
Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2033

nature neuroscience

https://doi.org/10.1038/s41593-024-01731-2Technical Report

Dissociative and prioritized modeling of
behaviorally relevant neural dynamics using
recurrent neural networks

Omid G. Sani    1, Bijan Pesaran    2 & Maryam M. Shanechi    1,3,4,5 

Understanding the dynamical transformation of neural activity to behavior
requires new capabilities to nonlinearly model, dissociate and prioritize
behaviorally relevant neural dynamics and test hypotheses about the origin
of nonlinearity. We present dissociative prioritized analysis of dynamics
(DPAD), a nonlinear dynamical modeling approach that enables these
capabilities with a multisection neural network architecture and training
approach. Analyzing cortical spiking and local field potential activity across
four movement tasks, we demonstrate five use-cases. DPAD enabled more
accurate neural–behavioral prediction. It identified nonlinear dynamical
transformations of local field potentials that were more behavior predictive
than traditional power features. Further, DPAD achieved behavior-predictive
nonlinear neural dimensionality reduction. It enabled hypothesis testing
regarding nonlinearities in neural–behavioral transformation, revealing
that, in our datasets, nonlinearities could largely be isolated to the
mapping from latent cortical dynamics to behavior. Finally, DPAD extended
across continuous, intermittently sampled and categorical behaviors.
DPAD provides a powerful tool for nonlinear dynamical modeling and
investigation of neural–behavioral data.

Understanding how neural population dynamics give rise to behavior is
a major goal in neuroscience. Many methods that relate neural activity
to behavior use static mappings or embeddings, which do not describe
the temporal structure in how neural population activity evolves over
time1. In comparison, dynamical models can describe these temporal
structures in terms of low-dimensional latent states embedded in the
high-dimensional space of neural recordings. Prior dynamical models
have often been linear or generalized linear1–7, thus motivating recent
work to develop support for piece-wise linear8, locally linear9, switch-
ing linear10–13 or nonlinear14–27 models of neural dynamics, especially
in applications such as single-trial smoothing of neural population
activity9,14–19 and decoding behavior20–24,26. Once trained, the latent

states of these models can subsequently be mapped to behavior1,25
to learn an overall dynamical transformation from neural activity to
behavior. However, multiple challenges hinder the dynamical modeling
and interpretation of neural–behavioral transformations.

First, the neural–behavioral transformation can exhibit nonlin-
earities, which the dynamical model should capture. Moreover, these
nonlinearities can be in one or more different elements within the
dynamical model, for example, in the dynamics of the latent state or
in its embedding. Enabling hypothesis testing regarding the origin of
nonlinearity (that is, where the nonlinearity can be isolated to within the
model) is important for interpreting neural computations and devel-
oping neurotechnology but remains largely unaddressed in current

Received: 22 April 2023

Accepted: 17 July 2024

Published online: 6 September 2024

 Check for updates

1Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
2Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 3Thomas Lord Department of Computer Science, University of Southern
California, Los Angeles, CA, USA. 4Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA. 5Alfred E. Mann Department
of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.  e-mail: shanechi@usc.edu

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01731-2
http://orcid.org/0000-0003-3032-5669
http://orcid.org/0000-0003-4116-0038
http://orcid.org/0000-0002-0544-7720
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-024-01731-2&domain=pdf
mailto:shanechi@usc.edu

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2034

Technical Report https://doi.org/10.1038/s41593-024-01731-2

DPAD’s broad utility as a dynamical modeling tool to investigate the
nonlinear and dynamical transformation of neural activity to specific
behaviors across various domains of neuroscience.

nonlinear models. Second, neural dynamics related to a given behavior
often constitute a minority of the total neural variance28–33. To avoid
missing or confounding these dynamics, nonlinear dynamical models
need to dissociate behaviorally relevant neural dynamics from other
neural dynamics and prioritize the learning of the former, which is cur-
rently not possible. Indeed, existing nonlinear methods for modeling
neural activity either do not explicitly model temporal dynamics34–36 or
do not prioritize behaviorally relevant dynamics16,37,38, or have a mixed
objective18 that may mix behaviorally relevant and other neural dynam-
ics in the same latent states (Discussion and Extended Data Table 1). Our
prior method, termed PSID6, has enabled prioritized dissociation of
behaviorally relevant neural dynamics but for linear dynamical models.
Third, for broad applicability, in addition to continuous behaviors,
dynamical models should admit categorical (for example, choices)
or intermittently sampled behaviors (for example, mood reports),
which are not supported by existing dynamical methods with a mixed
objective18 or by PSID. To date, learning nonlinear dynamical models
of neural population activity that can address the above challenges
has not been achieved.

Here, we develop dissociative prioritized analysis of dynamics
(DPAD), a nonlinear dynamical modeling framework using recurrent
neural networks (RNNs) that addresses all the above challenges. DPAD
models both behaviorally relevant and other neural dynamics but dis-
sociates them into separate latent states and prioritizes the learning of
the former. To do so, we formulate a two-section RNN as the DPAD non-
linear dynamical model and develop a four-step optimization algorithm
to train it. The first RNN section learns the behaviorally relevant latent
states with priority, and the second section learns any remaining neural
dynamics (Fig. 1a and Supplementary Fig. 1). Moreover, DPAD adjusts
these optimization steps as needed to admit continuous-valued, cat-
egorical or intermittently sampled data (Methods). Furthermore, to
capture nonlinearity in the neural–behavioral transformation and
enable hypothesis testing regarding its origins, DPAD decomposes
this transformation into the following four interpretable elements and
allows each element to become linear or nonlinear (Fig. 1a,b): the map-
ping from neural activity to the latent space (neural input), the latent
state dynamics within this space (recursion) and the mappings of the
state to neural activity and behavior (neural and behavior readouts).
Finally, we formulate the DPAD model in predictor form such that the
learned model can be directly used for inference, enabling causal and
computationally efficient decoding for data, whether with or without
a fixed-length trial structure (Methods).

To show its broad utility, we demonstrate five distinct use-cases for
DPAD across four diverse nonhuman primate (NHP) datasets consisting
of both population spiking activity and local field potentials (LFPs).
First, DPAD more accurately models the overall neural–behavioral
data than alternative nonlinear and linear methods. This is due both
to DPAD’s prioritized and dynamical modeling of behaviorally relevant
neural dynamics and to its nonlinearity. Second, DPAD can automati-
cally uncover nonlinear dynamical transformations of raw LFP that are
more predictive of behavior than traditional LFP power band features
and in some datasets can even outperform population spiking activity
in terms of behavior prediction. Further, DPAD reveals that among the
neural modalities, the degree of nonlinearity is greatest for the raw LFP.
Third, DPAD enables nonlinear and dynamical neural dimensionality
reduction while preserving behavior information, thus extracting
lower-dimensional yet more behavior-predictive latent states from
past neural activity. Fourth, DPAD enables hypothesis testing regard-
ing the origin of nonlinearity in the neural–behavioral transformation.
Consistently across our movement-related datasets, doing so revealed
that summarizing the nonlinearities just in the behavior readout from
the latent state is largely sufficient for predicting the neural–behavioral
data (see Discussion). Fifth, DPAD extends to categorical and intermit-
tently observed behaviors, which is important for cognitive neurosci-
ence11,39 and neuropsychiatry40–42. Together, these results highlight

a

d

b

c

Select a final option based on
neural or behavioral prediction

accuracy in validation data

Split training data into
fit and validation sets

Fit Validation

Fit candidate models to the fit data:

A′, k, Cy, Cz each being linear or nonlinear

A′, k, Cy, Cz

 Architecture options for each nonlinear parameter,
for example, number of hidden layers and units, for A′

 whether its nonlinear mapping is general or an LSTM

DPAD with flexible nonlinearity (automatic selection)

Neural–behavioral
training data Selected nonlinearity setting

DPAD

Learned model
parameters

Tr
ai

ni
ng

 d
at

a
Nonlinearity setting

(for example,
only make

Cz nonlinear)

Se
ct

io
n

1
Se

ct
io

n
2

+ + + + + +

......

