, the first two terms of the second exponential in Eq. 

(13) are retained. Here, there is no assumption that the argument of the second exponential is 

small.

The function is shown for various incident intensities in Fig. 1. For the input field shown, 

the exit field is given under three different sets of assumptions. The curves labeled “Exact” 

use the saturated form of the susceptibility and the exponential phase factor. These are the 

exact answers. The curves labeled “K” assume that the unsaturated Kerr susceptibility holds 

and the exponential phase factor is applied. The curves labeled “Z” use the approximations 

of the Z scan, namely the unsaturated Kerr susceptibility and a linear approximation to 

the exponential phase factor. Below saturation, these three approximations lead to very 

similar results, as shown in Fig. 1(a). If the central field is a little into saturation, deviations 
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exceeding 10% are seen in Fig. 1(b). Finally, well into saturation, as shown in Fig. 1(c), the 

three curves are qualitatively different including a near node in the Z-scan case which is 

absent in the exact case. Even at this early stage in the analysis, it is doubtful that the Z-scan 

field could differ so greatly from the exact field and still produce an accurate result for the 

susceptibility.

Step 4. Before and after interacting with a thin sample at Z = Z1, a TEM00 Gaussian beam is 

given by Eqs. (11) and (13), respectively. We wish to find the Laguerre-Gaussian expansion 

coefficients of Eq. (13). The index of refraction is written as n(NL) P; Z1 = n2
(s)(I)I because 

it depends on the intensity of the light, which, in turn depends on ρ and z1, which are 

proportional to P  and Z1. The designation NL means that the real part of the linear index of 

refraction is subtracted off, i.e., n(NL) P; Z1 = n P; Z1 − Ren0. The position dependence of n
is due to the intensity of the beam in a Kerr medium. Let

g P; Z1 = exp in(NL) P; Z1
2π
λ δz .

(14)

Further details of how the electric field in the exit face is expanded into a series of Laguerre-

Gauss functions are given in Appendix C.

The results of the expansion for the case of 100 kV/m on the two-level system example 

are given in Fig. 2. The real and imaginary parts of the exact ratio of electric fields are 

compared with expansions with 5, 10, 15, and 20 basis functions. Even five basis functions 

are sufficient to describe the electric field to a little past ρ/w0 = 1. Adding more functions 

extends the region of agreement to larger ρ, i.e., to about ρ/w0 = 2.5 with 20 basis functions. 

Numerically, I fit to the electric field past the sample and then divide by it before the sample. 

Since the electric field falls off like a Gaussian, this is an inherently noisy process at large 

radius. Nevertheless, g is well described where it differs significantly from 1.

Step 5. The intensity on the detector plane is found by forming the electric field there using 

the Laguerre-Gauss modes whose functional form is given below in Eq. (18). For the Z
scan, this expression should be evaluated with P = ρ/w0 = 0 and Z taking on the value of the 

detector position. Rather than working out the far-field limit, for convenience, the detector 

plane is taken to be at Z = z/zR = 100. See Appendix A for a formula which shows the finite 

field transmission. The square of the electric field is proportional to the intensity, with the 

proportionality constant given in Eq. (B1).

Step 6. To implement this step, Z1 is varied with the detector position held fixed.

Step 7. No additional explanation is needed.

Step 8. The phase accumulated by passing through a sample of thickness δz is

ΔΦ0 = 2π
λ nδz,
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(15)

where n is the index of refraction.

Step 9. No additional explanation is needed.

The result of the process is given in Fig. 3. In Fig. 3(a), the Z-scan transmission is given in 

the unsaturated regime. In Fig. 3(b), the same function is given for fields which enter into 

the saturated regime. The positions of the peak and valley are given in Figs. 3(c) and 3(d), 

respectively, for various electric fields. These peak positions reproduce the values given by 

the original Z-scan papers [11,12].

This problem was also studied earlier [23,30,31]; in particular, the increase of the spacing of 

the peaks shown here below was reported in Ref. [31], but not in Ref. [30]. In contrast, Ref. 

[23] reports the peak to valley spacing decreases with increasing saturation. The problem 

statement is a little different in Ref. [30] in that a top hat incident beam is considered instead 

of a Gaussian.

One the experimental side, McCormick et al. [8] use the peak-to-valley spacing for the 

unsaturated Z scan, but take the Rayleigh length to be a fitting parameter. Specifically, 

the 6-mm Rayleigh length is fit to 7–9 mm, i.e., an increase of 17 to 50%. If instead the 

Rayleigh length were held fixed, that increase would show up in the peak-to-valley spacing, 

which is consistent with the values shown in Fig. 3.

Finally, the exact nonlinear susceptibility is compared to the one derived from the nine-step 

process detailed above in Fig. 4. At low intensities, the two values are equal. However, as 

soon as saturation becomes important, there are significant deviations, as much as 100% in 

practical cases. Solving this serious metrological problem is the motivation for proposing the 

method described next.

