
Closing the gap between open-source and commercial large
language models for medical evidence summarization

Gongbo Zhang1, Qiao Jin2, Yiliang Zhou3, Song Wang4, Betina R. Idnay1, Yiming Luo5, Elizabeth Park5,
Jordan G. Nestor5, Matthew E. Spotnitz6, Ali Soroush7,8,9, Thomas Campion3,10, Zhiyong Lu2, Chunhua

Weng1,*, and Yifan Peng3,10,*

1Department of Biomedical Informatics, Columbia University, New York, NY, USA
2National Center for Biotechnology Information, National Library of Medicine, National Institutes of

Health, Bethesda, MD, USA
3Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA

4Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
5Department of Medicine, Columbia University, New York, NY, USA

6Office of the Director, National Institutes of Health, Bethesda, MD, USA
7Division of Data-Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY,

USA
8Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New

York, NY, USA
9Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York,

NY, USA
10Clinical & Translational Science Center, Weill Cornell Medicine, New York, NY, USA

*Corresponding: Yifan Peng, yip4002@med.cornell.edu; Chunhua Weng,
cw2384@cumc.columbia.edu

Abstract

Large language models (LLMs) hold great promise in summarizing medical evidence. Most
recent studies focus on the application of proprietary LLMs. Using proprietary LLMs intro-
duces multiple risk factors, including a lack of transparency and vendor dependency. While
open-source LLMs allow better transparency and customization, their performance falls short
compared to proprietary ones. In this study, we investigated to what extent fine-tuning open-
source LLMs can further improve their performance in summarizing medical evidence. Utiliz-
ing a benchmark dataset, MedReview, consisting of 8,161 pairs of systematic reviews and sum-
maries, we fine-tuned three broadly-used, open-sourced LLMs, namely PRIMERA, LongT5,
and Llama-2. Overall, the fine-tuned LLMs obtained an increase of 9.89 in ROUGE-L (95%
confidence interval: 8.94-10.81), 13.21 in METEOR score (95% confidence interval: 12.05-
14.37), and 15.82 in CHRF score (95% confidence interval: 13.89-16.44). The performance of
fine-tuned LongT5 is close to GPT-3.5 with zero-shot settings. Furthermore, smaller fine-tuned
models sometimes even demonstrated superior performance compared to larger zero-shot mod-
els. The above trends of improvement were also manifested in both human and GPT4-simulated
evaluations. Our results can be applied to guide model selection for tasks demanding particular
domain knowledge, such as medical evidence summarization.
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1 Introduction

Medical evidence plays a critical role in healthcare decision-making. Particularly, systematic reviews and
meta-analyses of randomized controlled trials (RCTs) are considered the gold standard for generating robust
medical evidence.1,2 However, systematically reviewing multiple RCTs is laborious and time-consuming.3

It requires retrieving relevant studies, appraising the evidence quality, and synthesizing findings. Mean-
while, systematic reviews frequently become obsolete upon publication, primarily due to protracted review
processes. The delay is exacerbated by the exponential increase in scientific discoveries, exemplified by over
133,000 new clinical trials registered at ClinicalTrials.gov since 2020.4 As such, it is imperative to establish
an efficient, reliable, and scalable automated system to streamline and accelerate systematic reviews.

Typically, systematic reviews include quantitative and qualitative reports,5 the former being a statistical
meta-analysis of relevant clinical trials, and the latter being a concise narrative explanation of the quantita-
tive results.6,7 Language generation technologies could potentially be employed to auto-generate such narra-
tives, yet they have not been widely applied for medical evidence summarization.7 Text summarization has
attracted research attention for decades. Earlier techniques relied on extracting key phrases and sentences
through rules or statistical heuristics like word frequency and sentence placement.8–12 These methods, how-
ever, struggled with comprehending context and generating cohesive summaries. A significant shift occurred
with the adoption of neural network-based methods, enhanced by attention mechanisms.13–19 These mech-
anisms enable the model to concentrate on various input segments and understand long-range connections
between text elements. This advancement allows for a deeper grasp of context, leading to smoother and
more precise summaries.