......
: Neural input

: Recursion

: Neural readout

: Behavior readout

Behavior (zk)

Neural activity (yk)

Latent brain state (xk)

xk

Behaviorally
relevant

Mapping to
latent state

Mapping to
neural activity

Mapping to
behavior State

dynamics

(2)

xk
(1)

Cz
(2)

Cz
(1)

A′ (2)

A′ (1) A′ (1)

A′ (2)

Cz
(1) Cz

(1) Cy
(1)Cy

(1)Cy
(1)

k(2)

k(1) k(1) k(1)

k(2) k(2)

xk–1
(2)

xk–1
(1) xk

(1) xk+1
(1)

xk
(2) xk+1

(2)
Cy

(2) Cz
(2) Cy

(2) Cz
(2)

Cz
(1),Cz

(2)

Cy
(1) ,Cy

(2)

k(1),k(2)

A′(1),A′(2)

Cy
(2)

zk–1ˆ yk–1

yk–2

yk

yk–1 yk

yk–2 yk–1 yk

ˆ zk+1ˆ yk+1ˆzk

zk

ˆ ykˆ

Fig. 1 | DPAD overview. a, DPAD decomposes the neural–behavioral
transformation into four interpretable mapping elements. It learns the mapping of
neural activity (yk) to latent states (xk), termed neural input in the model; learns the
dynamics or temporal structure of the latent states, termed recursion in the model;
dissociates the behaviorally relevant latent states (x(1)k) that are relevant to a
measured behavior (zk) from other states (x(2)k); learns the mapping of the latent
states to behavior and to neural activity, termed behavior and neural readouts in
the model; and allows flexible linear or nonlinear mappings in any of its elements.
DPAD additionally prioritizes the learning of behaviorally relevant neural dynamics
to learn them accurately. b, Computation graph of the DPAD model consists of a
two-section RNN whose input is neural activity at the current time step and whose
outputs are the predicted behavior and neural activity in the next time step
(Methods). This graph assumes that computations are Markovian, that is, with a
high enough dimension, latent states can summarize the information from past
neural data that is useful for predicting future neural–behavioral data. Each of the
four mapping elements from a has a corresponding parameter in each section of
the RNN model, indicated by the same colors and termed as introduced in a. c, We
developed a four-step optimization method to learn all the model parameters from
training neural–behavioral data (Supplementary Fig. 1a). Further, each model
parameter can be specified via the ‘nonlinearity setting’ to be linear or nonlinear
with various options to implement the nonlinearity (Supplementary Fig. 1b,c). After
a model is learned, only past neural activity is used to decode behavior and predict
neural activity using the computation graph in b. d, DPAD also has the option of
automatically selecting the ‘nonlinearity setting’ for the data by fitting candidate
models and comparing them in terms of both behavior decoding and neural
self-prediction accuracy (Methods). In this work, we chose among 90 candidate
models with various nonlinearity settings (Methods). We refer to this automatic
selection of nonlinearity as ‘DPAD with flexible nonlinearity’.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2035

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Results
Overview of DPAD
Formulation. We model neural activity and behavior jointly and non-
linearly (Methods) as

⎧⎪
⎨⎪
⎩

xk+1 = A′ (xk) + K (yk)

yk = Cy (xk) + ek
zk = Cz (xk) + ϵk

, (1)

where k is the time index, yk ∈ ℝny and zk ∈ ℝnz denote the neural activ-
ity and behavior time series, respectively, xk ∈ ℝnx is the latent state,
and ek and ϵk denote neural and behavior dynamics that are unpredict-
able from past neural activity. Multi-input–multi-output functions A′
(recursion), K (neural input), Cy (neural readout) and Cz (behavior readout)
are parameters that fully specify the model and have interpretable
descriptions (Methods, Supplementary Note 1 and Fig. 1a,b). The adjusted
formulation for intermittently sampled and noncontinuous-valued
(for example, categorical) data is provided in Methods. DPAD supports
both linear and nonlinear modeling, which will be termed linear DPAD
and nonlinear DPAD (or just DPAD), respectively.

Dissociative and prioritized learning. We further expand the model
in Eq. (1) in two sections, as depicted in Fig. 1b (Eq. (2) in Methods and

Supplementary Note 2). The first and second sections describe the
behaviorally relevant neural dynamics and the other neural dynamics
with latent states x(1)k ∈ ℝn1 and x(2)k ∈ ℝnx−n1, respectively. We specify
the parameters of the two RNN sections with superscripts (for example,
K(1) and K(2)) and learn them all sequentially via a four-step optimization
(Methods, Supplementary Fig. 1a and Fig. 1b). The first two steps exclu-
sively learn neural dynamics that are behaviorally relevant with the
objective of behavior prediction, whereas the optional last two steps
learn any remaining neural dynamics with the objective of residual
neural prediction (Methods and Supplementary Fig. 1). We implement
DPAD in Tensorflow and use an ADAM43 optimizer (Methods).

Comparison baselines. As a baseline, we compare DPAD with standard
nonlinear RNNs fitted to maximize neural prediction, unsupervised
with respect to behavior. We refer to this baseline as nonlinear neural
dynamical modeling (NDM)6 or as linear NDM if all RNN parameters
are linear. NDM is nondissociative and nonprioritized, so compari-
sons with NDM show the benefit of DPAD’s prioritized dissociation
of behaviorally relevant neural dynamics. We also compare DPAD
with latent factor analysis via dynamical systems (LFADS)16 and with
two concurrently44 developed methods with DPAD named targeted
neural dynamical modeling (TNDM)18 and consistent embeddings of
high-dimensional recordings using auxiliary variables (CEBRA)36 in
terms of neural–behavioral prediction; however, as summarized in

0

0.1

0.2

0.3

D
ec

od
in

g
C

C
ga

in
s

fr
om

 n
on

lin
ea

rit
y

0.2

0.4

0.6

0.8

D
ec

od
in

g
C

C

*** ******
* ***

*** ****** ******
Target 1 Target 2

0.6

0.7

0.8

0.9

D
ec

od
in

g
C

C

Target

1 2 3 4

0

0.1

0.2

0.3

D
ec

od
in

g
C

C
ga

in
s

fr
om

 n
on

lin
ea

rit
y *** ***

0.3

0.4

0.5

0.6

0.7

0.8

D
ec

od
in

g
C

C

*** ****** ********* ******
** ***GoCue

0

0.1

0.2

0.3

D
ec

od
in

g
C

C
ga

in
s

fr
om

 n
on

lin
ea

rit
y *** ***

0.2

0.4

0.6

0.8

D
ec

od
in

g
C

C

*** NS*** NS***
*** NS***

** ***

Raw LFP benefits the most
from nonlinear modeling

Nonlinear DPAD
Linear DPAD

Spikes
Raw LFP
LFP bands

b c e f

j k

a d

g ih

No LFP
data

10 s

...
... ...

Joint angles zk∈R27

Hand kinematics zk∈R4

Hand kinematics zk∈R4

Eye position zk∈R2

10 s

5 s 5 s

True
Decoded

Spike
s

Spike
s

Raw
 LF

P

LF
P ban

ds

Spike
s

Raw
 LF

P

LF
P ban

ds

Spike
s

Raw
 LF

P

LF
P ban

ds

Fig. 2 | DPAD learns more accurate models of behaviorally relevant neural
dynamics for all neural modalities by capturing nonlinearities, with raw
LFP activity benefiting the most from nonlinear modeling. a, The 3D reach
task, along with example true and decoded behavior dimensions, decoded from
spiking activity using DPAD, with more example trajectories for all modalities
shown in Supplementary Fig. 3. b, Cross-validated decoding accuracy correlation
coefficient (CC) achieved by linear and nonlinear DPAD. Results are shown
for spiking activity, raw LFP activity and LFP band power activity (Methods).
For nonlinear DPAD, the nonlinearities are selected automatically based on
the training data to maximize behavior decoding accuracy (that is, flexible
nonlinearity). The latent state dimension in each session and fold is chosen
(among powers of 2 up to 128) as the smallest that reaches peak decoding in
the training data among all state dimensions (Methods). Bars show the mean,

whiskers show the s.e.m., and dots show all data points (N = 35 session-folds).
Asterisks (*) show significance level for a one-sided Wilcoxon signed-rank test
(*P < 0.05, **P < 0.005 and ***P < 0.0005); NS, not significant. c, The difference
between the nonlinear and linear results from b shown with the same notations.
d–f, Same as a–c for the second dataset with saccadic eye movements (N = 35
session-folds). g,h, Same as a and b for the third dataset, which did not include
LFP data, with sequential cursor reaches controlled via a 2D manipulandum
(N = 15 session-folds). Behavior consists of the 2D position and velocity of the
cursor, denoted as ‘hand kinematics’ in the figure. i–k, Same as a–c for the
fourth dataset, with random grid virtual reality cursor reaches controlled via
fingertip movement (N = 35 session-folds). For all DPAD variations, only the first
two optimization steps were used in this figure (that is, n1 = nx) to only focus on
learning behaviorally relevant neural dynamics.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2036

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Table 1, these and other existing methods differ from
DPAD in key goals and capabilities and do not enable some of DPAD’s
use-cases (see Discussion).

Decoding using past neural data. Given DPAD’s learned parameters,
the latent states can be causally extracted from neural activity by iterat-
ing through the RNN in Eq. (1) (Methods and Supplementary Note 1).
Note that this decoding always only uses neural activity without seeing
the behavior data.