III. PHASE RETRIEVAL OF MODES

In this section, an alternative to the Z-scan method, PROM, is presented. First, the modes 

themselves are described. These are used in a phase retrieval problem. By casting the 

problem in terms of modes, the propagation of the solution from one plane to another in free 

space is done analytically, avoiding a numerical step in some schemes [32,33]. A solution 

of interest is a linear combination of modes. The idea is to measure the intensity on a 

few planes, to find coefficients of the modes which match that intensity, then to extract 

parameters from the coefficients. The procedure is detailed below in this section, followed 

by consideration of noise in the detector and, separately, fluctuations in the input intensity.

The phase retrieval of nonperiodic objects has been a subject of great interest for at least 

the past 25 years [34]. A key issue was to clarify which observation domains could be used 

to perform phase retrieval. Early approaches used real space and reciprocal space [35,36]. 

The transport of intensity equation used nearby planes in a focal series [37]. Later, multiple 

widely spaced planes in the defocus series were used for phase retrieval [33], an approach 

which is followed here. Recognition that the Fresnel transformation interpolates between 
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real space and reciprocal space [38] provides a unifying principle for these methods. For 

completeness, the very successful ptychography method retrieves the phase of a single plane 

by illuminating overlapping regions [39]. The field was reviewed by Shechtman et al. [27].

A. The paraxial equation and its modes

If a laser beam is not too tightly focused, its electric field E may be described with the 

paraxial equation. In Ref. [40], the paraxial equation is given as

∂E
∂z = iλ

4π ∇⊥
2 E,

(16)

where E, a function of (x, y, z), is a Cartesian component in the transverse plane. The 

subscript ⊥ restricts the Laplacian to the (x, y) plane, with z being the direction of 

propagation. Equation (16) may be recast in dimensionless variables X = x/w0, Y = y/w0, 

and Z = z/zR. Introducing cylindrical coordinates, ρ = x2 + y2 and φ = arg exp(x + iy), the 

dimensionless variables are P = ρ/w0 with the azimuthal angle φ unchanged. The result is

∂E
∂Z = i

4
∂2E
∂X2 + ∂2E

∂Y 2

= i
4

1
P

∂
∂P P ∂E

∂P + 1
P2

∂2E
∂φ2 .

(17)

The solutions to these equations are the standard Hermite-Gauss and Laguerre-Gaussian 

modes, respectively. For the circularly symmetric case, the modes are given by

fn(P , Z) = 2
π

(1 − iZ)n

(1 + iZ)n + 1Ln 2 P2

1 + Z2 exp − P2
1 + iZ

(18)

for integer n ⩾ 0, with Ln being a Laguerre polynomial. The result presented here is restricted 

to being constant in φ, although there are solutions for associated Laguerre-Gaussians as 

well as for Hermite-Gaussians [41]. The transformations used to take the formulas from 

Kogelnik and Li [41] to Eq. (18) are given in Appendix D. The standard Laguerre-Gauss 

modes are orthonormal with respect to the integral

∫
0

2π
dφ∫

0

∞
dPPfn

∗(P , Z)fn′(P , Z) = δnn′

(19)

where δnn′ is the Kronecker δ function. Since the orthonormality applies for each plane with 

constant Z, flux conservation integrated over different planes is a corollary.
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Any linear combination

E = ∑
n = 0

N − 1
cnfn,

(20)

where N is the number of coefficients, is a solution of Eq. (17). Solutions which differ by 

a constant phase have the same intensity I ∝ |E|2. Hence, c0 is taken to be a real positive 

number in the computational basis. (The edge case of c0 = 0 is excluded, but can be dealt 

with easily.) Later, we will see that the phase of c0 has a meaning related to the phase of 

the incident wave and the wave just as it leaves the Kerr medium. There are two phase 

conventions in effect for the coefficients: a computational convention that Im c0 = 0, and a 

physical convention. Phase retrieval uses the computational convention, and the physical one 

is applied afterwards, if necessary.

B. Proposed experimental protocol

The proposed experiment is the following.

a. Send a coherent beam, preferably a TEM00 Gaussian beam, through a thin, 

saturable Kerr medium such as an atomic vapor cell. Here, the term “thin” means 

that the thickness of the cell is small compared to the Rayleigh length. The cell is 

fixed at the focus.

b. Record the intensity in a two-dimensional array on three or more well-separated 

planes. In this paper, the detector planes are z = 0.5 zR, zR, and 2 zR relative to the 

central plane of the cell.

c. Choose a basis set consisting of N Laguerre-Gaussian modes, where N will be a 

small integer such as 12.

d. The measurement determines one real, positive coefficient, namely c0, and N − 1
complex coefficients cn with n > 0.

e. These coefficients are used to determine the optical parameters.

Some key differences of the Z-scan method and the PROM protocol are given in Table II.