Recent advancements in generative Artificial Intelligence (AI), notably large language models (LLMs), have
shown tremendous potential in comprehending and generating natural language.1,20 While these generalist
models perform well across diverse tasks, they fail to capture in-depth domain-specific knowledge, particu-
larly in biomedicine.21,22 Furthermore, despite the relevant superior performances compared to open-source
alternatives,7,23–26 the disadvantages of closed-source models were rarely discussed or even mentioned.27,28

The lack of transparency of closed-source models makes it challenging to understand the model behavior
and troubleshoot customized variants. Moreover, reliance on closed-source models raises the risks associ-
ated with changes in service terms or discontinuation of services, which pose a critical threat to long-term
projects. Open-source models provide a promising solution to mitigate the above risks.

While multiple open-source model architectures were proposed for either general-purpose foundation mod-
els or specifically for text summarization, few have been optimized to synthesize medical evidence. Gutier-
rez et al. compared the in-context learning performance of GPT-3 with fine-tuned BERT models on Named-
Entity Recognition tasks in the biomedical domain.29 Tang et al. assessed zero-shot GPT-3.5 and Chat-
GPT on summarizing Cochrane review abstracts.7 The above related studies, however, did not focus on
fine-tuning open-source models for medical evidence summarization. It’s also unclear to what degree the
optimization strategies, e.g., few-shot learning or fine-tuning, can help bridge the performance gap between
open-source models and cutting-edge closed-source alternatives. To quantitively assess fine-tuning tech-
nologies to enhance open-source LLMs for medical evidence summarization, we experimented with three
broadly used open-sourced LLMs: PRIMERA,15 LongT5,14 and Llama-2,25 including both architectures
designed specifically for text summarization and architectures of generalist foundation models. Fine-tuning
these models is challenging due to the substantial requirement for computational resources and the risk
of catastrophic forgetting, a phenomenon in machine learning where the performance degrades on tasks
where the LLM initially performed well.30 To address these issues, we employed Low-Rank Adaptation
(LoRA),31 which is a parameter-efficient fine-tuning method focusing on updating only a minimal amount
of model parameters during the fine-tuning process.
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To facilitate future studies on leveraging LLMs for medical evidence summarization, we present a bench-
mark dataset, MedReview, consisting of 8,161 pairs of meta-analysis results and narrative summaries from
the Cochrane Library,32 published on 37 topics between April 1996 and June 2023. The dataset consists of
training, validation, and test sets (see details in the Method section and Supplement Table 1). This collection
is an extension of our previous study of evaluating LLMs for evidence summarization7 and covers a wider
range of specialties and writing styles, which highlight common text summarization challenges (Figure 1a).

2 Results

2.1 Comparison of different LLMs in automatic evaluations

First, we fine-tuned PRIMERA, LongT5, and Llama-2 using the LoRA method (Figure 1b). We observed
that fine-tuning considerably improved the performance of most models (p < 0.01, Figure 2). Specifically,
LongT5 models benefited the most from fine-tuning, which led to an increase from 14.72 to 24.61, 15.06
to 28.27 in METEOR, 15.15 to 38.81 in CHRF, and 36.05 to 51.43 in PICO-F1 (Supplementary Table 2).
In contrast, PRIMERA demonstrated a relatively moderate improvement with a ROUGE-L increase from
18.90 to 20.48, METEOR increase from 25.15 to 26.50, and PICO-F1 increase from 43.22 to 49.47. How-
ever, there was a slight decrease in the CHRF from 39.25 to 37.84. Overall, the fine-tuned LLMs improved
the ROUGE-L score by an absolute of 9.89% (95% confidence interval of improvement: 8.94-10.81), the
METEOR score by 13.21 (95% confidence interval of improvement: 12.05-14.37), and the CHRF score by
15.82 (95% confidence interval of improvement: 13.89-16.44). These recently released models all outper-
formed the fine-tuned variant of BART, the previous SoTA. The fine-tuned BART achieved 17.74, 27.49,
and 40.54 in ROUGE-L, METEOR, and CHRF, respectively. We compared the fine-tuned models with
GPT-3.5-turbo, one of the most widely known and cutting-edge closed-source LLMs. Zero-shot GPT-3.5-
turbo achieved 23.15 in ROUGE-L, 28.83 in METEOR, and 39.74 in CHRF scores. The performance gaps
between the open-source models and GPT-3.5-turbo were reduced after fine-tuning. The fine-tuned LongT5
achieved similar results as GPT-3.5-turbo (Supplement Table 2). We also conducted a pilot study using
GPT-4. The summaries generated by GPT-3.5-turbo and GPT-4 are not significantly different; as such, we
only use GPT-3.5-turbo for comparison.

