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Abstract: 

Identification of somatic driver mutations in the noncoding genome remains challenging. To 

comprehensively characterize noncoding driver mutations for pancreatic ductal adenocarcinoma 

(PDAC), we first created genome-scale maps of accessible chromatin regions (ACRs) and histone 

modification marks (HMMs) in pancreatic cell lines and purified pancreatic acinar and duct cells. 

Integration with whole-genome mutation calls from 506 PDACs revealed 314 ACRs/HMMs 

significantly enriched with 3,614 noncoding somatic mutations (NCSMs). Functional assessment 

using massively parallel reporter assays (MPRA) identified 178 NCSMs impacting reporter activity 

(19.45% of those tested). Focused luciferase validation confirmed negative effects on gene regulatory 

activity for NCSMs near CDKN2A and ZFP36L2. For the latter, CRISPR interference (CRISPRi) 

further identified ZFP36L2 as a target gene (16.0 – 24.0% reduced expression, P = 0.023-0.0047) 

with disrupted KLF9 binding likely mediating the effect. Our integrative approach provides a catalog 

of potentially functional noncoding driver mutations and nominates ZFP36L2 as a PDAC driver gene. 
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Introduction 

 

Driven mainly by diagnosis at a late stage and a lack of effective treatment modalities, pancreatic cancer 

is characterized by an overall 5-year survival rate of only 13% and is predicted to become the second 

leading cause of cancer-related deaths in the U.S. by the end of this decade1-3. This highlights an urgent 

need for further research into the etiology of PDAC to improve outcomes for this cancer of unmet need. 

Cancer develops due to somatic and germline genetic factors exerting their influence within the cellular 

context of environmental factors4. Identification of driver mutations can significantly enhance our 

understanding of tumorigenesis and facilitate precision oncology5. Thanks to large-scale whole exome 

sequencing studies, protein-coding somatic driver mutations for PDAC (e.g. in KRAS, TP53, SMAD4, 

CDKN2A) have been well characterized6-8. The discovery of recurrent noncoding mutations in cis-

regulatory elements (CREs) implicated in the expression regulation of genes associated with 

oncogenesis, such as in the TERT promoter9,10, TAL1 super-enhancer11, and PAX5 enhancers12, has 

highlighted the emerging role of somatic mutations in noncoding regulatory regions as key contributors 

to carcinogenesis. Although most somatic mutations occur in noncoding regions of the genome, 

identifying driver mutations and their target genes has remained largely elusive.  

NCSMs can disrupt transcription factor binding sites that impact the activity of gene regulatory 

elements including promoters and enhancers13. These elements are often highly tissue or cell type-

specific, with publicly available annotations of PDAC-relevant elements limited in scope and sample 

size14,15. With this in mind, we generated genome-wide maps of ACRs and HMMs in pancreatic tumor- 

and normal-derived pancreatic cell lines, as well as from pancreatic acinar and ductal cell populations 

purified using flow cytometry. We integrated these elements with NCSMs identified in 506 PDAC 

genomes16-18 to identify potential drivers, while adjusting for background mutational rates. To 

characterize the functional consequences of NCSMs, we applied MPRA19 to identify mutations 

associated with altered transcriptional regulatory activity. Subsequently, we used genome-scale high-

resolution promoter-focused Capture-C (PCC)20 and H3K27ac HiChIP-seq (HiChIP)21 to identify 

chromatin interactions that link NCSMs to putative target genes. Our work provides new insights into 

the potential role of NCSMs in PDAC development and establishes an effective framework for applying 

a multi-omics approach to unravel complex CREs in their relation to cancer biology. 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.22.24314165doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314165
http://creativecommons.org/licenses/by-nd/4.0/


- 3 - 

 

Results 

We leveraged an integrative multi-omics approach, using genome, epigenome, chromatin interactome, 

and transcriptome datasets for PDAC, to identify candidate noncoding driver mutations for further 

analysis. Putative driver mutations were then characterized by MPRA, investigation of disrupted 

transcription factor binding sites, and alternative splicing analysis that ultimately prioritized a set of 

NCSMs most likely to represent noncoding driver mutations (study design outlined in Fig. 1a). 

 

Quality control and whole-genome annotation of somatic mutations from 506 PDAC patients 

Whole genome somatic mutation calls from PDAC tumors were obtained from the International Cancer 

Genome Consortium (ICGC-PACA-AU and ICGC-PACA-CA)16,17 and the Pancreatic Cancer 

Translational Research Initiative (PanCuRx)18. Following quality control, samples from 506 patients 

remained (see Methods), with a mean somatic mutation count of 6,883 (range 102 – 46,628). The most 

frequently mutated protein coding genes across the three studies were similar, including KRAS, TP53, 

CDKN2A and SMAD4 (Extended Data Fig. 1-3). The somatic mutation rate in the combined dataset 

averaged 2.22 mutations per Mb and most somatic mutations were in noncoding regions of the genome 

(98.95%) (Fig. 1b), in which 59.71%, 31.42% and 6.55% located to intergenic, coding intronic, and 

noncoding RNA intronic regions, respectively (Fig. 1c).  

We first annotated somatic mutations using the FunSeq2 pipeline and ENCODE (The Encyclopedia of 

DNA Elements) data across all available cell types and tissue samples. We noted 431,987, 360,191 and 

268,157 mutations in DNase I hypersensitive sites, transcription factor binding peaks and enhancers, 

respectively (Fig. 1d). Of these, 100,688 mutations were predicted to disrupt transcription factor (TF) 

motifs while 8,732 resulted in gained TF motifs. The top recurrently mutated non-protein-coding 

regions (annotated by ENCODE) (Supplementary Table 1) include enhancers at chr6:68,590,900-

68,601,300 (mutations observed in 40 out of 506 PDAC patients; 7.91%) and chr17:57,913,400-

57,927,100 (33 patients; 6.52%), and two lincRNAs, TSIX and XIST on chrX:73,012,040-73,049,066, 

(35 patients; 6.92%). The most frequently recurrent NCSMs (identified in ≥ 10 patients, or in 1.98-

2.77% of patients, n = 24 NCSMs total) are listed in Supplementary Table 2. 

 

Mapping pancreatic accessible chromatin regions (ACRs) and histone modification marks 

(HMMs) 

To identify enrichment of noncoding mutations in gene regulatory elements that are most relevant to 

normal- and tumor-derived pancreatic tissues, we performed ATAC-seq and histone ChIP-seq analysis 

in two normal-derived (HPDE-E6E7 and hTERT-HPNE) and six tumor-derived (COLO357, KP-4, 
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PaTu8988T, SU.86.86, MIA PaCa-2, and PANC-1) pancreatic cell lines (Table 1). Moreover, we re-

analyzed data generated in FACS-purified primary acinar (n = 3 for ATAC-seq, n = 2 for ChIP-seq) 

and ductal (n = 4 ATAC-seq, n = 3 ChIP-seq) cell populations obtained from donor pancreas with no 

reported pancreas dysfunction22. This identified 28,346-258,494 ACRs in primary pancreatic cell 

populations and cell lines (Table 1, Supplementary Tables 3 and 4, Extended Data Fig. 4 and 5, see 

Methods). Likewise, we mapped genomic regions with histone modifications typically enriched at 

promoters, enhancers, and repressed chromatin, including H3K4me1 marks (n = 73,249-267,643), 

H3K4me3 marks (n = 27,693-174,233), H3K27ac marks (n = 86,479-279,075), and H3K27me3 marks 

(n = 20,848-48,886) in the same cell lines and pancreatic exocrine cells (Table 1). We then used 

ChromHMM to model 8 chromatin states (weak enhancer 1, weak enhancer 2, active enhancer, active 

genic enhancer, active transcription start site (TSS), bivalent TSS, repressed, and quiescent; Extended 

Data Fig. 6)23 and ROSE2 to map super-enhancers (SE, n = 851-2,107) across the same pancreatic cell 

lines and sorted acinar and duct cell populations (Table 1).  In total, we identified 2,929,610 ACR and 

HMM annotations that were used to assess the enrichment of somatic PDAC mutations.  

 

Identification of noncoding somatic mutations (NCSMs) significantly enriched in ACRs/HMMs  

To identify noncoding gene regulatory elements enriched with NCSMs as compared to the background 

mutational rate, we applied ActiveDriverWGS24 and DriverPower25 (functional adjustment by DANN26 

and Eigen27) to the epigenetic annotations mapped in: 1) FACS purified pancreatic acinar cells, 2) FACS 

purified pancreatic duct cells, 3) normal-derived pancreatic cell lines, and 4) PDAC-derived cell lines. 

We identified a total of 314 ACRs/HMMs significantly enriched with somatic mutations (FDR  0.05) 

across these cell types (Table 2, Supplementary Table 5). Where ACRs/HMMs overlapped coding 

sequences, we observed significant enrichment of somatic mutations in known protein coding driver 

genes including KRAS, TP53, CDKN2A and SMAD4 (Supplementary Table 6).  

These 314 enriched ACRs/HMMs contained 4,612 simple somatic mutations (SSMs) across the 506 

samples, 3,614 of which were unique NCSMs. Although a majority of these were only observed in a 

single patient, 988 NCSMs located to ACRs/HMMs where at least two PDAC patients had a mutation 

within a 31bp window (selected as the longest ENCODE transcription factor (TF) motif) 

(Supplementary Table 7), including 45 TF motif break or gain events (Supplementary Table 8). 

ENCODE annotations for the most recurrent NCSMs among the 314 elements are listed in 

Supplementary Table 9.  
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NCSM-mediated alterations of gene regulatory activity  

To functionally assess if the 988 NCSMs highlighted by our enrichment analysis alter gene regulatory 

activity, we performed MPRA in two human pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) 

and a human embryonic kidney cell line (HEK293T). Following quality control (Methods, Extended 

Data Fig. 7), 184 out of 915 testable mutations (20.11%, see Methods) exerted significant differential 

transcriptional activity between mutant (MT) and wild-type (WT) alleles in PANC-1 cells, 118 (12.90%) 

in MIA PaCa-2 cells and 300 (32.79%) in HEK293T cells (FDR  0.05) (Fig. 2a-c). Subsequently, these 

“MPRA-significant” mutations were further deemed “MPRA-functional” when either the mutant or 

wild-type allele demonstrated an average RNA/DNA TPM ratio that diverged substantially from a null 

distribution of RNA/DNA TPM ratios derived from the activity of all scrambled control sequences. 

Using this approach, 87 (9.51%), 50 (5.46%) and 117 (12.79%) MPRA-functional noncoding somatic 

mutations were identified in PANC-1, MIA PaCa-2 and HEK293T cells, respectively (in total, 178 

unique NCSMs (19.45% of those tested) were MPRA-functional in one or more cell line) (Fig. 2d, 

Supplementary Table 10).  