The phase is accumulated over a line integral in the cell [42]. It is

ϕ(ρ) = ∫ dz2π
λ n(ρ, z),

(21)

where n(ρ, z) is the index of refraction at ρ and z. The integrals are performed independently 

for each value of ρ. In our case, we expect the density of atoms and the electric field to 

be a constant nden, independent of ρ and Z. The first Born approximation is valid for a thin, 

Levine Page 10

Phys Rev A (Coll Park). Author manuscript; available in PMC 2024 October 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



dilute sample. Then n(ρ, z) reduces to n(ρ). Since the sample thickness δz and wavelength λ
are parameters of the experiment, ϕ(ρ) determines n(ρ) through

n(ρ) = ϕ(ρ) λ
2πδz

.

(22)

For a thin, dilute sample the electric field is a function of ρ, hence the light intensity is a 

function of ρ.

The defining equations for the unsaturated and saturated Kerr effects are given in Eqs. (1) 

and (9), respectively. An alternate nonlinear expansion is

χ(E) = χ(1)E + χ(3)E3 + χ(5)E5 + ⋯

(23)

where the even terms are excluded due to the centrosymmetry of the atoms in the gas, 

and, for simplicity, E is taken to be a scalar. The vector nature of E is important in some 

experiments [43]. These expansions are related by

n2 = 1 + χ .

(24)

The index of refraction is related to the susceptibility by

n = (1 + χ)1/2 ≈ 1 + χ
2 ,

(25)

where the approximation is valid if |χ | < < 1, which is the case in the present paper. This 

assumption is also the validity condition for ignoring Clausius-Mossotti or Lorentz-Lorenz 

local fields, which is done in this paper.

C. Simulation of PROM protocol

As in many simulations of inverse problems, the strategy is to choose an ideal system 

with parameters, generate data, and recover the parameters. In more advanced versions, the 

measurements and even the geometry can be subject to noise. Our phase recovery strategy 

shares many features with one presented earlier [44]. For the proof of concept given in this 

paper, I specialize to the parameters used in an earlier experiment [8] given in Table IV.

The following steps simulate the experiment.

A. Choose parameters for an incident TEM00 Gaussian E P, Z1
( − )  at some plane Z1; 

the focal plane, Z1 = 0, is used in this paper.
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B. Using a model nonlinear dielectric function, find the electric field at the exit 

plane of a thin Kerr medium E P, Z1
( + )

C. Fit E P, Z1
( + )  to Laguerre-Gauss modes in the plane.

D. Find E P, Zi  where i indexes the detector planes.

E. Square to find the intensity I P, Zi .

F. Optionally, add shot noise to I P, Zi .

G. To simulate fluctuations in the intensity of the incident beams, integrate the 

intensity on the detector planes given by each incident intensity over the 

probability distribution of incident intensities.

The intensities I P, Zi  are the result of the simulated experiment. The following 

steps may be applied to real or simulated data. Only simulated data are used in 

this paper.

H. Find the coefficients cn in the computational basis which fit the intensity in the 

computational basis.

I. Find the estimated E Z1
( + )

J. Find g0, the function “g” as found in the computational basis.

K. Find n(NL) = − i λ
2πδz

lng0 + C, where C is a real constant to be determined.

L. Determine C by either (a) fitting to zero at some dimensionless radius P  which 

is sufficiently large so that the function is approximately zero or (b) finding 

the difference of the nonlinear susceptibility at the peak and its value at an 

intermediate value of P  such as P = 1.

M. If the (b) method is chosen, the experiment should be repeated with the peak 

intensity scaled down by a factor of η. Eventually, the peak field is small enough 

that an unsaturated scaling relation becomes valid, and the process may be 

terminated. The variable nNL may be found by summing a telescoping series.

D. PROM protocol simulation results

In Fig. 5, results are given for the selected two-level system. Three values for the maximum 

incident electric field are given. In each case, the fields are given for three cases, namely, 

(a) an exact solution if saturation is neglected, i.e., if Eq. (1) applies; (b) for the exact 

solution, including saturation, i.e., using Eq. (9); and (c) the solution found using PROM. 

The quantity plotted is nNL = n2
(u)I or n2

(s)I.

If the maximum incident field is below saturation, the three solutions are seen to be similar, 

as illustrated in Fig. 5(a). Near or beyond saturation, the nonlinear contribution to the 

index of refraction differs greatly from the value given by the unsaturated Kerr effect. 

Nevertheless, PROM is able to reproduce the exact solution, at least for moderate values of 

ρ/w0. Past about ρ = 2w0, the solution is not recovered. If the number of basis functions is 
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increased, the region of agreement may be pushed to somewhat larger ρ/w0, about 2.5 for the 

case of 20 basis functions. The convergence is similar to that plotted in Fig. 2 for the related 

quantity g − 1. Ultimately, it is difficult to get an accurate result at high ρ/w0 because in the 

protocol the electric field after the sample is found and then divided by the incident electric 

field. Since the incident electric field is Gaussian, there is a division of two ever smaller 

numbers as ρ/w0 increases, leading to a loss of numerical significance. The measurement 

must be derived from values obtained when ρ/w0 is not too large, a point we return to below.