Flexible control of nonlinearities. We allow each model parameter (for
example, Cz) to be an arbitrary multilayer neural network (Supplemen-
tary Fig. 1c), which can universally approximate any smooth nonlinear
function or implement linear matrix multiplications (Methods and
Supplementary Fig. 1b). Users can manually specify which param-
eters will be learned as nonlinear and with what architecture (Fig. 1c;
see application in use-case 4). Alternatively, DPAD can automatically
determine the best nonlinearity setting for the data by conducting
a search over nonlinearity options (Fig. 1d and Methods), a process
that we refer to as flexible nonlinearity. For a fair comparison, we also
implement this flexible nonlinearity for NDM. To show the benefits of
nonlinearity, we also compare with linear DPAD, where all parameters
are set to be linear, in which case Eq. (1) formulates a standard linear
state-space model in predictor form (Methods).

Evaluation metrics. We evaluate how well the models can use the
past neural activity to predict the next sample of behavior (termed
‘decoding’) or the next sample of neural activity itself (termed ‘neu-
ral self-prediction’ or simply ‘self-prediction’). Thus, decoding and
self-prediction assess the one-step-ahead prediction accuracies and
reflect the learning of behaviorally relevant and overall neural dynam-
ics, respectively. Both performance measures are always computed
with cross-validation (Methods).

Our primary interest is to find models that simultaneously reach
both accurate behavior decoding and accurate neural self-prediction.
But in some applications, only one of these metrics may be of interest.
Thus, we use the term ‘performance frontier’ to refer to the range of per-
formances achievable by those models that compared to every other
model are better in neural self-prediction and/or behavior decoding
or are similar in terms of both metrics (Methods).

Diverse neural–behavioral datasets
We used DPAD to study the behaviorally relevant neural dynamics in four
NHPs performing four different tasks (Fig. 2 and Methods). In the first
task, the animal made naturalistic three-dimensional (3D) reach, grasp
and return movements to diverse locations while the joint angles in the
arm, elbow, wrist and fingers were tracked as the behavior (Fig. 2a)6,45.
In the second task, the animal made saccadic eye movements to one of
eight possible targets on a screen, with the two-dimensional (2D) eye
position tracked as the behavior (Fig. 2d)6,46. In the third task, the animal
made sequential 2D reaches on a screen using a cursor controlled with a
manipulandum while the 2D cursor position and velocity were tracked as
the behavior (Fig. 2g)47,48. In the fourth task, the animal made 2D reaches
to random targets in a virtual-reality-presented grid via a cursor that mir-
rored the animal’s fingertip movements, for which the 2D position and
velocity were tracked as the behavior (Fig. 2i)49. In tasks 1 and 4, primary
motor cortical activity was modeled. For tasks 2 and 3, prefrontal cortex
and dorsal premotor cortical activities were modeled, respectively.

In all datasets, we modeled the Gaussian smoothed spike counts
as the main neural modality (Methods). In three datasets that had
LFP, we also modeled the following two additional modalities: (1) raw
LFP, downsampled to the sampling rate of behavior (that is, 50-ms
time steps), which in the motor cortex is known as the local motor
potential50–52 and has been used to decode behavior6,50–53; and (2) LFP
power in standard frequency bands from delta (0.1–4 Hz) to high

gamma (130–170 Hz (refs. 5,6,40); Methods). Similar results held for
all three modalities.

Numerical simulations validate DPAD
We first validate DPAD with linear simulations here (Extended Data
Fig. 1) and then present nonlinear simulations under use-case 4 below
(Extended Data Fig. 2 and Supplementary Fig. 2). We simulated general
random linear models (not emulating any real data) in which only a
subset of state dimensions contributed to generating behavior and
thus were behaviorally relevant (Methods). We found that with a
state dimension equal to that of the true model, DPAD achieved ideal
cross-validated prediction (that is, similar to the true model) for both
behavior and neural signals (Extended Data Fig. 1b,d). Moreover, even
given a minimal state dimension equal to the true behaviorally relevant
state dimension, DPAD still achieved ideal prediction for behavior
(Extended Data Fig. 1c). Finally, across various regimens of training
samples, linear DPAD performed similarly to the linear-algebraic-based
PSID6 from our prior work (Extended Data Fig. 1). Thus, hereafter, we
use linear DPAD as our linear modeling benchmark.

Use-case 1: DPAD enables nonlinear neural–behavioral
modeling across modalities
DPAD captures nonlinearity in behaviorally relevant dynamics.
We modeled each neural modality (spiking, raw LFP or LFP power)
along with behavior using linear and nonlinear DPAD and compared
their cross-validated behavior decoding (Fig. 2b,e,h,j and Supplemen-
tary Fig. 3). Across all neural modalities in all datasets, nonlinear DPAD
achieved significantly higher decoding accuracy than linear DPAD. This
result suggests that there is nonlinearity in the dynamical neural–behav-
ioral transformation, which DPAD successfully captures (Fig. 2b,e,h,j).

DPAD better predicts the neural–behavioral data. Across all datasets
and modalities, compared to nonlinear NDM or linear DPAD, nonlinear
DPAD reached higher behavior decoding accuracy while also being as
accurate or better in terms of neural self-prediction (Fig. 3, Extended
Data Fig. 3 and Supplementary Fig. 4). Indeed, compared to these,
DPAD was always on the best performance frontier for predicting the
neural–behavioral data (Fig. 3 and Extended Data Fig. 3). Additionally,
DPAD was always on the best performance frontier for predicting the
neural–behavioral data compared to long short-term memory (LSTM)
networks as well as a concurrently44 developed method with DPAD
termed CEBRA36 on our four datasets (Fig. 4a–h) in addition to a fifth
movement dataset54 analyzed in the CEBRA paper (Fig. 4i,j). These
results suggest that DPAD provides a more accurate description for
neural–behavioral data.

Beyond one-step-ahead predictions, we next evaluated DPAD
in terms of multistep-ahead prediction of neural–behavioral data,
also known as forecasting. To do this, starting with one-step-ahead
predictions (that is, m = 1), we pass m-step-ahead predictions of neural
data using the learned models as the neural observation in the next
time step to obtain (m + 1)-step-ahead predictions (Methods). Non-
linear DPAD was consistently better than nonlinear NDM and linear
dynamical systems (LDS) modeling in multistep-ahead forecasting of
behavior (Extended Data Fig. 4). For neural self-prediction, we used a
naive predictor as a conservative forecasting baseline, which reflects
how easy it is to predict the future in a model-free way purely based
on the smoothness of neural data. DPAD significantly outperformed
this baseline in terms of one-step-ahead and multistep-ahead neural
self-predictions (Supplementary Fig. 5).

Use-case 2: DPAD extracts behavior-predictive nonlinear
transformations from raw LFP
We next used DPAD to compare the amount of nonlinearity in the neural–
behavioral transformation across different neural modalities (Fig. 2
and Supplementary Fig. 3). To do so, we compared the gain in behavior

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2037

Technical Report https://doi.org/10.1038/s41593-024-01731-2

decoding accuracy when going from linear to nonlinear DPAD modeling
in each modality. In all datasets, raw LFP activity had the highest gain
from nonlinearity in behavior decoding accuracy (Fig. 2c,f,k). Nota-
bly, using nonlinear DPAD, raw LFP reached more accurate behavior
decoding than traditional LFP band powers in all tasks (Fig. 2b,e,j). In
one dataset, raw LFP even significantly surpassed spiking activity in
terms of behavior decoding accuracy (Fig. 2e). Note that computing
LFP powers involves a prespecified nonreversible nonlinear transfor-
mation of raw LFP, which may be discarding important behaviorally
relevant information that DPAD can uncover directly from raw LFP.
Interestingly, linear dynamical modeling did worse for raw LFP than
LFP powers in most tasks (compare linear DPAD for raw LFP versus LFP
powers), suggesting that nonlinearity, captured by DPAD, was required
for uncovering the extra behaviorally relevant information in raw LFP.

We next examined the spatial pattern of behaviorally relevant
information across recording channels. For different channels, we
compared the neural self-prediction of DPAD’s low-dimensional behav-
iorally relevant latent states (Extended Data Fig. 5). We computed the
coefficient of variation (defined as standard deviation divided by mean)
of the self-prediction over recording channels and found that the spa-
tial distribution of behaviorally relevant information was less variable in
raw LFP than spiking activity (P ≤ 0.00071, one-sided signed-rank test,
N = 35 for all three datasets with LFP). This could suggest that raw LFPs
reflect large-scale network-level behaviorally relevant computations,

which are thus less variable within the same spatial brain area than
spiking, which represents local, smaller-scale computations55.