Furthermore, while few-shot learning helped reduce the performance gap, LLMs fine-tuned with the full
training data still demonstrated better performance. We constructed two sets of few-shot learning baselines,
one based on few-shot prompting and the other based on few-shot fine-tuning (see details in Methods). Un-
der 1-, 2-, and 5-shot prompting, Mixtral-8x7B achieved 24.87/24.53/24.99 in Rouge-L, 27.82/25.78/27.59
in METEOR, 37.63/35.61/37.42 in CHRF respectively. After fine-tuning using 100 randomly selected sam-
ples, PRIMERA achieved 19.11 in ROUGE-L, 24.98 in METEOR, and 39.01 in CHRF; LongT5 was mod-
erately improved with few-shot fine-tuning, resulting in 15.06 in ROUGE-L, 16.17 in METEOR, and 24.81
in CHRF.

We also calculated Pearson correlation coefficients among different automatic metrics using the entire test
set (Supplementary Figure 2). Most metrics are strongly positively correlated with each other; with a few
exceptions, most coefficients are larger than 0.7. The only exceptional metric is the PICO coverage, which
is only weakly positively correlated to the others, with coefficients ranging between 0.33 and 0.46. As
discussed above, zero-shot models tend to verbatim replicate the input, which is already abundant in PICO
concepts, since we selected only the objective and main results section of the review abstracts.

2.2 Comparison between zero-shot LongT5-xl and fine-tuned LongT5-base

Next, we investigated whether fine-tuned smaller models have the capability to outperform zero-shot larger
models. To this end, we fine-tuned the LongT5-base model, which has 10% fewer parameters than LongT5-
xl. Figure 3 shows that fine-tuned LongT5-base outperforms zero-shot LongT5-xl. We also found that
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a

b
Model Developer 

Context 
Window Size 

Open 
Source 

Summarization 
Task Specific 

# of Trainable 
Params 

(LoRA r=8) 

Total # of 
Params 

PRIMERA AI2 4,096 Y Y 1.18M (0.26%) 448.40M 
LongT5-base Google 16K Y Y 3.54M (1.41%) 251.13M 
LongT5-xl Google 16K Y Y 4.72M (0.17%) 2.85B 
Llama-2 Meta 4,096 Y N 16.38M (0.02%) 69.0B 
GPT 3.5 OpenAI ≥ 4K N N N/A 175B 
GPT 4 OpenAI ≥ 4K N N N/A N/A 

 

Figure 1: Overview of topic distribution of the MedReview dataset and LLMs in this study. a, Topic
distribution of the MedReview dataset. b, Choice of LLMs in this study.
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Figure 2: Performance of different medical evidence summarization systems in automatic evaluations. The
p-value was calculated using a paired t-test to determine the statistical significance of the difference between
the models. FT - fine-tuning; ZS - zero-shot learning; * - p < 0.05; ** - p < 0.01; *** - p < 0.001; **** -
p < 0.0001; ns - Not significant.
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Figure 3: Comparison between zero-shot LongT5-xl and fine-tuned LongT5-base. FT - fine-tuning; ZS -
zero-shot learning; * - p < 0.05; ** - p < 0.01; *** - p < 0.001; **** - p < 0.0001; ns - Not significant.
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Figure 4: Human and GPT4-simulated evaluation of LLM-generated summaries. a, Performance of differ-
ent summarization systems in human evaluations using win-rates against zero-shot Llama-2 (Llama-2-zs).
The dotted line represents the default 50% win-rate of the Llama-2-zs. b, Performance of different sum-
marization systems in GPT4-simulated evaluation using win-rate. The dotted line represents the default
win-rate of Llama-2-zs. zs - zero-shot learning; ft - fine-tuning.

this observed trend holds across different LLM architectures. For instance, the performance of fine-tuned
PRIMERA and LongT5 exceeded that of zero-shot Llama-2 (Supplementary Table 2), even though the latter
model comprises at least 20 times more parameters.

2.3 Qualitative evaluation

Finally, we conducted a comprehensive human evaluation and a GPT-4 simulated26 evaluation of machine-
generated summaries. Our baseline, zero-shot Llama-2, is one of the latest and largest open-sourced LLMs.
In both evaluations, we requested clinical experts or GPT-4 to select the better summary from a pair of
candidates - one generated using the baseline and the other generated using our fine-tuned models. The
win-rate is the ratio of machine-generated summaries evaluated as better than the baseline. The baseline
win-rate is 50%, given that (1) zero-shot Llama-2 is being compared to itself, (2) all pairs of summaries to
be compared are identical, and (3) ties are broken randomly.24

According to the human evaluation, fine-tuned Llama-2 was preferred to zero-shot, with the win-rate in-
creased from 50% to 59.20% (Figure 4a, Supplementary Table 3). Fine-tuned PRIMERA and LongT5
models also achieved 54.47% and 59.68% win-rate against the zero-shot Llama-2.