The coefficients of the true function are compared to the results obtained with PROM, 

which are given for various numbers of basis functions in Fig. 6, as well as to the exact 

function expanded into Laguerre-Gauss modes without using PROM. The coefficients are 

given accurately for n = 0 − 5. Beyond this, the deviation from the true values is on the order 

of the true value itself. Nevertheless, better results are obtained with more basis functions.

Ultimately, we want to report n(NL) as a function of the incident electric field, although 

it is found as a function of ρ. Of course, the incident electric field, a Gaussian, is also 

a monotonic function of ρ. Intuitively, the result should depend only the incident electric 

field and not on its associated peak electric field. For example, if the maximum electric 

field is 10 kV/m, then the ρ = 0 value gives the nonlinear contribution to the index for that 

field. However, if the maximum electric field is 100 kV/m, then a 10-kV/m field occurs for 

ρ = ln10w0. Operationally, these are very different, so the results of Fig. 7 are an important 

test on the validity of the numerical implementation. Since the curves lie on top of each 

other, it shows the reported field is independent of the maximum electric field, as expected.

1. Results with detector noise—The effect of noise in the detector is shown in 

Fig. 8. The results in the figure were obtained by calculating the intensity on each of the 

three detector planes, then taking the integrated intensity to represent a mean number of 

photons arriving on the plane. The cases shown are for 107,109, and 1012 photons per plane. 

Hence, the total number of photons is three times larger. The intensity at each pixel is 

taken to be the mean of a Poisson distribution. A sampled intensity is made by drawing 

from the distribution for each pixel on each detector plane. The sampling is performed 

50 times, with PROM applied to each sample to estimate the nonlinear contribution to 

the index of refraction. The uncertainties shown in Fig. 8 are statistical. As in Fig. 5, the 

uncertainties grow dramatically as ρ/w0 becomes large. Increasing the number of photons 

allows low-noise results to be recovered at somewhat larger radii, but clearly the ability to 

push out to large radii is limited.

To provide grounding to an experiment, the number of photons is converted to joules. 

Conveniently, for λ = 780 nm, there is 1.6 eV per photon. Hence, 107,109, and 1012 photons 

are 1 pJ, 100 pJ, and 100 nJ, respectively. If 1μW is incident on the detector, the required 

observation times per plane are 1μs, 100μs, and 100 ms, respectively.

2. Results with incident field fluctuations—The effect of fluctuations in the incident 

laser intensity is given in Fig. 9. There, a noise-free calculation for a two-level system 

presented in Fig. 5 is compared to the same result with a Gaussian distribution of input 
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noise. Details about how these fluctuations are treated numerically are given in Appendix E. 

The results lie on top of each other in Fig. 9(a), hence the effect of the intensity fluctuations 

is shown in Fig. 9(b). The scale in Fig. 9(b) is about 100 times smaller than in Fig. 9(a). 

Usually, variations are quoted in terms of the electric field. These would be about double 

the values shown, namely 1 or 20%. These show the protocol is robust to fluctuations in the 

laser intensity.

3. Results with telescoping series—As noted in steps L and M above, PROM gives 

the difference of the nonlinear contribution to the index of refraction. Additional information 

is needed to get the value itself. As noted above, this can be done with a single measurement 

which can be linked to a zero electric-field result, hence the nonlinear susceptibility is zero, 

or to an electric field small enough to be described in the unsaturated regime where other 

methods apply, including the Z scan.

As illustrated above, the results are prone to large uncertainties if taken with ρ/w0 being 

too large, which might occur at a value as little as 2. As an alternative, a telescoping series 

variant is recommended. The differences of the nonlinear susceptibilities at two electric 

fields are given by PROM. A lower electric field will occur on the wings of the incident 

field. In the example shown in Fig. 10, the ratio of a point on the wing to the central value is 

taken to be 2, 4, or 8. In Table III, the nonlinear susceptibility is calculated in three ways and 

compared to the exact answer for the two-level system. As noted above, PROM gives the 

nonlinear susceptibility up to an additive constant. This implies that the differences are given 

correctly. For the results of Table III, the maximum incident field performed seven times 

with factor of 2 steps, namely 1.5625, 3.125, 6.25, 12.5, 25, 50, and 100 kV/m. Let Pk = lnk
for k = 2, 4, 8. The radial positions Pk are chosen so that the electric field differs by a factor 

of k between the peak and some general radial point. The telescoping series was formed in 

three ways. Here, the arguments to n(NL) are the radial position in the variable P = ρ/w0 and 

the electric field (kV/m). If only one argument is present, it is the electric field. For a factor 

of 8 difference, we take

n(NL)(100) = n(NL)(0; 100) − n(NL) P8; 100
+ n(NL)(0; 12.5) − n(NL) P8; 12.5
+ 64

63 n(NL)(0; 1.5625) − n(NL) P8; 1.5625

= n(NL)(100) − n(NL)(12.5)
+ n(NL)(12, 5) − n(NL)(1.5625)
+ 64

63 n(NL)(1.5625) − n(NL)(1.5625/8) .