Use-case 3: DPAD enables behavior-predictive nonlinear
dynamical dimensionality reduction
We next found that DPAD extracted latent states that were lower dimen-
sional yet more behavior predictive than both nonlinear NDM and linear
DPAD (Fig. 5). Specifically, we inspected the dimension required for
nonlinear DPAD to reach almost (within 5% of) peak behavior decoding
accuracy in each dataset (Fig. 5b,g,l,o). At this low latent state dimen-
sion, linear DPAD and nonlinear and linear NDM all achieved much
lower behavior decoding accuracy than nonlinear DPAD across all
neural modalities (Fig. 5c–e,h–j,m,p–r). The lower decoding accuracy
of nonlinear NDM suggests that the dominant dynamics in spiking
and LFP modalities can be unrelated to the modeled behavior. Thus,
behaviorally relevant dynamics can be missed or confounded unless
they are prioritized during nonlinear learning, as is done by DPAD.
Moreover, we visualized the 2D latent state trajectories learned by
each method (Extended Data Fig. 6). Consistent with the above results,
DPAD extracted latent states from neural activity that were clearly dif-
ferent for different behavior/movement conditions (Extended Data
Fig. 6b,e,h,k). In comparison, NDM extracted latent states that did not
as clearly dissociate different conditions (Extended Data Fig. 6c,f,i,l).
These results highlight the capability of DPAD for nonlinear dynamical

(A) DPAD (best nonlinearity for decoding)
(B) DPAD (best nonlinearity for self-prediction)

(D) NDM (best nonlinearity for decoding)
(E) NDM (best nonlinearity for self-prediction)
(F) Linear NDM

(C) Linear DPAD

0.80 0.85 0.90

Self-prediction CC

0.80 0.85 0.90

Self-prediction CC

0.50

0.55
C

or
re

sp
on

di
ng

 d
ec

od
in

g
C

C

A B

C
D

E
F

0.87 0.88 0.89

Self-prediction CC

0.45

0.50

0.55

0.60

0.65

C
or

re
sp

on
di

ng
 d

ec
od

in
g

C
C A B

C

D

E

F

0.65

0.70

0.75

0.80

C
or

re
sp

on
di

ng
 d

ec
od

in
g

C
C

A
B

C

D
E

F

0.7 0.8 0.9

Self-prediction CC

0.5

0.6

0.7

C
or

re
sp

on
di

ng
 d

ec
od

in
g

C
C A B

C

D

E
F

Go

Cue

1

2

3

4

Target 1

Target 2

Best performance frontiers are
reached by nonlinear DPAD

a b d

e f g

c

h

Fig. 3 | DPAD more accurately learns behaviorally relevant neural dynamics
while also capturing overall neural dynamics as accurately as other methods.
a, The 3D reach task. b, Cross-validated neural self-prediction accuracy (CC)
achieved by each method shown on the horizontal axis versus the corresponding
behavior decoding accuracy on the vertical axis for modeling spiking activity.
Latent state dimension for each method in each session, and fold is chosen
(among powers of 2 up to 128) as the smallest that reaches peak neural self-
prediction in training data or reaches peak decoding in training data, whichever
is larger (Methods). The plus on the plot shows the mean self-prediction and
decoding accuracy across sessions and folds (N = 35 session-folds), and the
horizontal and vertical whiskers show the s.e.m. for these two measures,
respectively. Capital letter annotations denote the methods according to the
legend to make the plots more accessible. Models whose self-prediction and
decoding accuracy measures lead to values toward the top-rightmost corner of
the plot lie on the best performance frontier (indicated by red arrows) as they

have better performance in both measures and thus better explain the neural–
behavioral data (Methods). c,d, Same as a and b for the second dataset with
saccadic eye movements (N = 35 session-folds). e,f, Same as a and b for the third
dataset, with sequential cursor reaches controlled via a 2D manipulandum (N = 15
session-folds). g,h, Same as a and b for the fourth dataset with random grid
virtual reality cursor reaches controlled via fingertip position (N = 35 session-
folds). For all DPAD variations, the first 16 latent state dimensions are learned
using the first two optimization steps, and the remaining dimensions are learned
using the last two optimization steps (that is, n1 = 16). For nonlinear DPAD/NDM,
we fit models with different combinations of nonlinearities and then select a final
model among these fitted models based on either decoding or self-prediction
accuracy in the training data and report both sets of results (Supplementary
 Fig. 1 and Methods). DPAD with nonlinearity selected based on neural self-
prediction was better than all other methods overall (b, d, f and h).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2038

Technical Report https://doi.org/10.1038/s41593-024-01731-2

dimensionality reduction in neural data while preserving behaviorally
relevant neural dynamics.

Next, we found that at low dimensions, nonlinearity could
improve the accuracy of both behavior decoding (Fig. 5b,g,l,o) and
neural self-prediction (Extended Data Fig. 7). However, as the state
dimension was increased, linear methods reached similar neural
self-prediction performance as nonlinear methods across modali-
ties (Fig. 3 and Extended Data Fig. 3). This was in contrast to behavior
decoding, which benefited from nonlinearity regardless of how high
the dimension was (Figs. 2 and 3).

Use-case 4: DPAD localizes the nonlinearity in the
neural–behavioral transformation
Numerical simulations validate DPAD’s localization. To demonstrate
that DPAD can correctly find the origin of nonlinearity in the neural–
behavioral transformation (Extended Data Fig. 2 and Supplementary

Fig. 2), we simulated random models where only one of the parameters was
set to a random nonlinear function (Methods). DPAD identifies a param-
eter as the origin if models with nonlinearity only in that parameter are
on the best performance frontier when compared to alternative models,
that is, models with nonlinearity in other parameters, models with flex-
ible/full nonlinearity and fully linear models (Fig. 6a). DPAD enables this
assessment due to (1) its flexible control over nonlinearities to train alter-
native models and (2) its simultaneous neural–behavioral modeling and
evaluation (Methods). In all simulations, DPAD identified that the model
with the correct nonlinearity origin was on the best performance frontier
compared to alternative nonlinear models (Extended Data Fig. 2 and
Supplementary Fig. 2), thus correctly revealing the origin of nonlinearity.

DPAD consistently localized nonlinearities in the behavior readout.
Having validated the localization of nonlinearity in simulations, we
used DPAD to find where in the model nonlinearities could be isolated

Go

Cue

1

2

3

4

Target 1

Target 2

0.4 0.6 0.8

Self-prediction CC
0.4 0.6 0.8

Self-prediction CC

0.45

0.50

0.55
C

or
re

sp
on

di
ng

de
co

di
ng

 C
C

A B

C

D

E

F

GH

I

0.4

0.5

0.6

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C

A

B

C

D

E

F
GH

I

0.6 0.8

Self-prediction CC

0.5

0.6

0.7

0.8

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C

A
B

C

D
E

F

GH

I

0.4 0.6 0.8

Self-prediction CC

0.4

0.6

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C

A B

C

D

E

F

GH

I

0.6 0.8 1.0

Self-prediction CC

0.5

0.6

0.7

0.8

0.9

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C

A
B

C

D
GH

I

Best performance frontiers are
reached by nonlinear DPAD

(A) Nonlinear DPAD (best nonlinearity for decoding)
(B) Nonlinear DPAD (best nonlinearity for self-prediction)

(C) CEBRA-Time (D) CEBRA-Behavior
(E) CEBRA-Time
 (with hyperparameter
 search)

(F) CEBRA-Behavior
 (with hyperparameter
 search)

(H) LSTM for behavior decoding
(I) LSTM for neural self-prediction

(G) Nonlinear DPAD (only using the first two optimization
 steps, best nonlinearity for decoding)

ca b d

ge f h

i j

Fig. 4 | DPAD outperforms various existing methods in neural–behavioral
prediction. a–h, Figure content is parallel to Fig. 3 (with pluses and whiskers
defined in the same way) but instead of NDM shows CEBRA and LSTM networks
as baselines (Methods). i,j, Here, we also add a fifth dataset54 (Methods),
where in each trial an NHP moves a cursor from a center point to one of eight
peripheral targets (i). In this fifth dataset (N = 5 folds), we use the exact CEBRA
hyperparameters that were used for this dataset from the paper introducing
CEBRA36. In the other four datasets (N = 35 session-folds in b,d and h and N = 15
session-folds in f), we also show CEBRA results for when hyperparameters are
picked based on an extensive search (Methods). Two types of LSTM networks
are shown, one fitted to decode behavior from neural activity and another fitted
to predict the next time step of neural activity (self-prediction). We also show
the results for DPAD when only using the first two optimization steps. Note that

CEBRA-Behavior (denoted by D and F), LSTM for behavior decoding (denoted
by H) and DPAD when only using the first two optimization steps (denoted by
G) dedicate all their latent states to behavior-related objectives (for example,
prediction or contrastive loss), whereas other methods dedicate some or all
latent states to neural self-prediction. As in Fig. 3, the final latent dimension
for each method in each session and fold is chosen (among powers of 2 up to
128) as the smallest that reaches peak neural self-prediction in training data or
reaches peak decoding in training data, whichever is larger (Methods). Across
all datasets, DPAD outperforms baseline methods in terms of cross-validated
neural–behavioral prediction and lies on the best performance frontier. For
a summary of the fundamental differences in goals and capabilities of these
methods, see Extended Data Table 1.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2039

Technical Report https://doi.org/10.1038/s41593-024-01731-2

to in our real datasets. We found that having the nonlinearity only in
the behavior readout parameter Cz was largely sufficient for achieving
high behavior decoding and neural self-prediction accuracies across
all our datasets and modalities (Fig. 6b–i and Supplementary Fig. 6).
First, for spiking activity, models with nonlinearity only in the behavior
readout parameter Cz reached the best behavior decoding accuracy
compared to models with other individual nonlinearities (Fig. 6c,e,i)
while reaching almost the same decoding accuracy as fully nonlinear

models (Fig. 6c,e,g,i). Second, these models with nonlinearity only in
the behavior readout also reached a self-prediction accuracy that was
unmatched by other types of individual nonlinearity (Fig. 6c,e,g,i).
Overall, this meant that models with nonlinearity only in the behavior
readout parameter Cz were always on the best performance frontier
when compared to all other linear or nonlinear models (Fig. 6c,e,g,i).
This result interestingly also held for both LFP modalities (Supple-
mentary Fig. 6).

