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Purpose of review

Obstructive sleep apnea (OSA) is a common chronic condition that affects over a billion people worldwide
and is associated with adverse cardio- and cerebrovascular consequences. Currently, the go-to clinical
measure that determines the presence and severity of OSA is the apnea-hypopnea index (AHI). The AHI
captures the frequency of respiratory events due to changes in ventilation that are associated with either
oxygen desaturations or arousal from sleep. The AHI is poorly correlated to adverse outcomes in OSA with
poor prognostic ability. To overcome the limitations of AHI and perhaps driven by the ease of acquisition,
several studies have suggested characterizing nocturnal hypoxia in OSA, termed as “hypoxic burden”. The
purpose of this review is to focus on the hypoxic burden in OSA, its various definitions, and its utility in
moving OSA diagnosis beyond the AHI.

Recent findings

Several measures and definitions of hypoxic burden have been proposed and studied that show promise in
overcoming limitations of AHI and also have a greater prognostic ability than AHI. More recently, area-
based measures that attempt to characterize the depth and duration of oxygen desaturations, i.e.,
nocturnal hypoxia in OSA, have been shown to better relate to incident cardiovascular disease than AHI.
In this review, we delve into the evidence for these novel area-based metrics and also delve into the
pathophysiological concepts underlying nocturnal hypoxia while cautioning the reader on interpretation of
the recent findings relating hypoxic burden to adverse outcomes in OSA.

Summary

In this review on hypoxic burden, we focus on the need that has driven the sudden influx of studies assessing
hypoxic burden for various outcomes of OSA, its underlying pathophysiology, the various definitions, and
clinical relevance. We hope that the reader can appreciate the nuances underlying hypoxic burden in OSA
and suggest the need for a cohesive framework for moving beyond the AHI with hypoxic burden.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a common chronic
disorder that is estimated to affect over a billion
people worldwide [1] and when left untreated, OSA
is associated with adverse consequences such as
daytime sleepiness, cardiovascular disease (CVD)
and neurocognitive impairment [2]. OSA is charac-
terized by repetitive events of either complete
(apneas) or partial upper airway collapse (hypo-
pneas). Immediate consequences of these repetitive
events include oxygen desaturation and arousal
from sleep. Regardless of the underlying mecha-
nisms, be it anatomic or nonanatomic, that cause
upper airway collapse, the immediate consequences
of oxygen desaturation and arousal from sleep are
commonly observed in almost all OSA patients. It is
om
thus not surprising that the apnea-hypopnea index
(AHI) which considers the frequency of respiratory
events associatedwith either oxygen desaturation or
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KEY POINTS

� Obstructive sleep apnea (OSA) is a common chronic
disorder that affects over a billion people worldwide.

� Apnea-hypopnea index (AHI), which is clinically used
to diagnose and document presence of OSA, is
inconsistently related to adverse outcomes of OSA.

� In pursuit of moving the diagnosis of OSA beyond the
AHI, recent studies suggest that metrics that
characterize the nocturnal hypoxia in OSA better relate
to adverse outcomes of OSA than the AHI

� Several groups have published multiple different yet
similar measures of nocturnal hypoxia in that they all
attempt to describe the depth and duration of oxygen
desaturation events precipitated by ventilatory changes
in OSA.

� In this review, we detail current state-of-the-art in the
field that make a case for hypoxic burden to replace
the AHI in clinical management of patients with OSA.
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arousals from sleep has become the prevailing meas-
ure of both the presence and the severity of OSA as a
disease. However, AHI is inconsistently related to
adverse consequences of OSA [3,4

&&

,5–13]. While
epidemiological studies suggest that OSA, deter-
mined by AHI, is associated with CVD mortality
and morbidity [14–18], baseline AHI or changes in
AHI with treatment of OSA fail to predict adverse
outcomes [19]. Further, pretreatment AHI poorly
predicts the degree of clinical improvement that is
obtained with treatment of OSA. As such, it is not
unexpected that randomized control trials that have
hypothesized that treatment of OSA would lead to
lower incidence of CVD, have not yet been success-
ful [20,21].