 We selected the most significant MPRA-functional NCSM across the three cell lines (at chr2p21 near 

ZFP36L2, MPRA FDR-adjusted P-value rank 1, 7 and 1 in PANC-1, MIA PaCa-2 and HEK293T cells, 

respectively) and two mutations at chr9p21.3 in the last intron of CDKN2A (MPRA rank 10 - 18) for 

validation using individual luciferase assays (Fig. 3). The mutated allele (MT) at chr2p21 (310 bp 

downstream of the ZFP36L2 gene, chr2:43,449,231 C>T), exhibited reduced gene regulatory activity 

in PANC-1 cells (MPRA log2(MT/WT) = -0.49, P = 4.81x10-170), MIA PaCa-2 cells (MPRA 

log2(MT/WT) = -0.38, P = 8.44x10-49) and HEK293T cells (MPRA log2(MT/WT) = -0.80, P < 1x10-

308), which replicated by luciferase assays (PANC-1 cells: MT-T allele vs. WT-C allele fold change in 

the forward orientation = 0.36, P = 2.95x10-7; fold change in reverse orientation = 0.33, P = 3.42x10-6; 

MIA PaCa-2 cells: MT-T allele vs. WT-C allele fold change forward = 0.36, P = 3.99x10-5; reverse = 

0.39, P = 8.73x10-6) (Fig. 3a and b). At chr9p21.3, two mutations were noted in an HMM in the last 

intron of CDKN2A. The former (chr9:21,968,244 G>T) was associated with reduced MPRA activity in 

PANC-1 cells (log2(MT/WT) = -0.24, P = 6.01x10-16), MIA PaCa-2 cells (log2(MT/WT) = -0.42, P = 

9.15x10-20) and HEK293T cells (log2(MT/WT) = -0.32, P = 6.24x10-28). Lower activity was also 

observed for the latter mutation at the same genomic location (chr9:21,968,244 G>C) in PANC-1 cells 

(log2(MT/WT) = -0.36, P = 3.53x10-25), MIA PaCa-2 cells (log2(MT/WT) = -0.55, P = 4.29x10-31), and 

HEK293T cells (log2(MT/WT) = -0.44, P = 2.66x10-28). While significant differences were not 

observed in the forward orientation in individual luciferase assays, both the T and C mutations exhibited 

significantly (P  0.05, two-tailed unpaired T-test) lower relative luciferase values in the reverse 

orientation (PANC-1 cells: MT-T vs. WT-G allele fold change = 0.46, P = 1.22x10-4; MT-C vs. WT-G 

fold change = 0.22, P = 1.17x10-5; MIA PaCa-2 cells: MT-T vs. WT-G fold change = 0.59, P = 4.03x10-

7; MT-C vs. WT-G fold change = 0.37, P = 2.66x10-8) (Fig. 3c and d). 
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Identification of splicing mutations 

We next investigated NCSMs in splice sites across the genome (using ANNOVAR annotations) and 

identified 361 patients (71.34%) with at least one splice site mutation considered damaging and possibly 

pathogenic. Of these, 30 patients (5.93%) had at least one recurrent mutation impacting splice sites in 

known tumor suppressor genes, including TP53, CDKN2A, and SMAD4 (Supplementary Table 11). 

Splice site mutations in CDKN2A (chr9:21,968,244 G>T/C) and SMAD4 (chr18:48,593,559 T>A/G), 

appeared to negatively affect splicing as indicated by RNA-seq reads showing disrupted normal splicing 

or skipping of specific exons (Fig. 4a, b, d, e; Extended Data Fig. 8a-b). Specifically, exon 2-3 splicing 

was disrupted in patients with CDKN2A splice acceptor mutations, and exon 10 skipping events were 

observed in patients with SMAD4 splice site mutations (in frame). We confirmed the impact of predicted 

splicing mutations for both CDKN2A and SMAD4 using exon trap assays in MIA PaCa-2 and PANC-1 

cells (Fig. 4c, f; Extended Data Fig. 8c). The observed exon-skipping patterns were consistent with the 

predicted effects, suggesting a direct causal relationship. Notably, coding mutations in CDKN2A or in 

SMAD4 were not observed in tumors from the PDAC patients harboring splicing mutations in these two 

genes. Of note, the two NCSMs in a splice acceptor site in the last intron of CDKN2A (chr9:21,968,244 

G>T/C) negatively affected gene regulatory activity in both the MPRA and luciferase assays (as shown 

above). 

 

Nominating candidate target genes for NCSMs 

To identify putative target genes for mutations enriched in noncoding gene regulatory regions, we used 

proximity to transcriptional start sites and chromatin interaction analyses. Of the 988 NCSMs, 36 were 

directly located in promoters (see Methods) of 26 target genes (Fig. 5a and d) including ZFP36L2 

(encoding ZFP36 Ring Finger Protein Like 2, 6 mutations), MIR21 (microRNA 21, 3 mutations) and 

CPA3 (Carboxypeptidase A3, 1 mutation) (Supplementary Table 12). Subsequently, we generated 

chromatin interaction maps in MIA PaCa-2 and PANC-1 cells using high-resolution promoter-focused 

Capture-C (PCC)20, and observed 161 and 194 NCSMs in gene regulatory elements that physically 

interacted with the promoters of 166 and 183 potential target genes, respectively (Fig. 5b and e, 

Supplementary Table 13) including strong interactions (CHICAGO score ≥ 15, see Methods) with the 

promoters of SNHG1 (small nucleolar RNA host gene 1) and SLC3A2 (Amino acid transporter heavy 

chain SLC3A2) at chr11q12.13 and several core histone genes (H2BC21, H2AC20, H2AC21) at 

chr1q21.2. Likewise, using H3K27ac HiChIP-seq (HiChIP) data generated in purified pancreatic acinar 

and ductal cell populations, and in PANC-1 cells28,29, we identified 164, 137 and 122 NCSMs in 

regulatory elements that physically interacted with the promoters of 99, 124 and 107 target genes, 

respectively including strong interactions (PET counts ≥ 100, see Methods) with the promoters of  CPB1 
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(Carboxypeptidase B) and AGTR1 (Type-1 angiotensin II receptor) at chr3q24, MIR21 (microRNA 21) 

at chr17q23.1, and SLC12A7 (Solute carrier family 12 member 7) at chr5p15.33 (Fig. 5c and f, 

Supplementary Tables 14 and 15). In summary, 416 potential target genes were identified, in which 

NCSMs localized to promoters or gene regulatory elements that physically interacted with gene 

promoters. Six target genes (MTMR11, HIST2H2BC, BOLA1, ANP32E, SLC3A2 and RALGDS) were 

common among both the PCC and H3K27ac HiChIP-seq interaction data (Extended Data Fig. 9).  

Using tumor-derived RNA-seq data from the ICGC (n=280) and PanCuRx (n=246), we tested if 

expression of each of the 416 target genes identified above differed significantly according to mutation 

status of their interacting gene regulatory element (see Methods). While statistical power is limited for 

this analysis, six significant NCSMs/target gene pairs (permutation test P   0.05) were observed (Fig. 

5g) with: (i) higher expression of SLC26A1 (fold change = 2.15, P = 0.016) and DGKQ (fold change = 

1.72, P = 0.049) at chr4p16.3; (ii) lower expression of SLC43A2 (fold change = 0.50, P = 0.035) at 

chr17:p13.3; (iii) lower expression of MIER2 (fold change = 0.56, P = 0.020) and SHC2 (fold change 

= 0.21, P = 0.0068) at chr19p13.3; (iv) lower expression of CHURC1 (fold change = 0.48, P = 0.0095) 

at chr14q23.3; (v) lower expression NBPF1 (fold change = 0.62, P = 0.030) at chr1p36.13; (vi) lower 

expression of TMPRSS2 (fold change = 0.17, P = 0.0035) on chr21q22.3. However, none of these genes 

were significantly differentially expressed in both the ICGC and PanCuRx RNA-seq datasets 

(Supplementary Table 16). 

 

Identifying target genes for NCSMs at chr2p21 near ZFP36L2 

The MPRA-functional, luciferase validated, NCSM at chr2p21 (chr2:43,449,231 C>T) localized to an 

ACR downstream of the ZFP36L2 gene (Figure 6a), and to histone modification marks tagging 

promoters and enhancers. A nearby NCSM (chr2:43,449,213 - > AA) within this enriched ACR was 

also MPRA-functional in the three cell lines (log2(MT/WT) = -0.08 to -0.12, P (FDR corrected) = 0.01 

to 5.4x10-8, MPRA rank 46 – 64 across the three tested cell lines, (Supplementary Table 10) but, due to 

a smaller effect size, was not validated with luciferase assays. Using the chromatin interaction datasets 

described above, we identified five potential target genes for this enhancer: LINC01126, THADA, 

LINC02580, LINC01819 and HAAO (Fig. 6b). To identify genes regulated by this enhancer, we targeted 

it with CRISPR inhibition (CRISPRi) and measured the expression of these five genes, as well as that 

of ZFP36L2 as the two mutations are only ~4.5 kb away from its transcriptional start site, possibly 

limiting detection of chromatin interactions. Three of the four guides resulted in a significant reduction 

in ZFP36L2 expression in PANC-1 cells (16.0 – 24.0% knockdown, P=0.005 - 0.023; the fourth guide 

showed a marginal reduction of 15.7%, P = 0.072) and one of four guides in MIA PaCa-2 cells (22.5% 

knockdown, P = 0.0081; three other guides showed reductions of 8.9 - 21.0%, P = 0.057-0.26) (Fig. 6c) 

indicating that it may represent a target gene for this enhancer. We also noted smaller reductions in one 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.22.24314165doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314165
http://creativecommons.org/licenses/by-nd/4.0/


- 8 - 

 

of the three tested THADA isoforms in PANC-1 cells (0 - 11.9%, P = 0.015 - 0.98) and MIA PaCa-2 

cells (6.6% - 14.1%, P = 0.005- 0.12) indicating that it may also be regulated by this enhancer. No 

effects were noted on expression of the other genes tested (Extended Data Fig. 10).  

Mutations were also located directly in the 5’UTR/promoter (in 5 or 0.99% of all patients in our study), 

coding regions (in 9 patients; 1.78%) and the 3’UTR of ZFP36L2 (4 patients; 0.79%). Coding mutations 

included frameshift (5 patients), nonsynonymous (3 patients) and stop-gain (1 patient) mutations 

indicating likely damaging effects on the protein. The mutation at chr2:43,449,231 C>T) is predicted 

to disrupt transcription factor binding motifs for multiple members of the Krüppel-Like (KLF) family 

of TFs, including KLF9 (Fig. 6d, Supplementary Table 17). Using Surface Plasmon Resonance (SPR), 

we validated this prediction and noted an approximately 3-fold reduced binding of recombinant KLF9 

protein to the mutated (T) allele. Combined, our results indicate that KLF9, and possibly other members 

of this family of transcription factors, regulates expression of ZFP36L2 and that somatic mutations at 

this site can lead to reduced expression of this gene (Fig. 6e).  
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Discussion 

The importance of somatic coding mutations in cancer initiation and progression has been well 

established since the discovery of a mutated HRAS oncogene over 40 years ago30. While most driver 

mutations have historically been identified in protein coding regions of the genome, noncoding somatic 

drivers are increasingly considered as important components of oncogenesis31. The vast size of the 

noncoding genome, combined with ambiguous effector mechanisms, complicates this search. Here, we 

present a comprehensive integrative analysis to nominate candidate noncoding somatic driver mutations 

for PDAC and identifying putative target genes. Our strategy employed three main steps. We first 

characterized the PDAC-relevant chromatin landscape by mapping ACRs and HMMs in tumor- and 

normal-derived pancreatic cell lines and purified pancreatic acinar and ductal cell populations, thus 

greatly expanding the breadth and scope of previously generated datasets for this organ. Subsequent 

enrichment analysis prioritized gene regulatory elements that may be somatically implicated in PDAC 

development. In the second step, we applied MPRA to identify functionally relevant somatic mutations 

in these elements, showing that a sizable proportion exerted significant disruptions to cis-regulatory 

activity. Finally, we applied an integrative approach to link mutated regulatory elements to putative 

target genes via chromatin interaction analysis and comparative transcriptomics, providing a valuable 

resource for understanding the downstream effects of noncoding mutations on gene regulation and 

possible mechanisms by which NCSMs may contribute to PDAC.  