We further asked the evaluators to share the rationale behind their preference for the chosen summaries.
The fine-tuned models were compared with zero-shot Llama-2 on multiple dimensions that have been estab-
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Figure 5: The number of summaries where zero-shot LLama-2 generated better summaries (left/red), in
contrast to the cases where the fine-tuned models generated better summaries (right/blue). As compared
to zero-shot LLama-2, fine-tuned models produced more comprehensive, readable, consistent, and specific
summaries in general. Despite PRIMERA and LongT5 having much smaller model architectures, they
significantly outperformed zero-shot LLama-2 after fine-tuning. LLama-2 was also improved in all aspects
via fine-tuning.

lished as desired properties of summaries.7,33 Figure 5 shows the number of cases where zero-shot LLama-2
generated better summaries (left/red), in contrast to the cases where the fine-tuned models generated better
summaries (right/blue). With few exceptions, LLMs were improved in all aspects after fine-tuning (Supple-
mentary Table 5). By manually comparing the summaries generated by zero-shot and fine-tuned models,
we found that zero-shot models tend to present a detailed background of the summarized studies but do
not provide any findings or conclusions, i.e., they present a high resemblance of leading sentences in the
paragraphs. Recall that word embeddings are combined with positional embeddings to represent each token
in a document in transformer architecture. In general summarization tasks, the key information is typically
presented in leading or concluding sentences. The ordering of key information and other redundant informa-
tion can impact the positional embeddings during pre-training. The zero-shot open-source summarization
models mostly extract the leading sentences instead of key information. This indicates that positional em-
beddings significantly impacted the summary more than word embeddings in zero-shot open-source models.
On the other hand, fine-tuned models align more closely with ground-truth summaries, which can provide
supportive evidence or identify the lack of sufficient evidence for intervention outcomes.

The GPT-4 simulated evaluation also indicates a significant improvement in all models after fine-tuning
(Figure 4b). In addition, 257 out of 378 simulated evaluation results concord with the judgment of human
experts (68% accuracy).

We also evaluated all models on two distinct test sets of review articles (Supplementary Table 4). One
group, denoted as “after cutoff,” was published after the latest knowledge cutoff date of every model, i.e.,
no articles in this group were used in pre-training the foundation models. The other group, denoted as
“before cutoff”, was published before the knowledge cutoff date; the articles in this group may be used
for pre-training purposes. On both the “after cutoff” and the “before cutoff” test sets, fine-tuned models
demonstrated improved performances. Recap that all articles used for fine-tuning were published “before
cutoff”. This demonstrates the generalizability of fine-tuned models “before cutoff” data on “after cutoff”
test data.

3 Discussion

In this study, we focused on comparing open-source and closed-source LLMs in medical evidence sum-
marization. While closed-source models, exemplified by GPT families and others, demonstrated superior
performance as compared to open-source alternatives, the risks associated with using closed-source models
are not negligible, which include lack of transparency, reliance on external dependency as a single-point-of-
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failure, potentially high-cost in migration to other vendors. Furthermore, it’s still unclear whether patients
would consent to have their information utilized in LLMs, especially when they were unaware of and unable
to understand what the LLMs will be used. However, such disadvantages were not paid enough attention.
To mitigate the above risks, we investigated recently released open-source LLMs for medical evidence sum-
marization. To our best knowledge, open-source models still fall behind in natural language understanding,
as compared to closed-source ones. Based on the observation that fine-tuning can enhance, we validate prin-
ciples of model optimization within evidence summarization and quantitatively measure the performance
boost via fine-tuning.