0 10 20 30

State dimension

0.2

0.4

0.6

D
ec

od
in

g
C

C

Target 1

Target 2

0 10 20 30

State dimension

0.2

0.4

0.6

0.8

D
ec

od
in

g
C

C

1

2

3

4

0

0.2

0.4

0.6

D
ec

od
in

g
C

C

Go

Cue

0 10 20 30
State dimension

0 10 20 30
State dimension

0.3

0.4

0.5

D
ec

od
in

g
C

C
Low-dim. regimen

Low-dim. regimen

Low-dim. regimen

Low-dim. regimen

0.2

0.3

0.4

0.5

0.6

0.7

Lo
w

-d
im

. d
ec

od
in

g
C

C

0.2

0.3

0.4

0.5

0.6

0.7

Lo
w

-d
im

. d
ec

od
in

g
C

C

*** ******

0

0.2

0.4

0.6

0.8

Lo
w

-d
im

. d
ec

od
in

g
C

C

*** *** ***
*** ** ***

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Lo
w

-d
im

. d
ec

od
in

g
C

C

*** ******

Lo
w

-d
im

. d
ec

od
in

g
C

C

*** ******

Lo
w

-d
im

. d
ec

od
in

g
C

C

*** ******

0.2

0.4

0.6

0.8

Lo
w

-d
im

. d
ec

od
in

g
C

C

*** ******

0.2

0.4

0.6

0.8

Lo
w

-d
im

. d
ec

od
in

g
C

C

*** ******

0.2

0.4

0.6

0.8

Lo
w

-d
im

. d
ec

od
in

g
C

C

0.2

0.4

0.6
Lo

w
-d

im
. d

ec
od

in
g

C
C

Nonlinear DPAD

Nonlinear NDM
Linear DPAD

Linear NDM

a b

f g

k l

n o

c

m

p

h

d

q

i

e

r

j

Raw LFP activitySpiking activitySpiking activity LFP band activity

No LFP
data

Fig. 5 | DPAD enables nonlinear and prioritized dynamical dimensionality
reduction, thus learning more accurate models of behaviorally relevant
neural dynamics with lower-dimensional latent states. a, The 3D reach
task. b, Cross-validated decoding accuracy (CC) achieved by variations of
linear/nonlinear DPAD/NDM for different latent state dimensions. For nonlinear
DPAD/NDM, the nonlinearities are selected automatically based on the training
data to maximize behavior decoding accuracy (flexible nonlinearity). Solid lines
show the average across sessions and folds (N = 35 session-folds), and the shaded
areas show the s.e.m.; Low-dim., low-dimensional. c, Decoding accuracy of
nonlinear DPAD versus linear DPAD and nonlinear/linear NDM at the latent state
dimension for which DPAD reaches within 5% of its peak decoding accuracy in the

training data across all latent state dimensions. Bars, whiskers, dots and asterisks
are defined as in Fig. 2b (N = 35 session-folds). d, Same as c for modeling of raw
LFP (N = 35 session-folds). e, Same as c for modeling of LFP band power activity
(N = 35 session-folds). f–j, Same as a–e for the second dataset with saccadic eye
movements (N = 35 session-folds). k–m, Same as a–c for the third dataset, which
did not include LFP data, with sequential cursor reaches controlled via a 2D
manipulandum (N = 15 session-folds). n–r, Same as a–e for the fourth dataset,
with random grid virtual reality cursor reaches controlled via fingertip position
(N = 35 session-folds). For all DPAD variations, only the first two optimization
steps were used in this figure (that is, n1 = nx) to only focus on learning
behaviorally relevant neural dynamics in the dimensionality reduction regimen.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2040

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Consistent with the above localization results, DPAD with flexible
nonlinearity also, very frequently, automatically selected models
with nonlinearity in the behavior readout parameter (Supplementary
Fig. 7). However, critically, this observation on its own cannot conclude
that nonlinearities can be isolated in the behavior readout parameter.
This is because in the flexible nonlinearity approach, parameters may
be selected as nonlinear as long as this nonlinearity does not hurt the
prediction accuracies, which does not imply that such nonlinearities
are necessary (Methods); this is why we need the hypothesis testing
procedure above (Fig. 6a). Of note, using an LSTM for the recursion
parameter A′ is one of the nonlinearity options that is automatically

considered in DPAD (Extended Data Fig. 3), but we found that LSTM
was rarely selected in our datasets as the recursion dynamics in the
flexible search over nonlinearities (Supplementary Fig. 7). Finally, note
that fitting models with a nonlinear behavior readout via a post hoc
nonlinear refitting of linear DPAD models (1) cannot identify the origin
of nonlinearity in general (for example, other brain regions or tasks)
and (2) even in our datasets resulted in significantly worse decoding
than the same models being fitted end-to-end as done by nonlinear
DPAD (P ≤ 0.0027, one-sided signed-rank test, N ≥ 15).

Together, these results highlight the application of DPAD in ena-
bling investigations of nonlinear processing in neural computations

0.6 0.8 1.0

Normalized neural
self-prediction CC

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

de
co

di
ng

 C
C

D

E

F

C

G

A

N
or

m
al

iz
ed

de
co

di
ng

 C
C

Simulated random models
with nonlinearity just in K

K correctly
is the best

0.6

1.0

N
or

m
al

iz
ed

 n
eu

ra
l

se
lf-

pr
ed

ic
tio

n
C

C

0.6

1.0

K is on the best performance frontier of
neural–behavioral prediction

compared to alternative models

Go

Cue

1

2

3

4

Target 1

Target 2

0.90 0.92

Self-prediction CC

0.50

0.55

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C

A BC

D

E

F
G

0.87 0.88 0.89

Self-prediction CC

0.55

0.60

0.65

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C

A

B

C

D

E
F G

0.90 0.91

Self-prediction CC

0.74

0.76

0.78

0.80

0.82

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C

A

B

C

D

E

F G

0.80 0.85

Self-prediction CC

0.68

0.70

0.72

0.74

C
or

re
sp

on
di

ng
de

co
di

ng
 C

C
A B

C

D

E

F G

Cz is su�icientBoth Cz and K are on
the best performance frontier

(B) Flexible nonlinearity (best for self-prediction)
(A) Flexible nonlinearity (best for decoding)

(C) Nonlinearity just in Cz

DPAD nonlinearity: (D) Nonlinearity just in A′
(E) Nonlinearity just in K
(F) Nonlinearity just in Cy

(G) Fully linear

b

a

c d e

f g h i

zkˆ ykˆ

Cy

Cy: Neural readout

Cz

Cz: Behavior readout

xkA′ A′

A′: Recursion

yk–1

K

K: Neural input

Fig. 6 | DPAD reveals that across our datasets, nonlinearities can be largely
captured in the behavior readout of the model. a, The process of determining
the origin of nonlinearity via hypothesis testing shown with an example
simulation. Simulation results are taken from Extended Data Fig. 2b, and the
origin is correctly identified as K. Pluses and whiskers are defined as in Fig. 3
(N = 20 random models). b, The 3D reach task. c, DPAD’s hypothesis testing.
Cross-validated neural self-prediction accuracy (CC) for each nonlinearity and
the corresponding decoding accuracy. DPAD variations that have only one
nonlinear parameter (for example, Cz) use a nonlinear neural network for that
parameter and keep all other parameters linear. Linear and flexible nonlinear
results are as in Fig. 3. Latent state dimension in each session and fold is chosen
(among powers of 2 up to 128) as the smallest that reaches peak neural self-
prediction in training data or reaches peak decoding in training data, whichever

is larger (Methods). Pluses and whiskers are defined as in Fig. 3 (N = 35 session-
folds). Annotated arrows indicate any individual nonlinearities that are on the
best performance frontier compared to all other models. Results are shown for
spiking activity here and for raw LFP and LFP power activity in Supplementary
Fig. 6. d,e, Same as b and c for the second dataset with saccadic eye movements
(N = 35 session-folds). f,g, Same as b and c for the third dataset, with sequential
cursor reaches controlled via a 2D manipulandum (N = 15 session-folds).
h,i, Same as b and c for the fourth dataset, with random grid virtual reality cursor
reaches controlled via fingertip position (N = 35 session-folds). For all DPAD
variations, the first 16 latent state dimensions are learned using the first two
optimization steps, and the remaining dimensions are learned using the last two
optimization steps (that is, n1 = 16).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2041

Technical Report https://doi.org/10.1038/s41593-024-01731-2

underlying specific behaviors. DPAD’s machinery can not only fit fully
nonlinear models but also provide evidence for the location in the
model where the nonlinearity can be isolated (Discussion).