(26)

This is a telescoping series if n(NL) P8, 100 = n(NL) 0; 12.5  which is true in principle 

because both represent the nonlinear susceptibility for an electric field of 12.5 kV/m. The 

equality is demonstrated numerically in Fig. 6. Hence, the single argument version of 

n(NL)(E) is the nonlinear contribution to the susceptibility for a given electric field. (For 

brevity, the units of kV/m are implied.) All other terms follow by analogy. For the factor of 4 

difference, we take
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n(NL)(100) = n(NL)(0; 100) − n(NL) P4; 100
+ n(NL)(0; 25) − n(NL) P4; 25
+ n(NL)(0; 6.25) − n(NL) P4; 6.25
+ 16

15 n(NL)(0; 1.5625) − n(NL) P4; 1.5625

= n(NL)(100) − n(NL)(25)
+ n(NL)(25) − n(NL)(6.25)
+ n(NL)(6.25) − n(NL)(1.5625)
+ 16

15 n(NL)(1.5625) − n(NL)(1.5625/4) .

(27)

For completeness, for the factor of 2 difference, we take

n(NL)(100) = n(NL)(0; 100) − n(NL) P2; 100
+ n(NL)(0; 50) − n(NL) P2; 50
+ n(NL)(0; 25) − n(NL) P2; 25
+ n(NL)(0; 12.5) − n(NL) P2; 12.5
+ n(NL)(0; 6.25) − n(NL) P2; 6.25
+ n(NL)(0; 3.125) − n(NL) P2; 3.125
+ 4

3 n(NL)(0; 1.5625) − n(NL) P2; 1.5625 .

(28)

The final difference is corrected to account for the susceptibility differences down to E = 0, 

assuming the smallest incident field is in the unsaturated Kerr regime, which is true in the 

example. If the telescoping series involves a change by a factor of γ in the electric field, 

assuming the smallest electric fields are in the unsaturated Kerr regime, then it is simple to 

derive that the final interval must be increased by a factor of γ2/ γ2 − 1  to account for the 

contributions of the E 0 limit. The points used are illustrated in Fig. 10.

The result given in Table III is significant for two reasons. On the one hand, it 

demonstrates a theoretical method which experimentalists could use to measure the 

nonlinear susceptibility in a way which avoids considering values at large radial coordinates 

where there is a potential for noise amplification with the PROM protocol. On the other 

hand, it provides a confirmation of the numerical methods. Although it is obvious that we 

can add and subtract the susceptibility at several intermediate electric fields, in practice, one 

susceptibility is found on the wing of a distribution with a strong incident electric field and 

another is found at the center of a weaker incident field.

IV. CONCLUDING REMARKS

The Z-scan method assumes the lowest-order functional form for the Kerr effect, namely 

n = n0 + n2
(u)I, where n2

(u) is independent of the light intensity I. Under this assumption, it 

is possible to measure n2
(u) using a single-channel detector. Such measurements have been 

performed countless times. However, if n2 itself depends upon the intensity, then the results 
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of the Z-scan method do not necessarily yield the unsaturated n2
(u) or the saturated n2

(s)(I)
values, but rather some functional of n2

(s)(I) which is described by diffraction theory. In this 

paper, some examples of potential errors are presented using a simple analytic model of the 

nonlinear susceptibility, namely a two-level system [28] with Rb-like parameters [29]. At 

low intensities, the Z-scan method does an excellent job of recovering the associated Kerr 

coefficients, but at high intensities the reported values are only semiquantitatively correct.

The Introduction noted several materials for which the saturated susceptibility was 

measured, including atomic vapor cells. If an atomic vapor cell is excited with a Gaussian 

beam with cylindrical symmetry, the response will also have cylindrical symmetry. The 

optical response will depend on the intensity, but it will do so without rapid variation as 

a function of radius. Such a function can be expanded in terms of analytic functions such 

as Laguerre-Gaussian modes in a single plane in a rapidly convergent series [45]. The 

Laguerre-Gaussian mode can be used to predict the intensity on any plane. Each Laguerre-

Gaussian mode is an analytic solution to the paraxial wave equation. The linearity of the 

paraxial wave equation guarantees that linear combinations of Laguerre-Gaussian modes 

also are solutions. Hence, we can write an objective function to compare the goodness of 

fit in the measurement space for complex coefficients referring to the interaction plane. The 

simplest objective function is a least-squares fit. In the absence of noise, the recovery is 

excellent. The PROM protocol is robust to both noise in the detector and fluctuations in the 

input optical intensity.

The required observation times and robustness to incident light fluctuations put low 

demands on laser stability or human resources, suggesting the experiment could be 

performed by a small, albeit specialized, research group in a single day. The required 

computing resources are also modest: an individual solution of PROM took about 1 h on 

a single processor of a 3.7-GHz workstation using a scripting language. Little effort was 

made to lower the computation time, so this figure should be regarded as an upper bound. 