To facilitate future studies in this direction, we first introduced MedReview, a collection of meta-analysis
and summary pairs to assist in fine-tuning LLMs for medical evidence summarization. We further showed
that open-source LLMs, including LongT5, PRIMERA, and Llama-2, demonstrated improved summariza-
tion performance after fine-tuning with MedReview, even close to GPT-3.5-turbo. This observation also
confirms that these generalist models perform well across diverse tasks but need more in-depth domain-
specific knowledge, e.g., in biomedicine. While few-shot learning has been effective in other NLP tasks, the
applicability is still limited by the context window within lengthy document summarization. Fine-tuning is
a robust approach to bridge this performance gap between open-source models and closed-source alterna-
tives, while maintaining the advantages of transparency, easy customization, maintenance, and migration.
However, the manual evaluation results show that fine-tuning does not guarantee truthful and accurate sum-
maries. This issue was also reported in the previous evaluation of zero-shot GPT models.7 This highlights
that trustworthy summarization of medical evidence remains challenging and unresolved.

In addition, the usage of large models is limited by the high demand for computing resources. Our exper-
iments indicated that smaller models, when fine-tuned, can outperform zero-shot larger models on specific
tasks. This is observed in two experiments. First, the fine-tuned LongT5-base performs better than the zero-
shot LongT5-xl (Figure 3). Second, PRIMERA and LongT5-xl, despite being smaller in size than Llama-2
(70B), demonstrated enhanced performance than the latter one upon fine-tuning (Figure 5, Supplement Ta-
ble 2). In the cases of limited computing resources, PRIMERA demonstrated robust performance in medical
evidence summarization in the few-shot fine-tuning setup, which confirms the findings of the original reports
of the PRIMERA paper. However, few-shot fine-tuned models underperformed as compared to those fully
fine-tuned on the entire training data.

The evaluation of LLM-generated summaries presents another challenge in this task. Automatic metrics
frequently used for text summarization can, at best, measure the similarity between word distributions of
references and LLM-generated summaries. These metrics do not correlate strongly with properties of de-
sired summaries, such as factual comprehensiveness and consistency. As such, human evaluation, especially
those from clinical experts, is still critical but not scalable. Therefore, we used GPT-4 as a simulated evalua-
tor and found that 68% of GPT4-simulated evaluation results aligned with human judgments. These findings
suggest that GPT-4 holds the promise to not only facilitate summary evaluation, but also to provide feedback
to align the summarization model with simulated expert feedback. The simulated evaluation results further
confirmed that fine-tuned smaller models can surpass larger zero-shot models (Figure 4b). This observation
is consistent with the improvement discussed in the automatic evaluation.

Summarization systems have diverse applications, particularly benefiting researchers and healthcare pro-
fessionals. For researchers engaged in systematic reviews, these systems can analyze clinical trial reports
efficiently, pinpointing relevant studies and distilling essential findings without requiring exhaustive docu-
ment review. This significantly speeds up the research process. Healthcare professionals and policymakers,
on the other hand, can utilize these systems to efficiently grasp the latest clinical trials’ outcomes and im-
plications, which is vital for informed decision-making concerning patient care, treatment guidelines, and
healthcare policies, especially under the urgent pandemic conditions. Furthermore, by condensing the latest
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clinical trial information, summarization systems provide concise, current data to clinical decision support
systems, assisting healthcare providers in making evidence-based treatment decisions customized to their
patients’ specific needs.

This study has certain limitations. Due to the restricted time and resources, we cannot extensively explore
fine-tuning models such as Claude, GPT-3.5-turbo, and GPT-4. Instead, we mainly focused on open-sourced
LLMs. This restriction, however, does not impact the applicability of our study in the clinical domain.
We believe that open-sourced LLMs foster wider collaboration and transparency, thus forwarding research
progress as other researchers can enhance, modify, and refine these models. Plus, by advocating for the
democratization of technology, these LLMs encourage a more extensive use and a potentially higher rate of
innovation. Another limitation is that the LLMs were not fine-tuned to summarize clinical trial publications
but the manually curated “main results” of review abstracts. This study design was initially aimed at simpli-
fying and expediting the development and testing of our summarization algorithms. A future direction is to
deploy LLMs to directly synthesize information from clinical trials.

To summarize, our findings underscore the utility of fine-tuning as a robust technique for bridging the
performance gap between open-source LLMs and closed-source ones, reinforcing its applicability across a
spectrum of model architectures and sizes, and setting the stage for more nuanced investigations into the
efficiency and effectiveness of model optimization strategies. However, additional research is warranted to
fully uncover the potential of LLM in this context.