Our framework nominated mutations in an enhancer downstream of ZFP36L2 as candidate noncoding 

drivers. These mutations decreased cis-regulatory activity for the surrounding gene regulatory element, 

that appears to drive ZFP36L2 expression via KLF9. Additional mutations were located throughout the 

ZFP36L2 gene in close to 4% of patients included in this study. The fact that most of the coding 

mutations were frameshift or stop-gain further supports a role for ZFP36L2 as a pancreatic cancer driver 

gene with a possible tumor suppressor function. This gene encodes mRNA decay activator protein 

ZFP36L2, a zinc-finger RNA-binding protein of the tristetraprolin (TTP) family that regulates mRNA 

stability by binding and promoting the decay of adenylate- and uridylate-rich element (ARE)-containing 

mRNAs and plays important roles in controlling cell cycle progression, DNA damage repair, and 

immune responses32,33. However, one study has indicated that this gene may be overexpressed in PDAC 

where it drives cell proliferation and invasion in vitro supporting a possible oncogenic role34.  

Three pan-cancer studies have investigated potentially functional noncoding driver mutations in 2,25035,  

2,65817 and 3,94915 tumors by WGS, including PDAC. These studies used multi-tissue histone- and 

transcription factor annotations generated by ENCODE and the NIH Roadmap Epigenomics Consortia 

for enrichment analysis and nominated several noncoding mutations and target genes based on the 

closest genes. Coding mutations in ZFP36L2 were identified in 0-8.3% of tumors across different 

organs (including 1.8 - 6.41% of PDAC) lending support to a possible tumor suppressor function. 

Noncoding driver mutations were not described, but promoter mutations were enriched in ovarian 
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cancer (8.63%)15. Our results indicate that expression of this gene is also influenced by NCSMs in 

PDAC, in an enhancer downstream of the gene. Further work is warranted to investigate the role of 

ZFP36L2 in PDAC development.  Two studies have specifically focused on noncoding driver mutations 

for PDAC. The first assessed enrichment in ENCODE defined gene regulatory elements and then 

focused on mutations within gene promoters (+/- 2 kb of TSS)36. While noncoding mutations in 

promoters were identified, along with the pathways they may affect, specific mutations were not 

followed up with functional experiments. More recently, an analysis of CREs marked by H3K27ac in 

PDAC cell lines and patient-derived organoid samples was used to detect putative CRE drivers enriched 

for significant NCSMs, followed by STARR-seq reporter assays for candidate functional mutations; 

nominating 43 potential functional mutations37. 

Beyond mutations that mediate their effect by disrupting active enhancer elements, we identified 

splicing mutations in CDKN2A and SMAD4, occurring in patients without coding mutations in each 

gene. Experimental validation indicated a direct causal relationship between these NCSMs and aberrant 

splicing, highlighting them as likely drivers that impact two well-known PDAC tumor suppressor genes. 

Surprisingly, mutations in a splice acceptor site in the last intron of CDKN2A influenced both splicing 

and gene regulatory activity. While effects of somatic mutations on splicing are already known at other 

splice sites in this gene, a possible gene regulatory effect at this genomic location requires further follow 

up to better define its function and target gene(s). 

Our study provides important advantages. First, we focused our search for noncoding driver mutations 

on genome wide ACR and HMM maps derived from pancreatic-derived cell lines and primary 

pancreatic acinar and duct cell populations. As compared to previously available datasets with only 

small number of pancreatic cell lines and bulk pancreatic tissue samples, the maps we generated should 

represent a more refined picture of gene regulatory elements in the pancreas. Likewise, we used somatic 

mutation calls from the largest available WGS datasets generated for PDAC. Specifically, we used 

enrichment methods25 that outperform several other methods for noncoding somatic driver discovery 

and MPRA to start functionally assessing the effects of somatic noncoding mutations on gene regulatory 

activity. Furthermore, instead of using nearest genes to nominate target genes for enriched NCSMs, we 

conducted genome-scale chromatin interaction analysis from normal-derived pancreatic cell 

populations and PDAC cell lines to link mutations to target genes. Despite these strengths, our approach 

is not without its limitations. Foremost, given the inherent challenges of enrichment analyses for the 

mostly non-recurrent somatic noncoding mutations our work (and that of previous investigators) has 

identified, our analysis remains underpowered to characterize potentially important NCSMs in personal 

genomes that require even larger sample sizes. Likewise, differential expression analysis in tumors with 

and without specific mutations is underpowered due to the low frequency of most mutations and 

mutated gene regulatory elements. Furthermore, as the activity of noncoding regulatory elements 

depends on cellular context, developmental stage, and environmental stimuli, future studies 
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incorporating such conditions are likely to enhance discovery of noncoding driver mutations. 

Simulating inflammation and ER stress might be important next steps for such an approach.  

In conclusion, by creating maps of noncoding gene regulatory elements in pancreatic cell lines and 

purified exocrine cell populations, we have nominated and functionally assessed candidate driver 

mutations for PDAC and identified likely target genes. While noncoding mutational hotspots do not 

appear to be common in PDAC, it is likely that important gene regulatory elements are targets for 

mutations that may drive cancerous growth in this organ. Our findings contribute to understanding of 

the molecular mechanisms driving PDAC and provide avenues for further research with potential 

implications for patient care and outcomes for this cancer of dismal prognosis. Future follow up studies 

of the catalogs of candidate somatic driver mutations highlighted here, incorporated with noncoding 

germline risk variants38, epigenetic drivers39 and AI-powered approaches40, may therefore uncover more 

of the dark matter important for carcinogenesis in the noncoding genome.  
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Online Methods 

Quality control and annotation of whole genome and RNA sequencing data 

Whole genome sequence (WGS) data and somatic mutation calls from PDAC tumors arising in 787 

patients were obtained from ICGC-PACA-AU (n=252), ICGC-PACA-CA (n=220)16,17 and PanCuRx 

(n=315)18. The details of these datasets were previously described16-18. To remove redundant SSMs for 

each patient, a single entry for each unique SSM was retained. To avoid outliers, tumors with less than 

100 SSMs or a SSM count more than three standard deviations away from the mean were removed in 

each study (n=79, n=4 and n=5, respectively). Additionally, duplicate donors between ICGC-PACA-

CA and PanCuRx were removed (n=193). In instances where tumor samples were sequenced multiple 

times, samples using laser capture micro-dissection (LCM) were retained. This resulted in data from a 

total of 506 PDAC patients. Oncoplots of the 10 most frequently mutated genes were generated by 

Maftools (v1.6.00)41. The average somatic mutation rate per Mb was calculated based on the size of 

human reference genome (total 3,101,788,170bp, 

https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37.p13).  Three types of annotations were 

performed for all mutations using ANNOVAR42 (v2019-10-24): (i) gene-based (whether a mutation is 

intronic, 3′untranslated region (UTR), 5′UTR, intergenic, etc.), (ii) region-based (whether a mutation 

overlaps with certain regions of interest) and (iii) filter-based (whether a mutation is present or absent 

in the interested datasets and report its frequency, such as 1000 Genomes Project). We used 

1KGP.ALL.sites (201508), gnomAD (v2.1.1), HRC (v1.1), avsnp (v150), COSMIC (v91, v100), 

CADD (v1.3), DANN (2019), Eigen score (2019), dbNSFP (v3.5c), dbscSNV (1.1), GWAVA 

(20150623), ExAC (20151129) and ClinVar (20200316) databases to annotate all the mutations. To 

remove likely germline variants, mutations with minor allele frequency > 1% in the 1000 Genomes 

Project (1KGP, 5,008 haplotypes, Phase 3, Aug 2015)43, the Haplotype Reference Consortium (HRC, 

64,976 haplotypes, v1.1)44 or the Genome Aggregation Database (gnomAD, 15,708 whole genomes 

and 125,748 exome sequences, v2.1.1)45 were removed.  

FunSeq2 (v2-1.2)46 (http://funseq2.gersteinlab.org/) was used to identify mutations in known ENCODE 

annotations (dNase I hypersensitive sites (DHS), transcription factor binding peaks (TFP), transcription 

factor bound motifs in peak regions (TFM) motif breaks or gains, ncRNA genes, transcription factor 

highly occupied regions47, etc.) defined by ENCODE across 147 different tissue samples and cell lines48. 

PERFECTOS-APE (PrEdicting Regulatory Functional Effect by Approximate P-value Estimation, uses 

TFBS models from: HOCOMOCO, JASPAR, HT-SELEX, SwissRegulon and HOMER)49 and 

motifbreakR50 were also used to identify TF binding sites and visualize the motifs. All presented 

coordinates are based on human reference hg19 unless otherwise specified. 

Gene expression analysis. For LCM tumor samples sequenced using WGS by PanCuRx, gene 

expression was determined using whole transcriptome sequencing (RNA-seq) in 246 patients18. 
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Normalized gene or transcript expression data (TPM, Transcripts Per Million) was obtained from the 

PanCuRx Data Access Committee, Ontario Institute for Cancer Research, Toronto, Canada. For tumor 

samples sequenced using WGS by ICGC, gene expression was called using RNA-seq in 280 patients. 

Normalized gene or transcript expression data (FPKM, Fragments Per Kilobase of transcript per Million) 

was downloaded from the ICGC data portal. For patients in ICGC with multiple tumors RNA-

sequenced, the priority of selection criteria was as follows: (i) using samples from LCM primary tumor, 

(ii) LCM samples from metastatic tumors, (iii) LCM xenografts, (iv) non-LCM tumors. Genes or 

transcripts with > 0.1 TPM or FPKM in more than 3 patients were retained, which left 36,155 genes or 

39,937 transcripts for further analyses in the PanCuRx and ICGC RNA-seq datasets respectively. 

 

Mapping accessible chromatin regions (ACRs) in pancreatic cell lines 

ATAC-seq libraries were prepared in duplicate from biologically independent logarithmically growing 

cell cultures (harvested ad distinct passage numbers) for hTERT-HPNE (50k cells), HPDE- E6E7 (40k 

cells), PANC-1 (15k cells), MIA PaCa-2 (40k cells), COLO357 (30k cells), KP-4 (30k cells), 

PaTu8988T (50k cells), and SU.86.86 (40k cells) pancreatic cell lines. For each replicate, cell aliquots 

were subject to lysis using 10mM Tris-HCL pH 7.4, 10mM NaCl, 3mM MgCl2 and 0.1% IGEPAL CA-

630. Sequencing adapters were added to open regions of the genome using the Illumina Tagment DNA 

TDE1 Enzyme and Buffer Kit (Illumina, Foster City, CA). Illumina sequencing libraries were generated 

using the Illumina Nextera DNA Sample Preparation kit (Illumina, Foster City, CA) with dual indexing 

and 11-14 cycles of PCR amplification. The 16 ATAC-seq libraries (2 replicates per cell line) were 

sequenced as 2x150bp paired-end reads on the HiSeq 2500 (v4 chemistry) with two libraries run per 

lane on a single flowcell. Read alignment (to hg19), QC, and accessible chromatin peak calling was 

performed using the Kundaje lab’s pipeline for ATAC-seq/DNase-seq 

(https://github.com/kundajelab/atac_dnase_pipelines) on the 16 cell line-derived libraries just described 

as well as three purified pancreatic acinar cell samples and four purified pancreatic duct cell samples 

generated by a previous study22. Final peaks used for accessible chromatin regions (ACRs) annotations 

were based on true replicates or pooled pseudo-replicate peaks with an IDR < 0.05 among the duplicate 

cell line samples or among all purified acinar (n=3) or duct (n=4) samples. The ATAC-seq QC metrics 

and ACR summary statistics are detailed in Supplementary Table 3. While duplicate read rates were 

somewhat higher than current ENCODE recommendations for many samples, only high confidence 

peaks with an IDR<0.05 were used in our annotation sets and those peak counts were in line with 

ENCODE recommendations for all cell lines. Read depth and peak counts were lower for the previously 

published purified acinar and duct cell samples. ACRs for normal-derived cell lines (hTERT-HPNE 

and HPDE-E6E7) and tumor-derived cell lines (PANC-1, MIA PaCa-2, COLO357, KP-4, PaTu8988T, 

and SU.86.86) were also combined with the mergePeaks command in HOMER51 to form the “All 

Normal” and “All PDAC” ACR annotations, respectively. 
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The ACR landscape of the individual replicates generated in the cell lines and sorted primary cells were 

compared by principal component analysis and hierarchical clustering by Pearson and Spearman 

correlation (Extended Data Fig. 4). First, a standardized set of ACRs was generated as the union of 

ATAC-seq peaks across all samples using the multiinter and merge functions of the BEDTools suite52. 