One possible reason that AHI, as a universally
used metric for presence of OSA as well as its
severity, is inconsistently associated with adverse
outcomes, is that it fails to capture the depth and
breadth of OSA as a disease. It has been shown that
not only individuals have differing degrees of ven-
tilatory deficit, but the responses to those ventila-
tory deficit differ as well [22–24]. AHI disregards this
heterogeneity and groups individuals into similar
groups, and while one way to capture this hetero-
geneity might be to design a completely new meas-
ure, or perhaps two, one for the presence and
another for severity of OSA, a simpler alternative
might be to re-examine AHI and its usage. AHI can
be considered a fixed combination of three possibly
independent domains: ventilatory, hypoxic, and
arousal. Several studies have suggested that meas-
ures that characterize OSA along these domains
1070-5287 Copyright © 2024 The Author(s). Published by Wolters Kluwe
have better prognostic ability than AHI. Butler
et al. studied event duration of respiratory events
and found that it was associated with CVD more so
than AHI [3]. Along the respiratory domain, work
from our group also suggests that the breath-by-
breath amplitudes, derived in an automated fashion,
is a strong predictor of incident CVD than AHI
[4

&&

,25
&&

]. Azarbarzin et al. studied the area under
candidate oxygen desaturation events and similarly
found that their measure of nocturnal hypoxia was
better related to CVD than AHI [26]. And along the
arousal domain, measures of arousal intensity were
likewise shown to be stronger predictors of CVD than
AHI [22]. Furthermore, work from our group also
suggests that a data-driven combination of measures
along these three domains may better predict imme-
diate and long-term consequences of OSA [25

&&

].
In our continually evolving understanding of

OSA as a disease, evidence from several studies
suggests that changes in ventilation, whether due
to single or multiple factors underlying pathogene-
sis of OSA, precipitates changes in blood gas which
leads to increased nocturnal hypoxia that may or
may not culminate in arousal from sleep [27,28]. It is
thought that hypoxia dominant OSA [29], subtype
of OSA in which ventilatory changes during the
night result in oxygen desaturation, but not neces-
sarily arousal from sleep, can increase vascular
inflammation, sympathetic nervous system activity,
and as a result may lead to an increased risk for CVD.
As such, it is thought that when considering cardi-
ovascular disease, assessing severity of OSA should
perhaps be made synonymous with assessing
severity of nocturnal hypoxia.
PATHOPHYSIOLOGICAL CONCEPTS
UNDERLYING HYPOXIC BURDEN

Arguably the crucial behavior that governs delete-
rious effects of hypoxia in OSA is its intermittent
nature. It was reported that 2–4weeks of intermit-
tent hypoxia leads to increased daytime blood pres-
sure, sympathetic nerve activity, mean pulmonary
artery pressure, in healthy individuals, possibly
through renin-angiotensin mechanisms [30–34].
Alternative pathways include blood platelets
through which intermittent hypoxia may lead to
CVD [35]. These effects are different from those
observed in sustained hypoxic conditions [36

&&

].
As a result, it is hypothesized that characterizing
the intermittent nature of hypoxia in OSA is key.

Several experiments suggest that reduced pree-
vent SpO2 is a robust indicator of the rate of post-
event SpO2 decline [37–39]. More recently, data
from Azarbarzin et al. as well as ours, suggest that
the tendency to desaturate is dependent on the
r Health, Inc. www.co-pulmonarymedicine.com 601
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preevent ventilatory deficit (or burden) [40,41
&&

,42].
As a result, baseline SpO2 as well as baseline ven-
tilatory deficit may be crucial parameters that deter-
mine the tendency to desaturate in OSA patients.
Further, reduced baseline SpO2 also contributes to
faster desaturations due to the sigmoidal nature of
the oxyhemoglobin dissociation curve at lower par-
tial pressures of oxygen. It is argued that OSA
patients with shorter events may have the most
rapid oxygen desaturations perhaps due to under-
lying metabolic syndromes and/or increases in
abdominal visceral adipose tissue that leads to
decreased lung volumes and thus leading to faster
oxygen desaturations [38]. While ventilatory
changes may be the largest contributor of nocturnal
hypoxia, other aspects such as metabolic syndrome
should be considered when assessing the relation-
ship between hypoxic burden and adverse out-
comes. Although it may be parsimonious to link
nocturnal hypoxia to adverse outcomes in OSA such
as cardiovascular disease, the causal mechanisms
underlying this relationship are not fully known.
EVALUATING HYPOXIC BURDEN IN
OBSTRUCTIVE SLEEP APNEA