4 Methods

4.1 Data Collection

We collected 8,161 abstracts of systematic reviews from the Cochrane Library.32 Unlike abstracts of the
biomedical literature, which are highly condensed summaries, systematic review abstracts provide a struc-
tured overview that enables readers to quickly determine the validity and applicability of the review. These
abstracts typically follow a common structure, detailing preferred reporting items.5 The Cochrane review
abstracts present background, objectives, search methods, selection criteria, data collection and analysis,
main results, and authors’ conclusions. Within such a self-contained structure, the authors’ conclusion
presents a narrative summary of the most salient details of the included clinical studies.7 This section is one
of the first to consult when healthcare providers seek answers to clinical questions. Given the meta-analysis
results as input, we aim to automatically reproduce this narrative summary. The collected reviews cover a
wide range of topics, including but not limited to neurology, gastroenterology, rheumatology, nephrology,
and radiology. The publication dates of the reviews range from April 1996 to June 2023.

We split the dataset into distinct training (91.56%), validation (4.83%), and test (3.61%) sets, ensuring
that all of the samples appear in one set (Supplementary Table 1). All LLMs were prepared with a large
extent of public textual data collected until a certain moment, known as the cutoff. To maintain a legitimate
comparison between LLMs, we put all articles published after September 2022 as test data (because most
LLMs studied in this study used the data up to September 2022). Articles published prior to this are primarily
used for training and validation. The division of training and validation was stratified according to the time
of publication.

Few-shot Baselines

Few-shot learning has been proven an effective and sample-efficient strategy for optimizing task-specific
LLMs. We construct two few-shot learning baselines, one based on prompting and the other on fine-tuning.

For few-shot prompting, we use Mixtral-7x8B for the few-shot prompting foundation model. Due to the limit
on token numbers, other open-source models cannot fit demonstrations of long document summarization in
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the context windows. We randomly selected 1, 2, and 5 samples from the training set as demonstrations.
For few-shot fine-tuning, we followed the findings of the PRIMERA report that LLMs can be reasonably
adapted to domain-specific tasks with a limited number of labeled samples. We used the same setup as the
few-shot experiments in the PRIMERA, where we randomly selected 100 samples from the training set and
fine-tuned LLMs.

4.2 Fine-tuning LLMs

We investigated several LLM architectures that have recently surfaced for tasks related to summarization
tasks or as foundation models. In this study, we only consider models that satisfy the following two condi-
tions. First, models need to be publicly accessible and open-sourced to ensure the transparency and account-
ability of the models. Second, context windows need to be long enough to digest input without requiring
condensation or truncation. Bearing all these factors in mind, we included PRIMERA, LongT5, and Llama-
2 in our studies. PRIMERA deploys a pretraining strategy named Entity Pyramid to select and aggregate
salient information focusing on document summarization.15 LongT5 is an extension of T5 architecture that
adopts a summarization pretraining strategy to scale up the input length.14 Llama-2 is one of the recently
released open-source, scalable foundation models with 7B, 13B, and 70B parameters.25 Since Mixtral-8x7B
demonstrated similar benchmark performance as Llama-2, we did not fine-tune Mixtral-8x7B.23 Instead, we
report the few-shot prompting performance of Mixtral-8x7B.

Following a previous work,7 we selected the objective and main results sections of a review abstract as
input and used the authors’ conclusion as a reference to fine-tune models. We applied the LoRA method,
which keeps the original parameters frozen and adjusts only a relatively small number of extra parameters
via matrix decomposition.31 The exact number of parameters depends on the rank hyperparameter in the
LoRA method. We refer the readers to the original LoRA paper for technical details.31

Our implementation uses the following libraries, transformers,34 torch,35 and PEFT.36 Most fine-tuning
jobs were completed on AWS and our local lab servers. Llama-2 models were fine-tuned on SageMaker
platform. All models were fine-tuned for 1 epoch, within which the validation loss had already stopped
decreasing. We set the learning rates to 3e-5,15 1e-4,25 and 1e-314 for PRIMERA, LLama-2, and LongT5
models, respectively. We set the rank hyperparameter of LoRA to 8.31

4.3 Evaluation Metrics

We first use the natural language generation (NLG) metrics to evaluate the quality of the generated summary.
These metrics include ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) and METEOR (Met-
ric for Evaluation of Translation with Explicit Ordering) scores. We also include the CHRF (CHaRacter-
level F-score), which was reported to correlate highly with the readability of generated text.33 Their values
range from 0.0 to 100.0, with a score of 100.0 indicating that the generated summaries are identical to the
reference summary. The model performance on our test is approximately normally distributed and the per-
formance of each model is independent of others. As such, we calculated the p-value using a paired t-test to
determine the statistical significance of the difference between the two models.