Aligned reads for each sample were then assigned to the combined set of ACRs using the featureCounts 

function of the Subread package53. ACR read counts were then normalized by feature length followed 

by read depth to yield a normalized openness metric analogous to TPM. Principal component analysis 

(PCA) was performed on the samples based on the normalized openness of all ACRs, the results of 

which were plotted using the ggplot2 package in R (Extended Data Fig. 4a). Finally, Pearson and 

Spearman correlations between the normalized openness values of all samples were determined. 

Samples were hierarchically clustered in heatmaps using R (Extended Data Fig. 4b and c). The most 

consistent clustering was observed among the cell-sorted primary acinar and duct cells, and among the 

PANC-1, MIA PaCa-2, KP-4, and PaTu8988T cell lines. 

 

For comparison with ENCODE pancreas ACRs that are mapped to GRCh38, coordinates for  ACRs 

used in this study were lifted over from GRCh37 to GRCh38 with the UCSC Genome Browser LiftOver 

webtool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). To determine how many ACRs were unique or 

in common among our normal pancreas-derived cell lines, PDAC-derived cell lines, sorted acinar cells, 

sorted duct cells, and ENCODE bulk pancreas samples (ENCSR251POP, ENCSR705KEB, and 

ENCSR808ZMK), we used the mergePeaks command in HOMER to partition overlapping ACRs into 

every possible combination of sample types, which is summarized in Extended Data Fig. 5. Notably, of 

the 189,581 ACRs reported for these ENCODE bulk pancreas samples, 91,082 (48.0%) overlapped the 

ACRs used for this study while the ENCODE bulk pancreas samples missed 86,324 ACRs found in the 

cell lines and purified acinar and duct cells. 

 

Mapping histone modification marks (HMM) in pancreatic cell lines 

Histone modification-specific chromatin immunoprecipitation (ChIP) was performed in duplicate on 

the same cell lines used for ATAC-seq described above using the Cell Signaling SimpleChIP Plus 

Enzymatic Chromatin IP Kit (Cell Signaling, Danvers, MA). Chromatin immunoprecipitation for 

histone marks H3K27Ac, H3K4me1, H3K4me3, and H3K27me3 were performed using the following 

antibodies, respectively: Abcam ab4729, Abcam ab8895, Abcam ab8580, and Cell Signaling #9733. 

ChIP-seq libraries were generated for each chromatin immunoprecipitation and a 2% chromatin input 

control for each replicate with the Illumina NextSeq 500 High Output v2.5 75 Cycles Single Read Kit 

(Illumina, Foster City, CA) with 4 multiplexed samples per run on an Illumina NextSeq 500. Reads 

were aligned to the human genome (hg19) by BWA54, then QC (cross-correlation analysis and IDR)55-
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57 and histone mark peak calling (with MACS2 or SICER)58,59 were performed using our in-house 

pipeline (https://github.com/eiserdr/histone-chipseq) on our cell line ChIP-seq data as well as two 

purified acinar cell samples and three purified duct cell samples generated by a previous study22. Final 

peaks used for histone mark annotations and subsequent super-enhancer and ChromHMM analyses 

were called from the pooled aligned reads for cell line replicates and matched purified pancreatic cell 

types (i.e., acinar [n = 2] and duct [n = 3]). The summary of samples’ read depths and final totals of 

histone ChIP-seq peaks are listed in Supplementary Table 4. 

ChromHMM23 was used for hidden Markov modeling of 8-chromatin states based on the above 

described histone modification ChIP-seq. The hg19 genome-aligned ChIP-seq reads for the 8 cell lines, 

2 acinar samples, and 3 duct samples were first binarized in 200bp bins using the BinarizeBam 

command followed by training of the 8-state model with the LearnModel command. The chromatin 

states were assigned functional annotations based on the histone modification enrichment patterns as 

shown in Extended Data Fig. 6. Super-enhancers (SEs) were identified based on H3K27Ac ChIP-seq 

signal enrichments using the Rank Ordering of Super-enhancers (ROSE2) algorithm60,61. In brief, the 

algorithm stitched together H3K27Ac peaks within a given distance of each other (12.5kb for all 

samples here analyzed) to form broad enhancer regions that were then ranked by H3K27Ac ChIP-seq 

signal enrichment. Enhancer regions above the geometrically defined inflection point were classified 

as super-enhancers. Final super-enhancer counts for each sample type are listed in Supplementary Table 

4. Track files for viewing ATAC-seq peaks, ChromHMM chromatin states, and super enhancer 

annotations in a genome browser may be downloaded from 

https://github.com/hoskinsjw/Pancreas_epigenomics_2024. High-resolution promoter-focused 

Capture-C (PCC) was performed as previously described for PANC-1 and MIA PaCa-2 cells62. 

Overlap of mutations found in intergenic regions introns, 5’UTRs, 3’UTRs, noncoding RNA exons and 

introns, and splicing mutations with ACRs/HMMs mapped in purified pancreatic acinar, ductal cells, 

normal-derived pancreatic cell lines, and PDAC-derived cell lines, is listed in Extended Data Fig. 11. 

Mutations that overlapped ACRs and different HMMs in acinar, duct and normal and tumor-derived 

cell lines are shown in Extended Data Fig. 12 and Extended Data Fig. 13. 

 

Mutation enrichment analysis  

The ACRs, HMMs and super-enhancer elements defined above (2,929,610 elements mapped in 

pancreatic acinar cells, ductal cells, merged normal-derived pancreatic cell lines and merged tumor-

derived pancreatic cell lines) were integrated with mutation calls from WGS data from 506 PDAC 

patients (Table 1, Fig. 1) using ActiveDriverWGS24 (v1.0.1) (based on R v4.0.0) and DriverPower25 

(v1.0.2) (functional adjustment in DriverPower used DANN26 (June 2019) and Eigen27 (June 2019)). A 

Poisson generalized linear regression model was used to compare the mutational burden of test 
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regulatory elements against the expected mutational burden of a background window (50 kbps up- and 

downstream of elements) in ActiveDriverWGS. Regulatory elements ≤50 kb were retained for further 

analysis.  The ACRs and HMMs that we generated in pancreatic cell lines and exocrine cell populations 

were used as genomic features, and the background mutation rate was calculated by gradient boosting 

machine (GBM) model in DriverPower. Extended Data Fig. 14 shows feature importance for the 

background mutation rate. Regulatory elements with false discovery rate (FDR)  0.05 in the above 

enrichment analyses were retained and considered statistically significant. NCSMs were mapped to the 

significant ACRs/HMMs using BEDTools52 (v2.30.0). The blacklists of ENCODE63 (v3) based on hg19 

and hg38 were used to identify whether NCSMs were in problematic regions of the two reference human 

genomes. Then sliding window analysis was performed to select the NCSMs occurring in at least 2 

patients (NCSMs within 31bp windows between patients within the significant ACRs/HMMs). This 

window was selected based on the longest TF motif observed in ENCODE data. 

 

MPRA plasmid pool design & cloning 

Two oligo libraries (NC1 and NC2 for noncoding library 1 and 2) were designed as described 

previously64. To quantify transcriptional activity associated with either MT or WT alleles of each 

NCSM, 145-base sequences centered on either allele (hg38) in the forward and reverse orientations 

were assigned to 35 12-base tag sequences using the processVCF function of the mpradesigntools R 

package65. Tag sequences were preselected for balanced GC content, minimal homopolymer runs, and 

reduced internal hairpin propensity from the publicly available FREE barcodes database66. Tags were 

additionally filtered out should a match be observed between a given tag and an entry in the miRbase 

database67. Tag sequences were separated from the experimental 145-bases by contiguous KpnI 

(GGTACC) and XbaI (TCTAGA) restriction endonuclease recognition sequences and flanked by 

binding sequences for PCR primers (structured oligo sequence: 5’-ACTGGCCGCTTCACTG-145 

bases-GGTACCTCTAGA-12 base tag-AGATCGGAAGAGCGTCG-3’). Each tested NCSM was 

accompanied by a matched scrambled control in both forward and reverse directions, which took the 

respective reference construct and randomly scrambled the central 20-base sequence, with subsequent 

filtering removing any de novo restriction enzyme recognition sites. Both oligo pools also contained 72 

positive variants identified from previous MPRAs (Supplementary Table 18) and luciferase assays 

which significant allelic transcriptional shifts. Of the positive controls, 43 (59.7%) were MPRA 

functional in one or more cell lines. The Pearson correlation for the positive control MPRA 

log2FoldChange was 0.67 (PANC-1 vs. HEK293T cells), 0.75 (MIA PaCa-2 vs HEL293T cells) and 

0.91 (PANC-1 vs. MIAPaCa-2 cells). Of the 988 prioritized NCSMs, 73 mutations could not be 

incorporated into the final MPRA design due to liftover incompatibilities with mpradesigntools or the 

presence of multiple KpnI, XbaI or SfiI recognition sequences within the contextual sequence. Oligos 
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were synthesized on the Sureprint oligo synthesis platform (Agilent, Santa Clara, CA) across two pools, 

each containing approximately 100,000 oligos (denoted NC1 and NC2). 

To clone MPRA oligonucleotide pools into the delivery vector, 10 fmol of reconstituted oligonucleotide 

were first amplified via emulsion PCR (ePCR) using Herculase II fusion polymerase (Agilent, Santa 

Clara, CA) with 2 μM of primers providing SfiI enzyme sites (Supplementary Table 19) with the 

Micellula DNA Emulsion & Purification Kit (EURx/CHIMERx, Milwaukee, WI). Amplified oligo 

pools were ligated to Illumina adapter sequences using the KAPA HyperPrep kit (KAPA Biosystems, 

Wilmington, MA) and qualified using the KAPA qPCR assay before assaying for tag recovery using 

an Illumina MiSeq v3 kit, 150 bp, paired end reads (Illumina, San Diego, CA). Subsequently, ePCR 

products subject to digestion with SfiI (NEB) into the complementary site of the pMPRA1 vector 

(#49349, Addgene, Watertown, MA) with Electroligase (NEB) using a 1:25 molar ratio of vector:insert. 