Hopefully the method can be implemented in a real experiment, leading to an accurate 

measurement of the saturated Kerr effect, a prototypical nonlinear optical phenomenon.
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APPENDIX A: THE Z SCAN AT FINITE DETECTOR POSITION

Sheik-Bahae et al. [11,12] give Eq. (2) for the normalized transmission in the case in which 

the detector is on axis in the far field. As discussed in Sec. II, the incident wave

EA = E0
1 + iZ exp − P2

1 + iZ

(A1)

is multiplied by a phasor
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exp in2ϵ0c
2 EA

2 ≈ 1 + in2ϵ0c
2 EA

2 .

(A2)

The first term is simply EA, and the second term leads to

EB = in2ϵ0c
2 EA

2 1
1 + iZ exp − P2

1 + iZ .

(A3)

Equation (A3) is seen to be a TEM00 Gaussian. The maximum induced phase is given by

ΔΦ0 = n2ϵ0c
2 E0

2 .

(A4)

To make further progress, return to the unscaled variables ρ = Pw0 and Z = zzR, note that EB

is a Gaussian on the plane of the Kerr medium, and identify the real and imaginary parts of 

the reciprocal of the the coefficient of ρ2 to identify the beam waist parameter and distance 

to the focus of EB. The results are that the beam waist of B is given by

w0
(B) 2 = 3w0

2 1 − 8
9 + Z1

2

(A5)

where z1 = Z1zR is the position of the Kerr medium relative to the focus beam EA in unscaled 

units and the focus of beam B is given by

z1
(B) = 8z1

9 + Z1
.

(A6)

With this expression for EB it is possible to calculate the interference of EA and EB at all 

points in space. For example, it is possible to develop an analytic expression for the integral 

over finite apertures. Similarly, using the same expansion as the references, the formula for 

the normalized transmission with the detector at a finite distance is

T = 1 + 4 ZD − Z1 1 + Z1ZD ΔΦ0

1 + Z1
2 1 + 9Z1

2 − 16Z1ZD + 9ZD
2 + Z1

2ZD
2 ,

(A7)

where ZD is the position of the on-axis detector relative to the focus of the laser beam in 

units of the Rayleigh length. Equation (2) is obtained from Eq. (A7) by taking limZD ∞. The 
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function is plotted in Fig. 11 for a few representative cases for variable Z1 at fixed ZD, i.e., 

with the Kerr medium scanned through the laser focus while the detector is held at some 

fixed position relative to the laser focus.

Although the peak and valley amplitudes have a modest dependence on the detector position 

ZD, the effect on their difference is very small. For example, the far-field amplitudes are [12] 

1 ± [( 52 − 5)/3]1/2 ≈ 1 ± 0.203 034, so their difference is approximately 0.406 068. ZD=100, 

(i.e., the detector at 100 Rayleigh lengths from the focus), the peak amplitude, valley 

amplitude, and their difference are 1.206 538, 0.800 434, and 0.406 105 respectively. Some 

numerical calculations in this paper are performed using ZD=100.

APPENDIX B: ADDITIONAL ASSUMPTIONS, COMMON RELATIONS, AND 

PARAMETERS

Some assumptions which were not otherwise given in the text are these: the paraxial 

approximation is valid; the incident field does not have a significant change of amplitude 

when going through the Kerr medium; there are no transient effects in the gas although 

in a real vapor cell the atoms are exposed to the electric field for a time measured in 

microseconds; the detuning Δ is large enough so that thermal broadening can be neglected; 

and the Laguerre-Gauss expansions have a nonvanishing term c0.

Several common relations are listed here. The intensity of light is related to a plane wave 

with electric-field amplitude E by

I = 1
2ϵ0c E

2
.

(B1)

The Rayleigh length is given by

zR = πw0
2

λ

(B2)

where w0 is the Gaussian beam waist parameter. The Rabi (angular) frequency is given by

Ω = dE
ℏ .

(B3)

Also, 1 Hz s = 2π [46].

Parameters used in the calculation are given in Table IV.
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APPENDIX C: EXPANSION OF KERR PHASES INTO LAGUERRE-GAUSS 

FUNCTIONS

We seek the expansion coefficients of

E P; Z1
( + ) = ∑

n
cnfn P; Z1

(C1)

where the cn are complex coefficients. Using the orthonormality relation in Eq. (19),

cn = 2π∫
0

∞
dPPfn

* P; Z1 E(0) 2
π

1
1 + iZ1

× exp − P2
1 + iZ1

g P; Z1 .