4.3.1 PICO metrics

NLG metrics are known to be inadequate for evaluating factual completeness and consistency.33 We there-
fore propose to use a PICO (Participants, Interventions, Comparison, and Outcomes) extraction system to
evaluate the accuracy of the generated summaries. More specifically, we fine-tuned a BERT-based13 model
to extract PICO concepts and then score a generated summary by comparing the values of these PICO el-
ements obtained from the reference. We consider a PICO element to be a true positive, if it satisfies two
conditions: (1) the text in the reference overlaps with the text in the generation, and (2) the two entity
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types should have the same PICO category. The micro averages for precision, recall, and F1 scores are all
computed over the PICO components.

4.3.2 Human evaluation

We conducted a review of the summary quality via human evaluation. The quality is measured from four
aspects: consistency, comprehensiveness, specificity, and readability, which were established as essential
factors for measuring machine summary quality. Consistency indicates whether the summary contradicts
the input source. Comprehensiveness measures coverage of key information of input. Specificity measures
the preciseness and conciseness of the summary. Readability indicates a machine summary is fluent and free
of grammatical errors that hinder understanding.

To evaluate the machine summaries, we invited 7 clinical experts, each specializing in one or two of the
following specialties, including Gastroenterology, General Surgery, Internal Medicine, Nephrology, Neu-
rology, Radiology, and Rheumatology. All experts have obtained MD training and currently provide direct
patient care. Following a recent LLM study,24 we request the experts to compare the quality of different
machine summaries (interface shown in Supplementary Figure 1). Specifically, according to their domain
knowledge, each expert was assigned review abstracts along with three summaries: (1) the Authors’ conclu-
sion section, (2) zero-shot Llama-2, and (3) one of the fine-tuned models. From the zero-shot baseline and
the fine-tuned models, the experts will select which one generates a better summary. To reduce the potential
order-related bias, the order of summaries generated by zero-shot Llama-2 and fine-tuned summaries was
randomized. We further asked the experts to choose the reasons for their choices.

4.3.3 GPT-4 evaluation

Like many other annotation scenarios, collecting experts’ feedback is not scalable with respect to the samples
to be labeled. In addition to our manual review, we explored the use of GPT-426 as a simulated expert to
answer the same questions as those assigned to human experts. Instead of selecting a sample of test data
as in the manual review, we used the model summaries for all test articles for GPT-4 evaluation. We also
analyzed the percentage of questions that human judgments agree with the GPT-4 evaluation.

Data availability

The data can be accessed at https://github.com/ebmlab/MedReview.

Code Availability

The code can be accessed at https://github.com/ebmlab/MedReview.
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[33] Fabbri AR, Kryściński W, McCann B, Xiong C, others. Summeval: Re-evaluating summarization
evaluation. Transactions of the. 2021.

[34] Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz
M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Le Scao T, Gugger S, Drame
M, Lhoest Q, Rush A. Transformers: State-of-the-Art Natural Language Processing. In: Liu Q,
Schlangen D, editors. Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Online: Association for Computational Linguistics; 2020. p. 38–
45. doi: 10.18653/v1/2020.emnlp-demos.6.

[35] Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A.
Automatic differentiation in PyTorch. In: Neural Information Processing Systems (NIPS 2017); 2017.
p. 1–4.

[36] Mangrulkar S, Gugger S, Debut L, Belkada Y, Paul S, Bossan B. PEFT: State-of-the-art Parameter-
Efficient Fine-Tuning methods.

15



Supplementary Figure 1: User interface for collecting human feedback. The upper box shows an example
summary produced by a studied LLM. The lower box displays the multiple choice question about the ratio-
nale of the human evaluators’ preference.
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Supplementary Figure 2: Pearson Correlation Coefficients (r) among evaluation metrics. The natural
language generation (NLG) metrics have a strongly positive correlation between each other (r > 0.68).
The PICO metrics have a moderate positive correlation with NLG metrics, (0.15 < r < 0.46). Recall that
NLG metrics focus on lexical similarity while PICO metrics focus on coverage of key information (PICO
elements in the summary).
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Supplementary Table 1: Dataset used for medical evidence summarization task.

Dataset n

Training 7,472
Validation 394
Test 295
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Supplementary Table 2: Automatic evaluation scores of LLMs.