The resultant plasmid was then digested with KpnI and XbaI (NEB) between the 145 bp element and 

the 12 bp tag sequence, facilitating the subsequent ligation of a luc2 open reading frame cloned from 

complementary restriction sites of the pMPRA2 vector (#49350, Addgene, Watertown, MA). The 

resultant ligation product was electro-transformed into ONESHOT electrocompetent cells (Thermo 

Fisher Scientific, Waltham, MA) so that each construct was distinctly transformed at least ten times. 

The final cloned library, intended for transfection, was confirmed as a single band on an agarose gel 

after digestion with KpnI. 

 

MPRA transfection, cell culture and sequencing library generation 

MPRA was performed in PANC-1, MIA PaCa-2 pancreatic cancer cell lines, and in HEK293T. Cells 

were seeded at 5 million cells per 10 cm2 dish, with sufficient dishes transfected to ensure each designed 

MPRA construct was transfected approximately 100 times per replicate. MPRA plasmid pools were 

transfected using 14 g of plasmid DNA with Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, 

MA). Transfections were performed across four biological replicates per cell line, with replicates being 

initiated from distinct cell passages. Total RNA was harvested 48 hours after transfection using the 

Qiagen RNeasy kit (Qiagen, Hilden Germany). Resultant total mRNA was isolated using the PolyA 

purist MAG kit (Thermo Fisher Scientific, Waltham, MA). Following isolation, mRNA was treated 

with Turbo DNase (Invitrogen). cDNA synthesis was performed using Superscript III with an oligo dT 

primer, as previously described. cDNA was subject to PCR using Q5 high-fidelity polymerase (NEB) 

using primers to incorporate Illumina TruSeq adapter sequences (Supplementary Table 19). Tag-seq 

libraries were also prepared using input DNA in the same manner. NC1 and NC2 pools for each cell 

line, along with the DNA input were sequenced on a single SP NovaSeq flow cell (100bp) single end 

reads (Supplementary Table 20). 
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MPRA quality control and data analysis 

Utilizing FASTQ files from transfected plasmid DNA or RNA transcript sequencing (Supplementary 

Table 20), we counted the number of reads which completely matched each 12 bp tag sequence in 

addition to downstream sequences inclusive of an XbaI recognition site and 20 bp of 3’ luc2 sequence. 

For each transfection, tag counts per million sequencing reads (TPM) were derived by dividing each 

raw tag count by the total number of sequence-matching tag counts per million reads. To infer the 

transcriptional activity attributable to a given element, a singular pseudo count was added to each TPM 

value, with a TPM then being derived by dividing each tag’s RNA TPM by its respective DNA count. 

For each transfection, the median ratio for all tags was calculated, and adjusted ratios were derived by 

dividing each individual ratio by its corresponding median to ensure standardized scaling across 

replicates. Finally, adjusted ratios were log2 transformed to infer an activity level associated with each 

tested tag sequence.   

Across the three cell lines at least 97.05% of barcode sequences were detected in both input DNA 

libraries and RNA samples. Reproducibility between transfections was evaluated using Pearson 

correlation. Following removal of a single outlier replicate for each cell line, high correlation was 

observed for transcriptional activity levels across transfection replicates in the three cell lines (median 

Pearson’s R = 0.71, 0.44 and 0.97 for constructs in pool NC1; Pearson’s R = 0.94, 0.79 and 0.94 for 

constructs tested in pool NC2 in PANC-1, MIA PaCa-2 and HEK293T cell respectively, n = 4 

transfections per cell line; Extended Data Fig. 7). Amongst experimental plasmid constructs (those 

constructs which were not scrambled negative controls) derived from the common pool of positive 

control sequences, the median Pearson’s R was 0.74, 0.77 and 0.95 for PANC-1, MIA PaCa-2 and 

HEK293T, respectively, indicative of robust experimental reproducibility. Transfection replicate T3 for 

PANC-1 MPRA pool NC1 and T1 for PANC-1 cells in MPRA pool NC2 were determined to be outliers 

based on Pearson correlation and were removed from downstream analysis (Extended Data Fig. 7). To 

ensure accurate representation in the subsequent analysis, tags with TPM counts of less than two were 

excluded to prevent low-abundance tags from distorting the data, leaving 89.65% of designed tags 

remaining for subsequent analysis. To assess the impact of either MT of WT alleles on transcriptional 

activity, we used a standard linear regression model while adjusting for the effect of orientation (forward 

or reverse) as a binary covariate and biological replicate as a categorical covariate. That covariate was 

omitted from the model for a subset of NCSMs that were only synthesized in the forward orientation 

(Supplementary Table 10). The significance of each model was determined using the robust sandwich 

type variance estimate Wald test to account for potential heteroskedasticity in the measurement error 

using the R package Sandwich68. P values for each linear model were corrected for multiple testing 

using a Benjamini-Hochberg adjusted P value (FDR) of less than or equal to 0.05 as the threshold used 

to nominate variants with significant transcriptional effects between alleles and the scrambled controls. 

As an additional control to determine whether tested elements exhibited divergent activity relative to a 
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transcriptionally inert control, the average log2(RNA/DNA TPM) ratio for each allele was compared 

against a distribution of log2(RNA/DNA TPM) ratios from all scrambled control constructs tested 

within that cell line. First, the interquartile scrambled activity range for each cell line was determined, 

with experimental alleles being nominated as putative activators should their mean log2 RNA/DNA 

TPM ratio be greater than Q3. Similarly, experimental alleles were nominated as putative suppressors 

should their normalized activity be less than Q1. Mutations that exerted an FDR < 0.05 allelic effect in 

addition to either allele being nominated as a putative activator or suppressor were defined as “MPRA-

functional”.  

 

Validation for specific mutations using dual luciferase reporter assays 

The genomic regions centered on MPRA-functional mutations chr2:43,449,231 C>T and 

chr9:21,968,244 G>T/C and were synthesized as 145 bp gBlocks (Integrated DNA Technologies, 

Coralville IA) in both forward and reverse orientation (Supplementary Table 19) and cloned into the 

multiple cloning site of the pGL4.23[luc2/minP] (Promega, Madison, WI) luciferase vector. Plasmid 

inserts were Sanger sequence-verified to contain the correct inserts and mutations. The pGL4.23 Firefly 

reporter plasmid (and a Renilla luciferase control vector) were co-transfected into PANC-1 and MIA 

PaCa-2 pancreatic cancer cell lines at ∼70% confluency using Lipofectamine 2000 (Thermo Fisher 

Scientific, Waltham, MA). Luciferase activity was measured 48 hours post-transfection with the Dual 

Luciferase Reporter Assay System (Promega, Madison, WI). Firefly luciferase activity relative to 

Renilla luciferase activity was quantified on a GloMax Explorer microplate reader (Promega) and 

plotted as compared to the empty pGL4.23 luciferase vector. Triplicate experimental results were 

pooled and were subject to a two-sided unpaired two-sided T-test was applied to assess significance for 

allelic differences in luciferase activity using GraphPad Prism v10. 

 

CRISPRi targeting of a mutated enhancer at chr2p21 near ZFP36L2  

CRISPRi guides were selected from the ‘CRISPR Targets’ UCSC genome browser(hg38) track to target 

the mutated enhancer downstream of ZFP36L2 (enhancer mutations chr2:43,222,092 C>T and 

chr2:43,222,074 ->AA) (Supplementary Table 19). Homology arms were added to guides for cloning 

DNA inserts into the 5′BstXI-BlpI3′ digestion site of the pU6-sgRNA EF1Alpha-puro-T2A-BFP 

expression plasmid (#60955, Addgene Watertown, MA). As previously described69, gRNA oligos were 

phosphorylated and annealed before cloning to the plasmid backbone. Inserts were verified with Sanger 

sequencing.  

To generate gRNA lentivirus, 4M HEK293T cells were plated in 10cm2 dishes 24-hours prior to 

transfection, after which 9ug of each gRNA, 4ug of packing plasmid psPAX.2 (Addgene, Watertown, 

MA) and 2ug of the envelope vector pMD2.G (#12259, Addgene, Watertown, MA) were diluted in 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.22.24314165doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.22.24314165
http://creativecommons.org/licenses/by-nd/4.0/


- 20 - 

 

OptiMEM medium and Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA) according to 

manufacturer’s instructions. Media was refreshed 6-8 hours post-transfection and subsequent lentiviral 

particles collected 48-hours post transfection. Lentiviral particles were centrifuged, filtered and 

precipitated with polyethylene glycol (2X) overnight and concentrated by centrifugation the following 

day. 

PANC-1 and MIA PaCa-2 cell lines were stably transduced with dCas9-KRAB-ZIM3 lentiviral 

particles (plasmid #154472, Addgene, Watertown, MA) using polybrene and selected with 10 g/mL 

blasticidin. Clonal cell lines were established by limiting dilution, expanded, and confirmed for dCas9-

KRAB-ZIM3 expression by Western blot. To transduce dCas9-KRAB-ZIM3 pancreas cells, PANC-1 

and MIA PaCa2 cells were plated 24-hours prior to transduction. Concentrated virus particles were 

added to individual wells for each guide supplemented with 8g/ml of polybrene. Media was changed 

24-hours post transduction and supplemented with 8g/ml puromycin for selection. Selection media 

was changed every 24-hours and cells harvested for RNA once all kill-control cells were dead (~72 

hours post transduction). Total RNA was extracted using a QIAGEN QIAcube connect instrument with 

the RNeasy mini kit (Qiagen, Hilden Germany). Total RNA (1g) was used for cDNA synthesis with 

SuperScript III reverse transcriptase (Thermo Fisher Scientific, Waltham, MA). Real Time PCR was 

then performed using a Quantstudio 7 Flex system with the following Taqman assays (Thermo Fisher): 

ZFP36L2 (Hs00272828_m1), HAAO (Hs00895710_m1), LINC01126 (Hs03676090_s1), THADA 

(Hs00965192_m1, Hs00965183_m1, Hs00965181_m1). Relative expression changes were presented 

after normalization to each endogenous HPRT1 (VIC probe) control and non-targeting plasmid control. 

Samples were run in 4 independent experiments. An unpaired t-test with Welch’s correction was used 

to test for statistical significance.    

 

Surface Plasmon Resonance analysis 

Interactions between recombinant human KLF9 protein (TP760077, Origene, Rockville, MD), and 

double stranded DNA were analyzed by surface plasmon resonance using a Biacore T200 system (GE 

Healthcare). Mutant and wild type oligonucleotides overlapping the mutation at Chr2:43,449,231 C>T 

near ZFP36L2 (Supplementary Table 19) (IDT, Coralville, IA) were annealed at 95oC for 10 minutes 

and cooled slowly to room temperature. A C1 chip (Cytiva, Marlborough, MA) was utilized to capture 

~2000 RU Neutravadin on all 4 flow cells followed by WT DNA on FC2 and Mutant DNA on FC4. 

KLF9 was prepared in degassed, filtered HBS-P+ (Cytiva, Marlborough, MA) with 20 uM ZnSO4. 