(C2)

Taking the form of fn from Eq. (18),

cn = E(0) 1 + iZ1
1 − iZ1

n 4
1 + Z1

2∫
0

∞
dPPLn 2 P2

1 + Z1
2

× exp − P2
1 − iZ1

exp − P2
1 + iZ1

g P; Z1

= E(0) 1 + iZ1
1 − iZ1

n∫
0

∞
dULn(U)G U; Z1 e−U

(C3)

where U = 2P2/ 1 + Z1
2  and G U; Z1 = g P; Z1  Equation (C3) is evaluated numerically 

through the use of NGL Gauss-Laguerre quadrature points Ui with weights wi. The formula is

cn ≈ E(0) 1 + iZ1
1 − iZ1

n ∑
i = 1

NGL
Ln Ui G Ui; Z1 wi .

(C4)

Fortunately, the formula used in the numerical evaluation does not depend on the phase 

factors of the TEM00 Gaussian, but only on the phase induced by the Kerr medium.

APPENDIX D: CONVERSION OF THE KOGELNIK-LI SOLUTION TO 

DIMENSIONLESS FORM

Although the solution for the standard Laguerre-Gaussian modes [41] was given shortly 

after the invention of the laser, the transformation of the stated solution in their Eqs. (34) and 

(35) to dimensionless form took some care. The physical wave is related to the solution to 
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the paraxial wave equation [40] by a factor eikz. Reference [41] takes the plane wave to have 

the form e−jkz. So we set j= − i. Another key simplification is

1
1 + iZ = exp −ln 1 + Z2 1/2 − i arctan(Z) ,

(D1)

where Z = z/zR. Aside from these, the conversion involves routine algebraic 

substitutions applied to the solution in the reference in the following order: k 2π/λ, 

q 1/R + iλ/ πw2 −1, R z + zR
2 /z, λ πw0

2/zR, w w0 1 + z/zR
2 1/2

, z ZzR and 

r Pw0. The expressions were then simplified with computer algebra. The final expression, 

Eq. (18), was verified by showing it is a solution of the dimensionless paraxial wave 

equation, Eq. (17).

APPENDIX E: ACCOUNTING FOR SPREAD OF INCIDENT INTENSITIES 

WITH HERMITE-GAUSS QUADRATURE

To study the effect of a variation of incident intensity, I assume that the incident intensity 

varies as a Gaussian with some specified standard deviation, i.e.,

I P, Zi; E0, σE = 1
2π∫−∞

∞
dI(inc)exp −

I(inc) − I0
2

2σI
2

× I P, Zi; I(inc)

(E1)

where I(inc) is the central optical intensity, σI is its standard deviation, and I P, Zi; Iinc)  is the 

calculation of I P, Zi; E  as discussed in Sec. III.

To evaluate this integral numerically, I use Hermite-Gauss quadrature. Setting 

u = I(inc) − I0 /σI, Eq. (E1) may be written as

I = 1
2π∫−∞

∞
due−u2/2F(u)

(E2)

where the definition of F(u) is given from context. The integral is implemented as the sum

I ≈ ∑
i

W iF ui .

(E3)

Gauss-Hermite quadrature is traditionally given in terms of the integral
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I = ∫
−∞

∞
dxe−x2f(x) ≈ ∑

i
wif xi .

(E4)

Values are given in Abramowitz and Stegun [47] and a formula is given online [48]. From a 

change of variables in the integrals it is easy to show W i = wi/ π and ui= 2xi. Equation (E3) 

is implemented with a 21 point quadrature. The calculation time is dominated by the time 

to find the coefficients cn from the intensity. The Gaussian integral introduces a negligible 

additional computational burden because the intensities are summed before the coefficients 

are recovered.

FIG. 11. 
Normalized transmission curves T  for the Z scan are given with the detector at selected 

finite distances, (solid black) 5 zR, (dotted green) 10 zR, (dashed orange) 100 zR, and (solid 

blue) ∞ or far field, as a function of the position of the Kerr medium from Eqs. (2) as 

Z1 = z1/zR and (A7). The Kerr medium is moved during a Z scan. The trough and peak in the 

far field are shown as dashed black vertical lines.
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FIG. 1. 
The real part of the electric field is given for (Incident, black) an incident TEM00 Gaussian 

beam with maximum field strengths on Z = 0 of (a) 25 kV/m, (b) 50 kV/m, and (c) 100 

kV/m, for the field after passing through a thin Kerr medium with parameters from Ref. [8] 

as approximated (Exact, blue) using the saturable nonlinear susceptibility from a two-level 

system. (Z, orange) denotes the approximation of the Z-scan method, and (K, green) denotes 

an ideal Kerr susceptibility. The labels are further defined in Table I. For this system, s = 1
corresponds to 38 kV/m.
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FIG. 2. 
True function g − 1 (solid red) vs finite Laguerre-Gauss expansion with 5, 10, 15, and 20 

basis functions (dashed black) for a maximum central field of 100 kV/m. The thin Kerr 

medium is at the focus Z = 0. This fit is made to the electric field just past the sample.
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FIG. 3. 
(a) For the low electric-field value of 5 kV/m, the Z scan (black, solid) as calculated with 

the present method is compared to (red, dashed) the analytic result of the Z-scan method, 