Use-case 5: DPAD extends to noncontinuous and intermittent
data
DPAD extends to intermittently sampled behavior observations.
DPAD also supports intermittently sampled behaviors (Methods)56,
that is, when behavior is measured only during a subset of time steps.
We first confirmed in numerical simulations with random models
that DPAD correctly learns the model with intermittently sampled
behavioral data (Supplementary Fig. 8). Next, in each of our neural
datasets, we emulated intermittent sampling by randomly discard-
ing up to 90% of behavior samples during learning. DPAD learned
accurate nonlinear models even in this case (Extended Data Fig. 8).
This capability is important, for example, in affective neuroscience or
neuropsychiatry applications where the behavior consists of sparsely
sampled momentary ecological assessments of mental states such as
mood40. We next simulated a mood decoding application and found
that with as low as one behavioral (for example, mood survey) sample
per day, DPAD still outperformed NDM even when NDM had access to

continuous behavior samples (Extended Data Fig. 9). These results
suggest the potential utility of DPAD in such applications, although
substantial future validation in data is needed7,40–42.

DPAD extends to noncontinuous-valued observations. DPAD also
extends to modeling of noncontinuous-valued (for example, categori-
cal) behaviors (Methods). To demonstrate this, we modeled the trans-
formation from neural activity to the momentary phase of the task
in the 3D reach task: reach, hold, return or rest (Fig. 7). Compared to
nonlinear NDM (which is dynamic) or nonlinear nondynamic methods
such as support vector machines, DPAD more accurately predicted
the task phase at each point in time (Fig. 7). This capability can extend
the utility of DPAD to categorical behaviors such as decision choices
in cognitive neuroscience39.

Finally, we applied DPAD to nonsmoothed spike counts, where
we compared the results with two noncausal sequential autoencoder
methods, termed LFADS16 and TNDM18 (Supplementary Fig. 9), both
of which have Poisson observations that model nonsmoothed spike
counts16,18. TNDM18, which was developed after LFADS16 and con-
currently with our work44,56, adds behavioral terms to the objective
function for a subset of latents but unlike DPAD does so with a mixed

0.7 0.8 0.9

Self-prediction CC

0.86

0.88

0.90

C
or

re
sp

on
di

ng
cl

as
si

fic
at

io
n

AU
C

A

B
C

D

0.6

0.7

0.8

0.9

1.0

C
la

ss
ifi

ca
tio

n
AU

C

NS
**

0.6

0.7

0.8

0.9

1.0

C
la

ss
ifi

ca
tio

n
AU

C
 fo

r
lo

w
-d

im
en

si
on

al
 s

ta
te

s

0 25Time (s)
0

1

D
ec

od
ed

pr
ob

ab
ili

ty Reach

Tr
ue

 c
la

ss
Pr

ed
ic

te
d

pr
ob

ab
ili

ty

Return
Hold
Rest

1 8 64

State dimension

0.7

0.8

0.9

C
la

ss
ifi

ca
tio

n
AU

C

Best performance
frontiers are reached by
nonlinear DPAD

(A) DPAD (best nonlinearity for decoding)
(B) DPAD (best nonlinearity for self-prediction)

(C) NDM (best nonlinearity for decoding)
(D) NDM (best nonlinearity for self-prediction)

Multilayer nonlinear
neural network

LDA
Nonlinear SVM

Reach Target holdRest Return Time

a

b

c d fe

Fig. 7 | DPAD extends to modeling categorical behaviors. a, In the 3D reach
dataset, we model spiking activity along with the epoch of the task as discrete
behavioral data (Methods and Fig. 2a). The epochs/classes are (1) reaching toward
the target, (2) holding the target, (3) returning to resting position and (4) resting
until the next reach. b, DPAD’s predicted probability for each class is shown in a
continuous segment of the test data. Most of the time, DPAD predicts the highest
probability for the correct class. c, The cross-validated behavior classification
performance, quantified as the area under curve (AUC) for the four-class
classification, is shown for different methods at different latent state dimensions.
Solid lines and shaded areas are defined as in Fig. 5b (N = 35 session-folds).
AUC of 1 and 0.5 indicate perfect and chance-level classification, respectively.
We include three nondynamic/static classification methods that map neural
activity for a given time step to class label at the same time step (Extended Data
Table 1): (1) multilayer neural network, (2) nonlinear support vector machine

(SVM) and (3) linear discriminant analysis (LDA). d, Cross-validated behavior
classification performance (AUC) achieved by each method when choosing
the state dimension in each session and fold as the smallest that reaches peak
classification performance in the training data among all state dimensions with
that method (Methods). Bars, whiskers, dots and asterisks are defined as in Fig. 2b
(N = 35 session-folds). e, Same as d when all methods use the same latent state
dimension as DPAD (best nonlinearity for decoding) does in d (N = 35 session-
folds). c and e show DPAD’s benefit for dimensionality reduction.
f, Cross-validated neural self-prediction accuracy achieved by each method
versus the corresponding behavior classification performance. Here, the latent
state dimension for each method in each session and fold is chosen (among
powers of 2 up to 128) as the smallest that reaches peak neural self-prediction
in training data or reaches peak decoding in training data, whichever is larger
(Methods). Pluses and whiskers are defined as in Fig. 3 (N = 35 session-folds).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2042

Technical Report https://doi.org/10.1038/s41593-024-01731-2

objective and thus does not completely dissociate or prioritize behav-
iorally relevant dynamics (Extended Data Table 1 and Supplementary
Note 3). Compared to both LFADS and TNDM, DPAD remained on the
best performance frontier for predicting the neural–behavioral data
(Supplementary Fig. 9a) and more accurately predicted behavior using
low-dimensional latent states (Supplementary Fig. 9b). Beyond this,
TNDM and LFADS also have fundamental differences with DPAD and
do not address some of DPAD’s use-cases (Discussion and Extended
Data Table 1).

Discussion
We developed DPAD for nonlinear dynamical modeling and investi-
gation of neural dynamics underlying behavior. DPAD can dissociate
the behaviorally relevant neural dynamics and prioritize their learn-
ing over other neural dynamics, enable hypothesis testing regarding
the origin of nonlinearity in the neural–behavioral transformation
and achieve causal decoding. DPAD enables prioritized dynamical
dimensionality reduction by extracting lower-dimensional yet more
behavior-predictive latent states from neural population activity and
supports modeling noncontinuous-valued (for example, categorical)
and intermittently sampled behavioral data. These attributes make
DPAD suitable for diverse use-cases across neuroscience and neuro-
technology, some of which we demonstrated here.

We found similar results for three neural modalities: spiking acti
vity, LFP band powers and raw LFP. For all modalities, nonlinear DPAD
more accurately learned the behaviorally relevant neural dynamics
than linear DPAD and linear/nonlinear NDM as reflected in its better
decoding while also reaching the best performance frontier when con-
sidering both behavior decoding and neural self-prediction. Notably,
the raw LFP activity benefited the most from nonlinear modeling using
DPAD and outperformed LFP powers in all tasks in terms of decoding.
This suggests that automatic learning of nonlinear models from raw
LFP using DPAD reveals behaviorally relevant information that may be
discarded when extracting traditionally used features such as LFP band
powers. Also, nonlinearity was necessary to recover the extra informa-
tion in raw LFP, as, unlike DPAD modeling, linear dynamical modeling of
raw LFP did not outperform that of LFP powers in most datasets. These
results highlight another use-case of DPAD for automatic dynamic
feature extraction from LFP data.