Experiments in high performance mode were carried out using five injections (30 uL/min) of increasing 

concentration of recombinant KLF9 protein (2.47-200 nM) passed over the sensor chip for 300 s 

followed by a 600 s dissociation. Following buffer and reference subtraction, data was evaluated 

utilizing the Biacore T200 evaluation software (GE Healthcare, Chicago, IL).  
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High-resolution promoter-focused Capture C analysis  

The high-resolution promoter-focused Capture C design was described previously20. DpnII restriction 

fragments containing promoters for coding mRNA, noncoding RNA, antisense RNA, snRNA, miRNA, 

snoRNA, and lincRNA transcripts (UCSC lincRNA transcripts and sno/miRNA used human reference 

genome hg19 annotations) totaling 36,691 RNA baited fragments throughout the genome20. Paired-end 

sequence reads from three biological replicates for the PANC-1 and MIA PaCa-2 tumor-derived 

pancreatic cell lines were preprocessed using the HICUP pipeline (v0.8.0)70 (reads were mapped using 

Bowtie2). Significant promoter interactions (score > 5) at 1-DpnII fragment resolution were called 

using CHiCAGO (v1.13.1) with default parameters except for minFragLen set to 75 and binsize set to 

2500. Significant interactions at 4-DpnII fragment resolution were also called using CHiCAGO with 

artificial.baitmap and.rmap files in which DpnII fragments were concatenated in silico into 4 

consecutive fragments20 using default parameters except for minFragLen set to 75, binsize set to 10,000, 

and removeAdjacent set to FALSE. NCSMs within significant ACRs/HMMs were mapped to promoter-

interacting-regions (PIR) using BEDTools52 (v2.30.0). 

 

H3K27ac HiChIP-seq analysis  

The HiChIP-seq analysis has been previously described28,29. Thirteen H3K27ac-HiChIP libraries (four 

samples each from acinar and six of duct cells purified from human donor pancreas tissues, and three 

from PANC-1 cells) were sequenced with 2 x 75bp runs on an Illumina NextSeq instrument to obtain 

more than 180 million reads per sample. Paired-end reads from these samples were aligned to hg38 

using the Hi-C Pro pipeline71 with default settings. Hi-C pro trims, aligns, and assigns reads to MboI 

restriction fragments, filters for valid interactions and generates binned interaction matrices. We used 

two computational programs to call loops on the Hi-C pro processed samples: hichipper72 and 

FitHiChIP73. For hichipper, we used the peak calling options EACH, SELF which included each sample 

individually and only self-ligation reads. hichipper interactions were filtered based on a PET count ≥ 

2 and a Mango FDR ≤ 0.01, which were classified as “significant loops”. For FitHiChIP, we used the 

“loose” parameter and a bin size of 5,000 kb to call loops at FDR ≤ 0.05. Loops were converted to 

bigBed format then uploaded to UCSC browser for visualization. To mitigate the variabilities across 

biological replicates, particularly in primary samples, we constructed a “reference” chromatin loop set 

for each cell type or cell line. We merged raw reads (fastq) from replicate samples based on cell type 

(acinar, duct, and PANC1). These merged reads were processed using Hi-C Pro, followed by loop 

calling using hichipper and FitHiChIP, as described above. We then intersected the hichipper and 

FitHiChIP loops for each cell type using BEDTools’ pairToPair function52 which identifies overlaps 

between loops with the same anchors. These common loops, identified by two independent loop callers, 
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were considered “high confidence loops”. The resulting datasets were designated as “reference” 

chromatin loop sets for acinar and duct cells, as well as the PANC1 cell line.   

 

Differential expression analysis to identify potential target genes 

Differential expression was assessed for each NCSM using permutation testing in samples from 

PanCuRx (n=246) and ICGC (n=280). For each NCSM/target gene pair, tumors were split into two 

groups: those with NCSM in the ACRs/HMMs (mutant, MUT) and those without NCSM in the 

ACRs/HMMs (wild type, WT). Using the normalized expression data described above for the target 

genes, the observed differential expression value (ODEV) was calculated by the mean expression of the 

patients with NCSM in the ACRs/HMMs minus the mean expression of the patients without NCSM in 

the ACRs/HMMs. The expression values for patients with NCSM and the expression values for patients 

without NCSM were permuted 100,000 times to generate 100,000 additional permuted differential 

expression values (PDEV) for randomization test. The empirical P-value was computed as the fraction 

of times (x/100,000) that a PDEV is stronger than the PDEV (when PDEV is positive) or weaker than 

the PDEV (when PDEV is negative). NCSM/target gene pairs with  false discovery rate (FDR) 0.05 

were considered statistically significant. NCSMs found in repeat regions (annotated by RepeatMasker 

(v3.0.1, RepBase library (2010-03-02)), last updated at UCSC genome browser (2022-10-18) 

(https://genome.ucsc.edu/cgi-bin/hgGateway) were removed.  

 

Identification and functional validation of splicing mutations  

Splicing mutations were annotated by ANNOVAR42 (v2019-10-24) using dbscSNV74 (v11) which 

includes all potential human SNVs within splicing consensus regions (−3 to +8 at the 5’ splice site and 

−12 to +2 at the 3’ splice site). dbscSNV_ADA_SCORE and dbscSNV_RF_SCORE with > 0.6 were 

considered damaging. To functionally assess alternative splicing mutations in SMAD4 and CDKN2A, 

genomic fragments surrounding the WT and MT genetic contexts of both mutations were synthesized 

as gBlocks (Integrated DNA Technologies, Coralville IA (Supplementary Table 19). Oligos 

encompassed upstream intronic sequences, the WT or MT splice site and the experimental exon 

followed by downstream intonic (SMAD4) or intergenic (CDKN2A) sequence. Sequences were flanked 

by XhoI and SacII restriction enzyme recognition sites to allow for cloning into the Exontrap vector 

pET01 (MoBiTec, Gottingen, Germany). Exontrap constructs were confirmed for the correct insert 

sequence using Sanger sequencing and transfected into PANC-1 and MIA PaCa-2 cells using 

Lipofectamine 2000 (Invitrogen) across 3 biological replicates for each cell line. 48-hours later, total 

RNA was extracted using the mirVana kit (ThermoFisher Scientific, Waltham, MA), followed by 

cDNA synthesis using SuperScript III reverse transcriptase in combination with the ExonTrap cDNA 

primer 01 (5’ - GATCCACGATGC - 3’). PCR was performed on cDNA using Exontrap primers 02 (5’ 
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- GATGGATCCGCTTCCTGCCCC – 3’) and reverse primer 03 (5’ – 

CTCCCGGGCCACCTCCAGTGCC – 5’). Resultant PCR products were subject to gel electrophoresis 

on a 2% agarose gel stained with 1x ethidium bromide. Specific bands were gel extracted and subject 

to NanoPore sequencing (Oxford Nanopore Technologies) using the ligation sequencing kit with native 

barcoding addon, samples were normalized and multiplexed for sequencing on a single Flongle flow 

cell on an Oxford NanoPore GridIon instrument. Demultiplexed fastq files were aligned to a reference 

genome derived from the corresponding ExonTrap plasmid map and BAM files were visualized in IGV 

to confirm the presence or absence of experimentally spliced exons. Expected splicing aberrations for 

CDKN2A (lack of splicing between exons 2 and 3) and SMAD4 (skipping of exon 9-10 and 10-11 

splicing and direct splicing between exons 9-11) were confirmed with sequencing. 

 

Data availability 

High-resolution promoter-focused Capture C data generated in tumor-derived pancreatic cell lines 

(PANC-1, MIA PaCa-2), ATAC-Seq and ChIP-Seq data from tumor-derived pancreatic cell lines 

(PANC-1, MIA PaCa-2, COLO357, KP-4, PaTu8988t and SU.86.86) and normal-derived pancreatic 

cell lines (HPDE-E6E7 and hTert-HPNE) have been deposited in SRA under accession number 

PRJNA1041452. The raw ATAC-Seq and ChIP-Seq sequencing data from purified pancreatic acinar 

and ductal cell populations were obtained from NCBI’s Gene Expression Omnibus (GSE79468). 

H3K27ac HiChIP-seq data from pancreatic acinar and duct cell populations is available through GEO 

(GSE245484). Raw whole genome and transcriptome sequence data for ICGC-PACA samples was 

obtained from The International Cancer Genome Consortium through controlled access 

(https://docs.icgc-argo.org). The whole genome somatic mutation calls and gene expression counts of 

ICGC-PACA samples were obtained from the International Cancer Genome Consortium (IGCG) data 

portal (https://dcc.icgc.org/) in July 2019 but now hosted at https://object.genomeinformatics.org 

(Bucket Name: icgc25k-open, a publicly available Object Storage Bucket, which uses the AWS S3 

interface and is accessible using any S3 compatible object storage client). Raw whole genome and 

transcriptome sequence data, somatic mutation calls and gene expression counts from PanCuRx 

(European Genome-phenome Archive accession number EGAS00001002543) were kindly provided 

from the Ontario Institute for Cancer Research, Ontario, Canada (via controlled access).   
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Figure Legends 

 
Fig. 1. Study design and general annotations for somatic mutations identified in 506 PDAC patients. a, 

Study design for the integrated multiomic approach to identify noncoding driver mutations for PDAC used int 

his study. b, Somatic mutation calls from ICGC and PanCuRx in coding (purple, n = 36,490 or 1.05%) and 

noncoding (grey, n = 3,446,276 or 98.95%) regions of the genome (n = 506 PDAC patients after QC, see 

Methods). c, Classification of all NCSMs using ANNOVAR. Mutations are shown in intergenic regions (blue, n 

= 2,057,806 or 59.71% of the noncoding region), introns (orange, n = 1,082,746 or 31.42%), noncoding RNA 

introns (grey, n = 225,804 or 6.55%), Mutations in the remaining categories are shown as other (green) in the 

pie chart and consist of mutations in 3’UTRs (yellow, n = 26,493 or 0.77%), downstream of genes (n = 17,556 

or 0.51%), upstream of genes (n = 17,389 or 0.50%), noncoding RNA exons (n = 11,818 or 0.34%), 5’UTR (n = 

5,363 or 0.16%), both upstream and downstream of genes (n = 622 or 0.02%), splicing mutations (n = 603 or 

0.02%), noncoding RNA splicing mutations (n = 49), both 5’UTR and 3’UTR (n = 23), and, both noncoding 

RNA exon and splicing mutations (n=4). d, Classification of NCSMs annotated by ENCODE epigenetic data 

from 147 cell lines and tissue samples. * Two RNA-seq datasets from the ICGC (n = 280) and PanCuRx (n = 

246) consortia were used for differential expression analysis. 

Fig. 2. MPRA results for mutations enriched in accessible chromatin regions (ACRs) and histone 

modification marks (HMM) mapped in pancreatic cell lines and purified pancreatic acinar and duct cell 

populations. a-c, Volcano plots with MPRA results for PANC-1 (left), MIA PaCa-2 (center), and HEK293T 

(right) cells.  MPRA effect sizes (Log2(MT RNA/DNA TPM)/(WT RNA/DNA TPM)) analyzed for the forward 

and reverse orientation inserts combined and significance (log10(-log10(P-value)) are show for all tested 

mutations. MPRA-functional mutations are shown as purple filled circles and all other mutations with grey 

filled circles on the plots in panels a, b and c. Mutations that were validated using individual luciferase assays 

are listed in red text with chromosomal location followed by the wild type and mutant alleles. d, MPRA results 

are listed for the 20 most significant NCSMs in PANC-1 cells, with corresponding results shown for MIA PaCa-

2 and HEK293T cells. The three MPRA-functional mutations validated by individual luciferase assays are 

shown in pink highlights. MPRA regression results for all tested mutations and control variants are shown in 

Supplementary Table 10. Coordinates are based on human reference build hg19. MT: mutant allele, WT: wild 

type allele. 

Fig. 3. Luciferase validation for MPRA-functional NCSMs at chr2p21 near ZFP36L2 and at chr9p21.3 

intronic to CDKN2A. MPRA results (a) and luciferase validation (b) are shown for a NCSM at chr2:43,449,231 

(C>T). MPRA results (c), and luciferase validation (d) for two mutations at chr9:21,968,244 (G>C and G>T). 