All currently studied metrics of hypoxic burden rely
on the use of the pulse oximetry signal obtained
during a routine sleep study or nocturnal polysom-
nography (NPSG). It is worth noting that hypoxic
burden as a concept is different from oxygen desa-
turation metrics that are termed “hypoxic burden”.
In OSA, hypoxic burden as a concept is defined to be
measure the load of nocturnal hypoxia and it is
assumed that any measure of OSA-related hypoxic
burden would also account for the intermittent
nature of oxygen desaturations. On the other hand,
as will be discussed in depth below, published met-
rics that characterize oxygen desaturations over-
night that are termed as “hypoxic burden” refer to
a particular method of defining the underlying
nocturnal hypoxia in OSA. As such, conceptually,
there is only one hypoxic burden in OSA, but the
ways to derive it could be several.

Pulse oximetry measured oxygen saturation
(SpO2) forms the basis for all hypoxic burden meas-
ures. Pulse oximetry is routinely acquired during
NPSG and although its administration is relatively
standardized across different sleep labs, key param-
eters of each pulse oximeter must be considered to
ensure fair comparison and reproducibility of devel-
oped methods for hypoxic burden. Most notably,
depending on the manufacturer, the averaging time
for each pulse oximeter is different and several
hypoxic burden measures may be sensitive to it.
Further, although pulse oximetry administration
602 www.co-pulmonarymedicine.com
as part of a routine NPSG is also standardized across
sleep labs, sampling rates should be standardized to
1Hz to avoid any nonphysiological artifacts. The
preprocessing of SpO2 signals (e.g., removal of inva-
lid signal periods, disconnects etc.) for evaluating
hypoxic burden is another consideration that must
be noted when comparing metrics or determining
their utility.

Broadly, the definitions can be categorized into
three groups: index-based, Time-based, and area-
based measures. All measures aim to characterize
intermittency of nocturnal hypoxia and their
severity in OSA.
Index-based hypoxic burden measures

The oxygen desaturation index (ODI), like the AHI,
measures rate of desaturation events without regard
for ventilatory disturbances that may have precipi-
tated the changes in oxygen desaturation. Most
standard ODI measures are ODI3 and ODI4 which
include oxygen desaturation events that are either
more than 3% or 4% from a predefined “baseline”.
In addition to the level of desaturation (3 or 4 or>4),
several other parameters are embedded within a
given definition of ODI: search window surround-
ing candidate respiratory events, and baseline
[43,44]. Despite these considerations, ODI is asso-
ciated with incident cardiovascular events across
several studies, albeit with a poor correlation [28].
In addition to ODI3, ODI4, some studies have also
considered ODI2 and ODI5. As with AHI and its
varied definitions, ODI measures whether 2,3,4,or
5% are inconsistently related to adverse outcomes in
OSA [45]. While simple, the various forms of ODI,
their inconsistent relationship to [43] outcomes,
and lack of standardized rules [45], have further
mystified the use of ODI in OSA.
Time-based hypoxic burden measures

Some of the most commonly used measures of
nocturnal hypoxia that are time-based include time
below 90% of oxygen saturation (T90) or its variants
that consider 85% (T85), 80% (T80) etc. as thresh-
olds. A crucial aspect of these time-based measures
as in the case of the index-based measures is the
“time” variable. While standard NPSG and other
EEG-equipped home sleep test devices can measure
true sleep time, and thus the T90 (likewise T85, T80)
measure can be either recording time below 90%, or
time in sleep below 90% of oxygen saturation. Some
studies have even suggested using a percentage-
based measure, i.e., % of sleep below 90% of oxygen
saturation [27,46]. All forms of T90, be it with differ-
ing threshold levels, or with sleep time vs. recording
Volume 30 � Number 6 � November 2024
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time, have shown to be inconsistently associated
with hypertension [47], major cardiovascular events
(MACE) [27], CVD [48], right ventricular dysfunc-
tion [49

&&

], and type 2 diabetes [50]. Although sim-
ple to calculate, T90 ignores the heterogeneity in the
depth of desaturations between OSA patients. Fur-
ther, it is unclear how the OSA severity could be
categorized using T90.
Area-based hypoxic burden measures

Given the disadvantages of the index- and time-
basedmeasures of nocturnal hypoxia, several groups
have attempted to utilize area-based measures. Fun-
damentally, area-based measures characterize the
depth and duration of the individual oxygen desa-
turation events. These area-based measures use the
SpO2 trace and calculate the area bounded below by
the SpO2 trace and above by either a predefined
baseline, a nominal baseline value of 100%, or more
sophisticated methods that do not require an upper
bound. Table 1 lists the different Area-based hypoxic
burden measures along with their definitions and
the outcomes against which the metric was tested.