As another use-case, DPAD enabled an investigation of which ele-
ment in the neural–behavioral transformation was nonlinear. Interest-
ingly, consistently across our four movement-related datasets, DPAD
models with nonlinearity only in the behavior readout performed
similarly to fully nonlinear models, reaching the best performance fron-
tier for predicting future behavior and neural data using past neural
data. The consistency of this result across our datasets is interesting
because, as demonstrated in simulations (Extended Data Fig. 2, Supple
mentary Fig. 2 and Fig. 6a), the detected origin of nonlinearity could
have technically been in any one (or more) of the following four elements
(Fig. 1a,b): neural input, recurrent dynamics and neural or behavior
readouts, all of which were correctly localized in simulations (Extended
Data Fig. 2 and Supplementary Fig. 2). Thus, the consistent localization
results on our neural datasets provide evidence that across these four
tasks, neural dynamics in these recorded cortical areas may be largely
describable with linear dynamics of sufficiently high dimension, with
additional nonlinearities introduced somewhere between the neural
state and behavior. This finding may be consistent with (1) introduction
of nonlinear processing along the downstream neuromuscular pathway
that goes from the recorded cortical area to the measured behavior
or any of the convergent inputs along this pathway57–59 or (2) cognition
intervening nonlinearly between these latent neural states and behav-
ior, for example, by implementing context-dependent computations60.
This result illustrates how DPAD can provide new hypotheses and
the machinery to test them in future experiments that would record
from multiple additional brain regions (for example, both motor and

cognitive regions) and use DPAD to model them together. Such analy-
ses may narrow down or revise the origin of nonlinearity for the wider
neural–behavioral measurement set; for example, the state dynamics
may be found to be nonlinear once additional brain regions are added.
Localization of nonlinearity could also guide the design of competitive
deep learning architectures that are more flexible or easier to imple-
ment in neurotechnologies such as brain–computer interfaces61.

Interestingly, the behavior decoding aspect of the localiza-
tion finding here is consistent with a prior study22 that explored the
mapping of the motor cortex to an electromyogram (EMG) during a
one-dimensional movement task with varying forces and found that a
fully linear model was worse than a nonlinear EMG readout in decoding
the EMG22. However, as our simulations show (Extended Data Fig. 2b
and Fig. 6a), comparing a linear model to a model that has nonlinear
behavior readout is not sufficient to conclude the origin of nonlinear-
ity, and a stronger test is needed (see Fig. 6a for a counter example
and details in Methods). Further, this previous study22 used a specific
condition-dependent nonlinearity for behavior readout rather than a
universal nonlinear function approximator that DPAD enables. Finally,
to conclude localization, the model with that specific nonlinearity
should perform similarly to fully nonlinear models; however, unlike
our results, a fully nonlinear LSTM model in some cases appears to
outperform models with nonlinear readout in this prior study (see
Fig. 7a,b in ref. 22 versus Fig. 9c in ref. 22); it is unclear if this result is
due to this prior study’s specific readout nonlinearity being suboptimal
or to the nonlinear origin being different in its dataset22. DPAD can
address such questions by (1) allowing for training and comparison of
alternative models with different nonlinear origins and (2) enabling a
general (versus specific) nonlinearity in model parameters.

When hypothesis testing about where in the model nonlinearity
can be isolated to, it may be possible to equivalently explain the same
data with multiple types of nonlinearities (for example, with either
a nonlinear neural input or a nonlinear readout). Such nonidentifi-
ability is a common limitation for latent models. However, when such
equivalence exists, we expect all equivalent nonlinear models to have
similar performance and thus lie on the best performance frontier.
But this was not the case in our datasets. Instead, we found that the
nonlinear behavior readout was in most cases the only individual
nonlinear parameter on the best performance frontier, providing
evidence that no other individual nonlinear parameter was as suitable
in our datasets. Alternatively, the best model describing the data may
require two or more of the four parameters to be nonlinear. But in our
datasets, models with nonlinearity only in the behavior readout were
always on the best performance frontier and could not be considerably
outperformed by models with more than one nonlinearity (Fig. 6).
Nevertheless, we note that ultimately our analysis simply provides
evidence for one location of nonlinearity resulting in a better fit to
data with a parsimonious model, but it does not rule out other pos-
sibilities for explaining the data. For example, one could reformulate
a nonlinear readout model by adding latent states and representing
the readout nonlinearity as a recursion nonlinearity for the additional
states, although such an equivalent but less parsimonious model may
need more data to be learned as accurately. Finally, we also note that
our conclusions were based on the datasets and family of nonlinear
models (recursive RNNs) considered here, and thus we cannot rule out
different conclusions in other scenarios and/or brain regions. Neverthe-
less, by providing evidence for a nonlinearity configuration, DPAD can
provide testable hypotheses for future experiments that record from
more brain regions.

Sequential autoencoders, spearheaded by LFADS16, have been used
to smooth single-trial neural activity16 without considering relevance to
behavior, which is a distinct goal as we showed in comparison to PSID in
our prior work6. Notably, another sequential autoencoder, termed TNDM,
has been developed concurrently with our work44,56 that adds a behavior
term to the optimization objective18. However, these approaches do

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2043

Technical Report https://doi.org/10.1038/s41593-024-01731-2

not enable several of the use-cases of DPAD here. First, unlike DPAD’s
four-step learning approach, TNDM and LFADS use a single learning
step with a neural-only objective (LFADS)16 or a mixed neural–behavioral
objective (TNDM)18 that does not fully prioritize the behaviorally relevant
neural dynamics (Extended Data Table 1 and Supplementary Note 3).
DPAD’s prioritization is important for accurate learning of behaviorally
relevant neural dynamics and for preserving them in dimensionality
reduction, as our results comparing DPAD to TNDM/LFADS suggest
(Supplementary Fig. 9). Second, TNDM and LFADS16,18, like other prior
works16,18,20,23,24,26,61, do not provide flexible nonlinearity or explore
hypotheses regarding the origin of nonlinearities because they use fixed
nonlinear network structures (use-case 4). Third, TNDM considers spik-
ing activity and continuous behaviors18, whereas DPAD extends across
diverse neural and behavioral modalities: spiking, raw LFP and LFP pow-
ers and continuous, categorical or intermittent behavioral modalities.
Fourth, in contrast to these noncausal sequential autoencoders16,18 and
some other nonlinear methods8,14, DPAD can process the test data caus-
ally and without expensive computations such as iterative expectation
maximization8,14 or sampling and averaging16,18. This causal efficient
processing is also important for real-time closed-loop brain–computer
interfaces62,63. Of note, noncausal processing is also implemented in the
DPAD code library as an option (Methods), although it is not shown in this
work. Finally, unlike these prior methods14,16,18, DPAD does not require
fixed-length trials or trial structure, making it suitable for modeling
naturalistic behaviors5 and neural dynamics with trial-to-trial variability
in the alignment to task events64.

Several methods can in some ways prioritize behaviorally relevant
information while extracting latent embeddings from neural data but
are distinct from DPAD in terms of goals and capabilities. One group
includes nondynamic/static methods that do not explicitly model
temporal dynamics1. These methods build linear maps (for example, as
in demixed principal component analysis (dPCA)34) or nonlinear maps,
such as convolutional maps in a concurrently44 developed method
with DPAD named CEBRA36, to extract latent embeddings that can be
guided by behavior either as a trial condition34 or indirectly as a con-
trastive loss36. These nondynamic mappings only use a single sample
or a small fixed window around each sample of neural data to extract
latent embeddings (Extended Data Table 1). By contrast, DPAD can
recursively aggregate information from all past neural data by explicitly
learning a model of temporal dynamics (recursion), which also enables
forecasting unlike in static/nondynamic methods. These differences
may be one reason why DPAD outperformed CEBRA in terms of neural–
behavioral prediction (Fig. 4). Another approach is used by task aligned
manifold estimation (TAME-GP)9, which uses a Gaussian process prior
(as in Gaussian process factor analysis (GPFA)14) to expand the window
of neural activity used for extracting the embedding into a complete
trial. Unlike DPAD, methods with a Gaussian process prior have limited
support for nonlinearity, often do not have closed-forms for inference
and thus necessitate numerical optimization even for inference9 and
often operate noncausally9. Finally, the above methods do not provide
flexible nonlinearity or hypothesis testing to localize the nonlinearity.

Other prior works have used RNNs either causally20,22–24,26 or non-
causally16,18, for example, for causal decoding of behavior from neural
activity20,22–24,26. These works20,22–24,26 have similarities to the first step of
DPAD’s four-step optimization (Supplementary Fig. 1a) in that the RNNs
in these works learn dynamical models by solely optimizing behavior
prediction. However, these works do not learn the mapping from the
RNN latent states to neural activity, which is done in DPAD’s second
optimization step to enable neural self-prediction (Supplementary
Fig. 1a). In addition, unlike what the last two optimization steps in DPAD
enable, these prior works do not model additional neural dynamics
beyond those that decode behavior and thus do not dissociate the
two types of neural dynamics (Extended Data Table 1). Finally, as noted
earlier, these prior works9,20,23,24,26,36,61, similar to prior sequential autoen-
coders16,18, have fixed nonlinear network structures and thus cannot

explore hypotheses regarding the origin of nonlinearities or flexibly
learn the best nonlinear structure for the training data (Fig. 1c,d and
Extended Data Table 1).