MPRA and luciferase results are shown for clones where the insert is in either the forward (FWD) or the reverse 

(REV) orientation. Mutated alleles are shown in red text. Stars indicate significance thresholds: ****P-value < 

0.0001; ns indicates nonsignificant results. Relative luciferase activity in b and d is compared to the empty vector. 

Error bars for the MPRA plots in panels a and c indicate the median, IQR (the boxes themselves) and the range 

of the data (whiskers) and for the luciferase assays in panels b and d, the S.E.M for four replicate experiments  

Fig. 4. Functional assessment of splicing mutations in CDKN2A and SMAD4. a, A schematic figure showing 

CDKN2A exons 1 through 3 and the alternative splicing that generates both the p16INK4A (in red) and p14ARF 

(in blue) proteins. b, NCSMs at chr9:21,968,244 (G > C and G > T) in PDAC tumors from two patients 
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(ICGC0536 and PCSI0777) are predicted to disrupt CDKN2A splicing between exons 2 and 3. c, Exon-trap 

validation for NCSMs at chr9:21,968,244 (G > C and G > T) in MIA PaCa-2 cells. d, A schematic figure of 

SMAD4 exons and normal splicing between exons 9, 10 and 11. e, NCSMs at chr18:48,593,559 (T > A and T > 

G) are predicted to disrupt SMAD4 splicing and result in exon 9 to exon 11 splicing thus skipping exon 10. 

These mutations were observed in PDAC tumors from two patients (PCSI0285 and PCSI0698). f, Exon-trap 

validation for the two NCSMs at chr18:48,593,559 (T > A and T > G) in MIA PaCa-2 cells (see Extended Data 

Fig. 8c for exon-trap validation in PANC-1 cells). Coordinates are based on human reference build hg19.  

Fig. 5. Identification of potential target genes for the 988 mutations enriched in pancreatic ACRs/HMMs. 

Schematic illustrations showing mutations falling: (a) directly within a promoter region, (b), in an ACR/HMM 

that physically interacts with a promoter region of a target gene (using chromatin interaction data detected by 

PCC in MIA PaCa-2 and PANC-1 cell lines), and, (c) in an enhancer region that physically interacts with a 

promoter region of a target gene (using chromatin interactions defined by H3K27ac HiChiP-seq in pancreatic 

acinar cell populations, pancreatic duct cell populations, and PANC-1 cells). d, Number of mutations enriched in 

promoters and their corresponding target genes. e, Number of mutations enriched in ACRs/HMMs and their target 

genes inferred by PCC. f, Number of mutations enriched in ACRs/HMMs, and their target genes inferred by 

H3K27ac HiChIP-seq. g, Differential expression analysis for PDAC samples with mutations as compared to 

nonmutated samples. This analysis was done separately for tumors from ICGC (n = 280) and PanCuRx (n = 246) 

with RNA-seq data. Significantly (Permutation test P-value  0.05) differentially expressed NCSMs - target genes. 

MUT: tumors with specific mutations. WT: tumors without the specific mutations. *Number of MUT and WT 

samples in the whole WGS dataset of 506 PDAC tumors. #Dataset with significant differential findings (results 

from both ICGC and PanCuRx RNA-seq datasets for these genes is shown in Supplementary Table 16). 

            

Fig. 6. Potential noncoding driver mutations at chr2p21. a, A schematic illustration showing a NCSM (Hg38 

chr2:43,222,092 C>T; Hg19 chr2:43,449,231) in an enhancer downstream of ZFP36L2. Additional mutations 

were located within the genes’ promoter, 5’UTR, exons, 3’UTR and the same downstream enhancer. The lower 

panel shows peaks of accessible chromatin (from ATAC-seq) in pancreatic acinar cells, pancreatic duct cells and 

PANC-1 cells (ATAC-seq results were similar in all other cell lines included in the study). b, Potential targets 

genes for the NCSM (chr2:43,222,092 C>T) assessed by H3K27ac HiChIP-seq in pancreatic acinar, ductal and 

PANC-1 cell lines. Interacting genes are listed in light orange text. C, CRISPRi targeting the mutated enhancer 

(dark orange) with four RNA guides as well as the promoter (red) of the gene with two guides in PANC-1 and 

MIA PaCa-2 cells. d, JASPAR DNA binding motif for KLF9 (MA1107.3) with the C>T mutation indicated (red). 

e, Surface Plasmon Resonance (SPR) results showing ~3-fold lower binding of recombinant KLF9 protein to a 

oligo representing the mutation at chr2:43,449,231 (Hg19) and surrounding DNA sequence. Coordinates are based 

on human reference build hg19 except in panels a and b. 
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Table Legends 

 
Table 1. Pancreatic datasets and epigenetic annotations used for noncoding somatic mutation enrichment 

analysis. The number and length of mapped accessible chromatin regions (ACRs), histone modification marks 

(HMMs) and super-enhancers (SE) defined in primary pancreatic acinar cell populations, primary pancreatic duct 

cell populations, normal-derived pancreatic cell lines and tumor-derived pancreatic cell lines are shown. 

#Noncoding gene regulatory elements from HPDE-E6E7 and hTERT-HPNE normal-derived pancreatic cell lines 

were merged prior to testing for enrichment of NCSMs. Likewise, elements from COLO357, KP-4, PaTu8988t, 

SU.86.86, MIA PaCa-2 and PANC-1 tumor-derived pancreatic cell lines were merged prior to the enrichment 

analysis. A total of 2,929,610 annotations (mapped in pancreatic acinar and ductal cell populations as well as in 

merged normal- and tumor-derived cell lines) were used for the noncoding somatic mutation enrichment analysis.

          

Table 2. Pancreatic gene regulatory elements significantly enriched with somatic mutations in PDAC. The 

number of accessible chromatin regions (ACRs) histone modification marks (HMMs) and super-enhancers (SE) 

identified in (a) purified primary pancreatic acinar cells, (b) primary ductal cells, (c) normal-derived pancreatic 

cell lines and (d) PDAC cells that were used for the NCSM enrichment analysis. Likewise, the number of gene 

regulatory elements identified as enriched for somatic mutations as per ActiveDriverWGS and DriverPower 

analysis are listed. 
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Supplementary information 

Extended Data Fig. 1. Oncoplot of the top 10 most mutated genes in ICGC-PACA-AU (n = 173). Genes were 

ordered by their mutation frequency. The percentages and the bar plots on the right represent the fraction and the 

number of patients with somatic mutations in the corresponding genes on the left. The types of mutation were 

color coded and listed at the bottom. All patients in this study with less than 100 SSMs or a SSM count more than 

three standard deviations away from the mean were removed. Mutations annotated as “Multi_Hit” were those 

genes which were mutated more than once in the same sample. 

 

Extended Data Fig. 2. Oncoplot of the top 10 most mutated genes in ICGC-PACA-CA (n = 216). Genes were 

ordered by their mutation frequency. The percentages and the bar plots on the right represent the fraction and the 

number of patients with somatic mutations in the corresponding genes on the left. The types of mutation were 

color coded and listed at the bottom. All patients in this study with less than 100 SSMs or a SSM count more than 

three standard deviations away from the mean were removed. To observe the systematic pattern of mutated genes, 

the duplicate donors between the ICGC-PACA-CA and PanCuRx were included here. In the follow up mutation 

enrichment analysis, the duplicate donors between ICGC-PACA-CA and PanCuRx were removed. 

 

Extended Data Fig. 3. Oncoplot of the top 10 most mutated genes in PanCuRx (n = 310). Genes were ordered 

by their mutation frequency. The percentages and the bar plots on the right represent the fraction and the number 

of patients with somatic mutations in the corresponding genes on the left. The types of mutation were color coded 

and listed at the bottom. All patients in this study with less than 100 SSMs or a SSM count more than three 

standard deviations away from the mean were removed. To observe the systematic pattern of mutated genes, the 

duplicate donors between the PanCuRx and ICGC-PACA-CA were included here. In the follow up mutation 

enrichment analysis, the duplicate donors between PanCuRx and ICGC-PACA-CA were removed. 

 

Extended Data Fig. 4. ACR landscape comparisons of cell lines and sorted primary cells. (a) Scatter plots of 

PC1 vs. PC2 and PC3 vs. PC4 from the principal component analysis (PCA) of sample replicates based on 

normalized ATAC-seq read counts mapped to the union of all identified ACRs. (b and c) Hierarchically clustered 

heatmaps of Pearson (b) or Spearman (c) correlations between all sample replicates based on normalized ATAC-

seq read counts mapped to the union of all identified ACRs. 

 

Extended Data Fig. 5. Overlapping ACRs between this study and ENCODE bulk pancreas. An Euler 

diagram depicting the tallies for overlapping ACRs between all possible combinations of sample groups as 

determined by the mergePeaks function in the HOMER software suite. Notably, of the 189,581 ACRs reported 

for these ENCODE bulk pancreas samples, 91,082 (48.0%) overlapped the ACRs used for this study while the 

ENCODE bulk pancreas samples missed 86,324 ACRs annotated in the pancreatic cell lines and purified acinar 

and duct cells. 

 

Extended Data Fig. 6: ChromHMM states. Heatmap summarizing the relative contributions of ChIP-seq histone 

modification mark (HMM) enrichments to state assignment in the ChromHMM 8-state model trained on the 

pancreatic cell lines and purified pancreatic acinar and duct cells as detailed in the Online Methods. 
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Extended Data Fig. 7. Inter-replicate Pearson correlation of normalized RNA/DNA TPM ratios for all 

detected barcodes in MPRA Pool 1 (a) and Pool 2 (b) across HEK293T, PANC-1, and MIA PaCa-2 cells. 

Note that one PANC-1 replicate from each MPRA pool (T3 from NC1 and T1 from NC2) were determined to be 

outliers by R < 0.4 and were removed from subsequent analysis. 

 

Extended Data Fig. 8. CDKN2A and SMAD4 splicing validation using RNA-seq. a, RNA-seq data showing 

CDKN2A exon3-2 normal junction was disrupted in a patient (PCSI_0777) with a chr9:21,968,244 (G > C) 

mutation while no disruption in patient (PCSI_0785) without chr9:21,968,244 (G > C) mutation. b, RNA-seq data 

showing CDKN2A exon10 skipping events in 2 patients (PCSI_0285 and PCSI_0698) with chr18:48,593,559 (T > 

A/G) mutations while no skipping events in 2 patients (PCSI_0781 and PCSI_0785) without chr18:48,593,559 

mutation. c. Functional assessment of splicing mutations in CDKN2A and SMAD4 in PANC-1 cells. Left panel: 

Exon-trap validation for NCSMs in CDKN2A at chr9:21,968,244 (G > C and G > T listed at C > G and C > A) 

in PANC-1 cells. Right panel: Exon-trap validation for the two NCSMs in SMAD4 at chr18:48,593,559 (T > A 

and T > G) in PANC-1 cells. Note absence of bands 10 and 11 for CDKN2A (left) and band 8 for SMAD4 in 

(right) with the mutated alleles. 

 

Extended Data Fig. 9. Chromatin interactions between ACRs/HMMs and target genes inferred by 

HiChIP and PCC data. a, Venn diagram showing unique and shared target genes inferred by HiChIP and PCC 

in different cell lines. b, The 10 NCSMs and corresponding 6 common target genes observed in both the HiChIP 

and PCC data.  

 

Extended Data Fig. 10. CRISPRi results for genes with chromatin interactions at chr2p21 near ZFP36L2. 