Eq. (3); (b) the Z-scan curves are calculated for higher electric fields, 25–100 kV/m, into the 

saturated regime; (c) the peak positions and magnitudes from part (b) are plotted along with 

the analytic and numerically extrapolated limit; (d) similar to (c) for the valley positions and 

magnitudes.
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FIG. 4. 
The Kerr coefficient is calculated (n2

(exact), blue) as a function of the peak intensity for 

a two-level system for the conditions given in the text; (n2
(Zscan), green) is determined by 

finding the Z-scan curve given the intensity-dependent Kerr coefficient presented here, 

finding the peak-valley difference on this curve, interpreting this peak-valley distance using 

low-intensity Z-scan theory, multiplying by constant factors following the procedure of 

McCormick et al. [8] for determining n2
(s). The inset shows the systematic error of this 

procedure using n2
(Zscan)

n2
(exact) − 1. The saturation intensity is marked at I = Isat which corresponds to 

s = 1.
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FIG. 5. 
The real part of the nonlinear index is given for (a) 10 kV/m, (b) 50 kV/m, and (c) 100 

kV/m. The real part of the nonlinear index is given, as calculated (wide dash-dotted black) 

with the two-level system neglecting saturation (wide dashed orange) with the two-level 

system including saturation, and (solid green) as recovered from simulated measurements on 

three detector planes, namely Z = z/zR = 0.5, 1, and 2 using PROM with 12 basis functions. 

An adjustable constant for the green curve was optimized by hand for best agreement.
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FIG. 6. 
The coefficients of the expansion of the electric field after the sample based on (black) a 20 

basis function expansion of the electric field just after passing through the thin Kerr medium 

labeled “20, true”, (orange) a 12, (green) 15, and (blue) 20 basis function expansion, as 

calculated with PROM. The solid lines are a guide to the eye.
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FIG. 7. 
Saturated Kerr coefficient as a function of electric field based on the retrieved answer 

calculated with 20 basis functions and a peak electric field of (orange) 10 kV/m, (green) 50 

kV/m, and (blue) 100 kV/m. The nonlinear indices have been adjusted so that all give the 

same answer at 1 kV/m, a deeply unsaturated value.
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FIG. 8. 
The saturated Kerr coefficient as a function of the radial position, as calculated with PROM 

with a maximum electric field of 50 kV/m using 12 basis functions and shot noise based 

on the intensity, assuming the total number of counts per detector plane is (a) 107, (b) 109, 

and (c) 1012 at each sampled plane in (P , Zdet). Each case is based on 50 samples. The 

uncertainties are statistical, and based on a coverage factor k = 2, often called “2σ,” or 95% 

confidence.
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FIG. 9. 
(a) The saturated Kerr coefficient as a function of the electric field, including (black) the 

exact expression for the two-level system as in Fig. 7, and values found with PROM using 

12 basis assuming the incident electric field varies by (thick orange) 0, (green) 0.5%, and 

(dashed blue) 10%. There is no detector noise. The calculation uses 21 point Gaussian 

integration. In panel (b), the differences of the curves with 0.5 and 10% electric-field 

fluctuations from the noise-free answer are shown. The calculation was done with the 
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computational convention, so differences in Re n(NL) are meaningful, but not the value itself. 

Since all calculations use the same convention, intercomparisons are meaningful.
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FIG. 10. 
The difference of the nonlinear susceptibility as a function of radial position is given 

for several initial field strengths in units of kV/m. The incident electric field follows 

E(ρ) = E0e− ρ/w0
2
. The dashed vertical lines indicate the radial position for which the 

incident field has fallen by a given factor. The black dots are the points used to evaluate 

the series given in Eqs. (26)–(28).
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TABLE I.

Formulas corresponding to the curves given in Fig. 1.

Label Expression

Incident E P, Z1
( − )

 from Eq. (11)

Exact E P, Z1
( + )

 from Eq. (13)

Z E P, Z1
( − ) 1 − in2

(u)I 2π
λ δz

K E P, Z1
( − ) exp −in2

(u)I 2π
λ δz
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TABLE III.

The nonlinear contribution to the susceptibility at E = 100kV/m, (Exact) as calculated from the two-level 

system, or (Telescoping) with a telescoping series based on the difference of the susceptibilities of two 

different fields. The label “2,” “4,” or “8” implies there is a factor of 2, 4, or 8 difference between these two 

fields

106Ren(NL)

Exact −34.32

Telescoping 2 −34.26

Telescoping 4 −34.30

Telescoping 8 −34.46
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TABLE IV.

Parameters used in the calculation. The number density is for 87 Rb using the 72% natural abundance.

Quantity Value Remark

Grid points in P Zero to ten in steps of 0.1 101 points

Optical frequency ω0 384.230 484 468 5 THz

d 2.52 × 10−29 C m

nden 0.72 × 1018 m−3

Γ sp 38.11 × 106 s−1

δz 1 mm

Δ −1 GHz

zR 6 mm

w0 38.6 μm Eq. (B2)

Zdet 0.5, 1, 2
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