Broadly categorized, area-based measures either
rely on manually marked respiratory events or are
fully automated. Azarbarzin et al. utilized manually
marked respiratory events as the precursor for a
search into candidate desaturation events that were
then analyzed using an area-based calculation [26].
They termed this measure as hypoxic burden and its
Table 1. Area based oxygen desaturation metrics that can be ca

Authors Metric name Definition

Azarbarzin
et al.
[26,56&]

Hypoxic burden
[HB]

Sum of areas bounded below by SpO
Nadir and above by a predefined
baseline for each event based on se
of candidate desaturations

de Chazal
et al. [52]

Respiratory event
desaturation
transient area
[REDTA]

Sum of the area between the SpO2 tra
and the 100% baseline for all manu
scored respiratory events

Karhu et al.
[53&&]

Desaturation
severity
[DesSev]

Sum of desaturation areas bounded be
by the SpO2 Nadir and above by a
“desaturation baseline” that is base
the starting point of the desaturation

Linz et al.
[55]

Hypoxia load
[HL]

Total area bounded below by the raw
curve and above by the 100% value

Parekh et al.
[4&&,57]

Hypoxic burden
[HB]

Sum of areas bounded below by SpO
Nadir and above by the left- and rig
peak of the desaturation event

CPAP, continuous positive airway pressure; CV, cardiovascular.
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units were %minutes per hour of sleep. An auto-
mated version of their algorithm, that requires no
manual marking of events was recently published
[51

&

]. It is worth noting that this method still
requires manual intervention regarding the search
window for candidate events. Automated or not, the
hypoxic burden by Azarbarzin et al. showed an
association with cardiovascular events across two
large cohorts (sleep heart health study) and the
osteoporotic fractures in men study (MrOS). de
Chazal et al. proposed a novel parameter called
the respiratory event desaturation transient area
(REDTA) as an alternative for the hypoxic burden
with units of % hours [52]. Instead of using a pre-
defined baseline that varies based on the respiratory
event preceding the candidate desaturation event,
REDTA assumes the baseline to be 100%, which is
used as the upper bound, and calculates the area
above the SpO2 trace. REDTA is available to other
researchers using a freely available software named
ABOSA [53

&&

]. In studies, REDTA was shown to be
better than both ODI3 and T90 in predicting CVD
mortality, and was associated with impaired next-
day vigilance in OSA [43]. It is worth noting that the
search window for both the method by de Chazal
et al. and by Azarbarzin et al. is population or dataset
specific and further research is needed into appro-
priate search windows that can be utilized with
these measures.

Fully automated area-based measures include
the desaturation severity (DesSev) [54], hypoxic load
ndidates for “hypoxic burden” in OSA

Automated? Outcomes

2

arch

Yes; however requires search
window parameters

� CV risk
� CPAP treatment to
reduce CV events

ce
ally

Yes; however requires manually
scored respiratory events and
search window parameters

� CV risk

low

d on

Yes; however requires manually
scored respiratory events

� CV risk
� Daytime Sleepiness

SpO2 Yes; no parameters required � CV risk
� CPAP treatment to
reduce CV events

2

ht-
Yes; no parameters required � CV risk

� Daytime sleepiness
� Hypertension
� CPAP treatment
success for vigilance
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(HL), as well as the novel hypoxic burden by our
group [25