Gene expression in PANC-1 cells was assessed after KD with four CRISPRi guides targeting the enhancer 

downstream of ZFP36L2 (G1 – G4) as well as two ZFP36L2 promoter guides (Promoter G1 and G2). The non-

target guide is within the same topologically associating domain (TAD). Guides G1 and G4 showed significant 

reduction of THADA_2 expression. b. Gene expression in MIA PaCa-2 cells was assessed after KD with four 

CRISPRi guides targeting the enhancer downstream of ZFP36L2 (G1 – G4) as well as two ZFP36L2 promoter 

guides (Promoter G1 and G2). The non-target guide is within the same topologically associating domain (TAD). 

Guides G1, G2 and G4 showed significant reduction of THADA_2 expression. HAAO was not expressed in this 

cell line. 

 

Extended Data Fig. 11. Distribution of the NCSMs and the intersection with ACRs/HMMs from acinar, 

ductal, normal- and tumor-derived cell lines. a, Numbers of NCSMs in the 7 noncoding regions: intergenic 

regions, introns, ncRNA introns, 3 ′UTRs, 5′UTRs, ncRNA exons and splicing mutations. b, Percentage of 

NCSMs in ACRs. c, Percentage of NCSMs in H3K4me3 marks. d, Percentage of NCSMs in H3K27ac marks. e, 

Percentage of NCSMs in marks (H3K4me1). f, Percentage of NCSMs in super-enhancers. g, Percentage of 

NCSMs in repressed regions (H3K27me3).  
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Extended Data Fig. 12. NCSMs located in ACRs/HMMs from purified pancreatic acinar, ductal cells, 

normal-derived pancreatic cell lines, and PDAC cell lines. Venn diagrams showing unique and shared NCSMs 

in ACRs/HMMs in the four types of cells.   

 

Extended Data Fig. 13. Intersection of NCSMs in ACRs/ HMMs in purified pancreatic acinar, ductal 

cells, normal- and tumor-derived cell lines. UpSet plots showing unique and shared NCSMs in the four types 

of cells in ACRs/HMMs. 

 

Extended Data Fig. 14. Feature importance for background mutation rate prediction by DriverPower. 

H3K27ac marks from acinar cells were the most important group of predictors for background mutation rate 

(BMR) using DriverPower.  BMR was calculated by non-overlapped 1 megabase pair (Mbp) autosomal elements 

as well as training ACRs/HMMs by sampling genomic coordinates randomly. The number of mutations per 

element was then predicted with fivefold cross validation. 

 

 

Supplementary Table 1: FunSeq2 annotations for the most frequently mutated non-protein coding elements (in 

five ENCODE categories). 

Supplementary Table 2. 24 Genome-wide identically recurrent (n ≥ 10) NCSMs in PDAC. Mutations were 

annotated by ANNOVAR. 

Supplementary Table 3. ATAC-seq QC metrics and ACR summary statistics. 

Supplementary Table 4: Histone ChIP-seq and super-enhancers summary statistics for normal-derived, 

PDAC-derived cell lines and purified acinar and duct cell populations. 

Supplementary Table 5: All (n=314) pancreatic ACRs/HMMs significantly enriched with somatic mutations. 

A list of ACRs/HMMs that were significantly enriched with somatic mutations. Note that some elements 

overlapped between enrichment methods and were merged which resulted in a total of 314 ACRs/HMMs. 

Supplementary Table 6: The top 15 ACRs/HMMs significantly enriched with somatic mutations. The 

ACRs/HMMs covering KRAS, TP53, CDKN2A and SMAD4 had the highest tumor mutation burden.  

Supplementary Table 7:  List of the 988 NCSMs which were enriched in the pancreatic ACRs/HMMs. The 

coordinates are based on human reference builds hg19 and hg38, respectively. Three NCSMs in human 

reference hg19 could not be mapped to hg38 (marked unmap).  

Supplementary Table 8: 45 motif break/gain events caused by the 988 NCSMs. The BED format details of 

FunSeq2 annotation can be accessed from: https://info.gersteinlab.org/Funseq2. 

Supplementary Table 9: ENCODE annotations for noncoding mutations in the top significant pancreatic 

ACR/HMM (tumor- and normal-derived cell lines and acinar and duct cell populations). BED format details of 

FunSeq2 annotations can be accessed from: https://info.gersteinlab.org/Funseq2. 

Supplementary Table 10: MPRA results for the 915 tested NCSMs and 72 positive controls. Linear regression 

results for each tested NCSM accompanied by log2(MT/WT (RNA TPM +1/DNA TPM +1)). P values and 
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FDR-adjusted P-values for comparisons between MT and WT alleles in addition to comparisons between each 

tested allele and the average of all scramble sequences tested in that cell line. 

Supplementary Table 11: Splicing mutations shared by ≥ 2 patients. All splicing mutations were with both 

dbscSNV_RF_SCORE and dbscSNV_ADA_SCORE ≥ 0.6 annotated by ANNOVAR using dbscSNV. 

Supplementary Table 12: 36 NCSMs directly in gene promoters. Enriched NCSM that were in gene promoters 

as defined by HPCC baits. 

Supplementary Table 13: Chromosomal interactions between the NCSMs and target regions by HPCC. The 

interaction data was analyzed by the ChICAGO pipeline. 

Supplementary Table 14: Chromatin interactions between the NCSMs and target regions by HiChIP-seq (part 

1, interactions to the right of mutation). The HiChIP data was analyzed using hichipper and FitHiChip. 

Supplementary Table 15:  Chromatin interactions between the NCSMs and target regions by HiChIP-seq (part 

2, interactions to the left of each mutation). The HiChIP data were analyzed using hichipper and FitHiChip. 

Supplementary Table 16: Genes with significantly differential expression (DE) in mutated tumors as 

compared to WT tumors in ICGC (n=280) and PanCuRx (n=246) samples with RNA-seq data    

Supplementary Table 17: Transcription factor binding motif predication for a noncoding somatic mutation 

downstream of ZFP36L2 (chr2: 43,449,231 C > T (hg19)). Prediction was performed using PERFECTOS-APE: 

PrEdicting Regulatory Functional Effect by Approximate P-value Estimation.     

Supplementary Table 18: Positive controls used in MPRA experiments.     

Supplementary Table 19:  Experimental oligonucleotide/gBlock sequences. 

Supplementary Table 20:  Sequencing statistics for MPRA cDNA Libraries and Mapping of Tag Sequences. 
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Cell origin Sample type Feature ATAC-Seq H3K4me3 H3K4me1 H3K27ac H3K27me3 Super 
enhancer Reference

Number of elements 47,943 36,316 130,407 86,479 40,792 1,830
Average length (bp) 338 382 395 453 11,642 24,128

Total length (bp) 16,197,723 13,873,134 51,573,090 39,211,311 474,885,708 44,154,250
Number of elements 28,346 47,523 145,985 115,944 48,886 2,013
Average length (bp) 442 385 373 578 16,984 30,871

Total length (bp) 12,536,050 18,277,877 54,509,008 67,044,666 830,270,614 62,143,917
HPDE-E6E7 Number of elements 109,212 127,685 209,871 165,634 32,138 1,304

hTERT-HPNE  Number of elements 258,494 174,233 267,643 231,431 20,848 1,914

Merged# Number of elements 110,559 202,545 341,357 289,299 33,325 2,469
Average length (bp) 570 860 942 1,103 30,520 110,821

Total length (bp) 63,013,361 174,253,717 321,463,948 319,185,292 1,017,080,175 273,617,734
COLO357 Number of elements 216,322 132,215 73,249 132,680 32,172 851

KP-4 Number of elements 107,999 100,428 131,689 174,005 30,956 1,062
PaTu8988t Number of elements 132,485 99,058 143,163 184,355 24,594 1,457
SU.86.86 Number of elements 190,546 152,434 144,334 163,037 26,973 1,367

MIA PaCa-2 Number of elements 151,448 27,693 188,962 279,075 24,547 2,107
PANC-1 Number of elements 116,498 73,582 180,761 165,910 24,876 1,219
Merged# Number of elements 134,666 215,439 380,899 443,624 39,164 3,800

Average length (bp) 620 936 946 1,182 39,477 114,452
Total length (bp) 83,492,920 201,728,939 360,373,279 524,426,840 1,546,084,336 434,916,231

Table 1: Pancreatic datasets and epigenetic annotations used for somatic mutation enrichment analysis

The number and length of mapped accessible chromatin regions (ACRs), histone modification marks (HMMs) and super-enhancers (SE) defined in primary pancreatic acinar cell populations, primary pancreatic duct cell populations, 
normal derived pancreatic cell lines and tumor derived pancreatic cell lines are shown. #Noncoding gene regulatory elements from HPDE-E6E7 and hTERT-HPNE normal-derived pancreatic cell lines were merged prior to testing for 
enrichment of NCSMs. Likewise, elements from COLO357, KP-4, PaTu8988t, SU.86.86, MIA PaCa-2 and PANC-1 tumor-derived pancreatic cell lines were merged prior to the enrichment analysis. A total of 2,929,610 annotations 
(mapped in pancreatic acinar and ductal cell populations as well as in merged normal- and tumor-derived cell lines) were used for the noncoding somatic mutation enrichment analysis.

Purified pancreatic 
acinar and ductal cells

Acinar cells
Arda et al., Cell 
Systems , 2018

Ductal cells

Normal-derived 
pancreatic cell lines This study

Tumor-derived 
pancreatic cell lines This study
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Regulatory elements ATAC-Seq H3K4me3 H3K4me1 H3K27ac H3K27me3 Super-enhancer
Number of elements tested 47,943 36,316 130,407 86,479 40,792 1,830
ActiveDriverWGS enriched elements 2 2 13 17 16 2
DriverPower enriched elements 1 0 2 5 0 0

Regulatory elements ATAC-Seq H3K4me3 H3K4me1 H3K27ac H3K27me3 Super enhancer
Number of elements tested 28,346 47,523 145,985 115,944 48,886 2,013
ActiveDriverWGS enriched elements 1 10 11 14 11 2
DriverPower enriched elements 0 4 2 1 0 0

Regulatory elements ATAC-Seq H3K4me3 H3K4me1 H3K27ac H3K27me3 Super enhancer
Number of elements tested 110,559 202,545 341,357 289,299 33,325 2,469
ActiveDriverWGS enriched elements 5 10 15 12 11 1
DriverPower enriched elements 3 4 5 6 0 0

Regulatory elements ATAC-Seq H3K4me3 H3K4me1 H3K27ac H3K27me3 Super enhancer
Number of elements tested 134,666 215,439 380,899 443,624 39,164 3,800
ActiveDriverWGS enriched elements 1 18 25 55 32 0
DriverPower enriched elements 5 8 11 17 0 1

Table 2. Pancreatic gene regulatory elements significantly enriched with somatic mutations in PDAC

The number of accessible chromatin regions (ACRs) histone modification marks (HMMs) and super-enhancers (SE) identified in (a) purified primary pancreatic 
acinar cells, (b) primary ductal cells, (c) normal derived pancreatic cell lines and (d) PDAC cells that were used for the NCSM enrichment analysis. Likewise, the 
number of gene regulatory elements identified as enriched for somatic mutations as per ActiveDriverWGS and DriverPower analysis are listed.

a. ACRs/CREs identified in purified pancreatic acinar cells enriched for somatic mutations

b. ACRs/CREs identified in purified pancreatic ductal cells enriched for somatic mutations

c. ACRs/CREs identified in normal derived pancreatic cell lines enriched for somatic mutations

d. ACRs/CREs identified in PDAC cell lines enriched for somatic mutations
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