BART GPT-3.5 PRIMERA LongT5-base LongT5-xl Llama-2

Metrics FT ZS ZS FT ZS FT ZS FT ZS FT

ROUGE-L 17.74 23.15 18.90 20.48 14.67 23.66 14.72 24.61 17.21 19.91
METEOR 27.49 28.83 25.15 26.50 14.70 25.93 15.06 28.27 19.69 25.02
CHRF 40.54 39.74 39.25 37.84 22.24 36.38 22.99 38.81 30.24 36.42
PICO Precision 42.29 48.61 34.86 49.18 52.61 53.32 49.73 53.76 50.83 55.28
PICO Recall 59.63 66.40 56.88 49.77 31.77 54.36 31.25 60.21 45.58 48.97
PICO F1 49.49 56.41 43.22 49.47 39.61 53.83 38.38 56.80 48.07 51.93
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Supplementary Table 3: Human evaluation of fine-tuned models.

Model AD/Dementia/
Neurology

Gastro-
enterology

Internal
Medicine Nephrology Rheuma-

tology Surgery Overall

PRIMERA 12/18 13/18 24/36 9/18 5/18 6/18 (69/126) 54.76%
LongT5 12/18 12/18 25/36 13/18 6/18 7/18 (75/124) 59.52%
Llama-2 15/18 10/18 24/36 8/18 9/18 8/18 (75/126) 58.73%
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Supplementary Table 4: Simulated evaluation by GPT-4.

Model Before Cutoff After Cutoff

Llama-2
ZS 50.00* 50.00*
FT 67.39 69.49

PRIMERA
ZS 19.08 18.98
FT 55.56 54.58

LongT5
ZS 35.02 31.53
FT 74.88 77.97
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Supplementary Table 5: The number of summaries with better qualities.

# of summaries with better qualities

Zero-shot Llama-2 Fine-tuned models

Model Desired Properties n % n %

PRIMERA (ft) Comprehensiveness 19 (15.08%) 47 (37.30%)
Consistency 32 (25.40%) 45 (35.71%)
Readability 38 (30.16%) 37 (29.37%)
Specificity 33 (26.19%) 35 (27.78%)

LongT5-xl (ft) Comprehensiveness 22 (17.46%) 38 (30.16%)
Consistency 30 (23.81%) 49 (38.89%)
Readability 32 (25.40%) 48 (38.10%)
Specificity 26 (20.63%) 35 (27.78%)

Llama-2 (ft) Comprehensiveness 23 (18.25%) 50 (39.68%)
Consistency 34 (26.98%) 40 (31.75%)
Readability 36 (28.57%) 52 (41.27%)
Specificity 24 (19.05%) 35 (27.78%)
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Supplementary Table 6: Summaries generated by zero-shot, fine-tuned LongT5, GPT-3.5-turbo, input
article doi: 10.1002/14651858.CD012458.

Model Summary

LongT5(zero shot) Our secondary objective was to assess the effect of single-room isolation
or cohorting, or both on neonatal mortality and perceived or documented
adverse effects in newborn infants admitted to the NICU.

LongT5(fine-tuned) We found no evidence to support or refute the use of single-room isolation
or cohorting for preventing transmission of HAIs or colonization with HAI
causing pathogens in newborn infants less than six months of age admitted
to the neonatal intensive care unit (NICU).

GPT-3.5-turbo This systematic review aimed to evaluate the impact of single-room isola-
tion or cohorting, or both, on the transmission of healthcare-associated in-
fections (HAIs) in newborn infants admitted to the neonatal intensive care
unit (NICU). However, no published or ongoing trials were found to in-
clude in the review. Therefore, no conclusions could be drawn regarding
the effectiveness of these isolation measures on preventing HAIs or colo-
nization with HAI-causing pathogens in this population. Further research
is needed in this area.

Human Expert (Reference) The review found no evidence from randomized trials to either support or
refute the use of patient isolation measures (single-room isolation or cohort-
ing) in neonates with HAIs. Risks secondary to infection control measures
need to be balanced against the benefits of decreasing horizontal transmis-
sion in the neonatal unit for optimal neonatal outcomes. There is an urgent
need to research the effectiveness of patient isolation measures for prevent-
ing the transmission of HAIs in neonatal units. Well-designed trials ran-
domizing clusters of units or hospitals to a type of patient isolation method
intervention are warranted.
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