&&

,42]. DesSev uses the left peak associated
with a candidate desaturation event as the baseline,
where the desaturation event is defined by the left
and right peaks corresponding a nadir. The area for
DesSev (%) is then calculated bounded above by the
baseline and bounded below by the SpO2 nadir. It
was shown that daytime sleepiness was associated
with DesSev, with a stronger relation than AHI and
ODI, and DesSev was a strong predictor of CVD
events. The hypoxic load measure by Linz et al.
considers the total area between the 100% baseline
value of SpO2 and the raw SpO2 trace. The hypoxic
load is a fully automated measure and was shown to
be associated with epicardial fat volume in patients
with myocardial infarcts [55]. The hypoxic burden
FIGURE 1. (a) Area-based measurement of “hypoxic burden” th
(b) Nocturnal hypoxia profiles of two patients with similar AHI, O

604 www.co-pulmonarymedicine.com
measure proposed by our group, considers both the
left and right peaks associated with a candidate
desaturation event (See Fig. 1a) and bounded below
by the SpO2 nadir of the candidate event in calcu-
lation of the area. This hypoxic burden measure is
fully automated, including the handling of discon-
nects or noisy signals, and was shown to be a stron-
ger predictor of CVD mortality than AHI. Among
the measures described above, data on night-to-
night variability (either in-lab or at-home) were only
available for our area-based measure. Recent evi-
dence also suggest that in patients with different
nocturnal hypoxia profiles, area-based measures
such as the hypoxic burden, may be better able to
distinguish them than ODI, T90 or other index- or
time-based measures (e.g., see Fig. 1b). It is worth
at does not require any manually marked respiratory events.
DI, and T90, but different area-based hypoxic burden.
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noting that although manually marked respiratory
events (or any information about respiratory events)
is not needed for this particular variation of hypoxic
burden, it should be utilized with caution in a
population of patients with comorbidities other
than OSA.
CLINICAL RELEVANCE OF HYPOXIC
BURDEN

Ultimately, utility of novel measures that character-
ize hypoxic burden in OSA is judged by their clinical
relevance. Overnight pulse oximetry is a relatively
low-cost endeavor that can be used to monitor
patients either in clinic or remotely. Thus, themeas-
ures of hypoxic burden are significantly relevant to
the clinic. Although it is rare to base a diagnosis for a
patient solely on a single measure, that is, without
regard to patient history, based on the availability of
pulse oximetry, its ease of use, perhaps hypoxic
burden can serve to be used as the go-to measure
for OSA. Further research is needed into what con-
stitutes normal vs. abnormal levels of hypoxic bur-
den. Consider this that most of the studies that have
analyzed the relationship between hypoxic burden
and cardiovascular disease, have used one group as a
reference group, and as such a logical question is
whether that reference group constitutes “normal/
no OSA” group. Further, it is not yet clear how a
given value of hypoxic burden would guide treat-
ment preference in OSA, given that on continuous
positive airway pressure (CPAP), hypoxic burden
theoretically should be zero or at the very least a
relatively lower value which remains to be defined.
Recent study by Azarbarzin et al. and data from our
group provides evidence using a secondary analysis
of the APPLES study that baseline hypoxic burden
may be able to predict treatment response in OSA as
it relates to vigilance and daytime sleepiness
[56

&

,57]. However, it must be noted that the pre-
dictive power was still not sufficient for use on an
individual level, which is crucial for it to be
embedded in a clinic as a diagnostic aid. As such,
data are currently lacking on whether hypoxic bur-
den can outperform AHI in predicting immediate
response to treatment in the clinic. A technological
hurdle that must be crossed when implementing
hypoxic burden in the clinic is the fact that current
CPAP devices do not have any measure of nocturnal
hypoxia and doing so would require putting addi-
tional burden on the patient.
CONCLUSION

The history of AHI, the evolution of its variations
(e.g., with/without arousal etc.), similarly ODI and
its variations, as well as T90, is a cautionary tale aswe
1070-5287 Copyright © 2024 The Author(s). Published by Wolters Kluwe
look forward to utilizing “hypoxic burden” as a
measure beyond the AHI in characterizing OSA.
Already, a number of area-basedmeasures have been
published in the field, all termed hypoxic burden,
that may possibly lead to confusion for researchers
and clinicians interested in fully characterizing noc-
turnal hypoxia in OSA patients. Although a clear
path forward is not evident currently, perhaps a
simple change and consensus around nomenclature
may suffice. Whether area-based measures that are
the holy grail of a single measure that is capable of
capturing the underlying pathophysiology of noc-
turnal hypoxia in OSA, and one that shows promise
in predicting adverse consequences of OSA, remains
to be tested.
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