DPAD’s optimization objective functions are not convex, similar to
most nonlinear deep learning methods. Thus, as usual with nonconvex
optimizations, convergence to a global optimum is not guaranteed.
Moreover, as with any method, quality and neural–behavioral pre-
diction of the learned models depend on dataset properties such as
signal-to-noise ratio. Thus, we compare alternative methods within each
dataset, suggesting that (for example, Fig. 4) across the multiple data-
sets here, DPAD learns more accurate models of neural–behavioral data.
However, models in other datasets/scenarios may not be as accurate.

Here, we focused on using DPAD to model the transformation of
neural activity to behavior. DPAD can also be used to study the transfor-
mation between other signals. For example, when modeling data from
multiple brain regions, one region can be taken as the primary signal (yk)
and another as the secondary signal (zk) to dissociate their shared ver-
sus distinct dynamics. Alternatively, when modeling the brain response
to electrical7,41,42 or sensory41,65,66 stimulation, one could take the pri-
mary signal (yk) to be the stimulation and the secondary signal (zk) to
be neural activity to dissociate and predict neural dynamics that are
driven by stimulation. Finally, one may apply DPAD to simultaneously
recorded brain activity from two subjects as primary and secondary
signals to find shared intersubject dynamics during social interactions.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41593-024-01731-2.

References
1.	 Cunningham, J. P. & Yu, B. M. Dimensionality reduction for

large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).
2.	 Macke, J. H. et al. Empirical models of spiking in neural

populations. In Advances in Neural Information Processing Systems
24 (eds. Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. &
Weinberger, K. Q.) 1350–1358 (Curran Associates, 2011).

3.	 Kao, J. C. et al. Single-trial dynamics of motor cortex and their
applications to brain–machine interfaces. Nat. Commun. 6, 7759
(2015).

4.	 Bondanelli, G., Deneux, T., Bathellier, B. & Ostojic, S. Network
dynamics underlying OFF responses in the auditory cortex. eLife
10, e53151 (2021).

5.	 Abbaspourazad, H., Choudhury, M., Wong, Y. T., Pesaran, B. &
Shanechi, M. M. Multiscale low-dimensional motor cortical state
dynamics predict naturalistic reach-and-grasp behavior. Nat.
Commun. 12, 607 (2021).

6.	 Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. &
Shanechi, M. M. Modeling behaviorally relevant neural dynamics
enabled by preferential subspace identification. Nat. Neurosci. 24,
140–149 (2021).

7.	 Yang, Y. et al. Modelling and prediction of the dynamic responses
of large-scale brain networks during direct electrical stimulation.
Nat. Biomed. Eng. 5, 324–345 (2021).

8.	 Durstewitz, D. A state space approach for piecewise-linear
recurrent neural networks for identifying computational
dynamics from neural measurements. PLoS Comput. Biol. 13,
e1005542 (2017).

9.	 Balzani, E., Noel, J.-P. G., Herrero-Vidal, P., Angelaki, D. E. &
Savin, C. A probabilistic framework for task-aligned intra-
and inter-area neural manifold estimation. In International
Conference on Learning Representations https://openreview.net/
pdf?id=kt-dcBQcSA (ICLR, 2023).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01731-2
https://openreview.net/pdf?id=kt-dcBQcSA
https://openreview.net/pdf?id=kt-dcBQcSA

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2044

Technical Report https://doi.org/10.1038/s41593-024-01731-2

10.	 Petreska, B. et al. Dynamical segmentation of single trials from
population neural data. In Advances in Neural Information
Processing Systems 24 (eds. Shawe-Taylor, J., Zemel, R. S., Bartlett,
P. L., Pereira, F. & Weinberger, K. Q.) 756–764 (Curran Associates,
2011).

11.	 Zoltowski, D., Pillow, J. & Linderman, S. A general recurrent
state space framework for modeling neural dynamics during
decision-making. In Proc. 37th International Conference on Machine
Learning (eds. Daumé, H. & Singh, A.) 11680–11691 (PMLR, 2020).

12.	 Song, C. Y., Hsieh, H.-L., Pesaran, B. & Shanechi, M. M. Modeling
and inference methods for switching regime-dependent
dynamical systems with multiscale neural observations. J. Neural
Eng. 19, 066019 (2022).

13.	 Song, C. Y. & Shanechi, M. M. Unsupervised learning of
stationary and switching dynamical system models from Poisson
observations. J. Neural Eng. 20, 066029 (2023).

14.	 Yu, B. M. et al. Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural population activity.
J. Neurophysiol. 102, 614–635 (2009).

15.	 Wu, A., Roy, N. A., Keeley, S. & Pillow, J. W. Gaussian process
based nonlinear latent structure discovery in multivariate spike
train data. Adv. Neural Inf. Process. Syst. 30, 3496–3505 (2017).

16.	 Pandarinath, C. et al. Inferring single-trial neural population
dynamics using sequential auto-encoders. Nat. Methods 15,
805–815 (2018).

17.	 Rutten, V., Bernacchia, A., Sahani, M. & Hennequin, G.
Non-reversible Gaussian processes for identifying latent
dynamical structure in neural data. Adv. Neural Inf. Process. Syst.
33, 9622–9632 (2020).

18.	 Hurwitz, C. et al. Targeted neural dynamical modeling. In Proc.
35th International Conference on Neural Information Processing
Systems (eds. Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P. S. & Wortman Vaughan, J.) 29379–29392 (Curran
Associates, 2021).

19.	 Kim, T. D., Luo, T. Z., Pillow, J. W. & Brody, C. Inferring latent
dynamics underlying neural population activity via neural
differential equations. In Proc. 38th International Conference on
Machine Learning (eds. Meila, M. & Zhang, T.) 5551–5561 (PMLR,
2021).

20.	 Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V.
Making brain–machine interfaces robust to future neural
variability. Nat. Commun. 7, 13749 (2016).

21.	 Makin, J. G., O’Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N.
Superior arm-movement decoding from cortex with a new,
unsupervised-learning algorithm. J. Neural Eng. 15, 026010
(2018).

22.	 Naufel, S., Glaser, J. I., Kording, K. P., Perreault, E. J. & Miller, L. E.
A muscle-activity-dependent gain between motor cortex and
EMG. J. Neurophysiol. 121, 61–73 (2019).

23.	 Glaser, J. I. et al. Machine learning for neural decoding. eNeuro 7,
ENEURO.0506-19.2020 (2020).

24.	 Kim, M.-K., Sohn, J.-W. & Kim, S.-P. Decoding kinematic
information from primary motor cortex ensemble activities using
a deep canonical correlation analysis. Front. Neurosci. 14, 509364
(2020).

25.	 Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation
through neural population dynamics. Annu. Rev. Neurosci. 43,
249–275 (2020).

26.	 Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. &
Shenoy, K. V. High-performance brain-to-text communication via
handwriting. Nature 593, 249–254 (2021).

27.	 Shi, Y.-L., Steinmetz, N. A., Moore, T., Boahen, K. & Engel, T. A.
Cortical state dynamics and selective attention define the spatial
pattern of correlated variability in neocortex. Nat. Commun. 13,
44 (2022).

28.	 Otazu, G. H., Tai, L.-H., Yang, Y. & Zador, A. M. Engaging in an
auditory task suppresses responses in auditory cortex. Nat.
Neurosci. 12, 646–654 (2009).

29.	 Goris, R. L. T., Movshon, J. A. & Simoncelli, E. P. Partitioning
neuronal variability. Nat. Neurosci. 17, 858–865 (2014).

30.	 Sadtler, P. T. et al. Neural constraints on learning. Nature 512,
423–426 (2014).

31.	 Allen, W. E. et al. Thirst regulates motivated behavior through
modulation of brainwide neural population dynamics. Science
364, eaav3932 (2019).

32.	 Engel, T. A. & Steinmetz, N. A. New perspectives on
dimensionality and variability from large-scale cortical dynamics.
Curr. Opin. Neurobiol. 58, 181–190 (2019).

33.	 Stringer, C. et al. Spontaneous behaviors drive multidimensional,
brainwide activity. Science 364, eaav7893 (2019).

34.	 Kobak, D. et al. Demixed principal component analysis of neural
population data. eLife 5, e10989 (2016).

35.	 Zhou, D. & Wei, X.-X. Learning identifiable and interpretable
latent models of high-dimensional neural activity using pi-VAE.
In Advances in Neural Information Processing Systems 33 (eds.
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F. & Lin, H.)
7234–7247 (Curran Associates, 2020).

36.	 Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent
embeddings for joint behavioural and neural analysis. Nature 617,
360–368 (2023).

37.	 Hernandez, D. et al. Nonlinear evolution via spatially-dependent
linear dynamics for electrophysiology and calcium data. NBDT
https://nbdt.scholasticahq.com/article/13476-nonlinear-evolut
ion-via-spatially-dependent-linear-dynamics-for-electrophysiol
ogy-and-calcium-data (2020).

38.	 Gao, Y., Archer, E. W., Paninski, L. & Cunningham, J. P. Linear
dynamical neural population models through nonlinear
embeddings. In Advances in Neural Information Processing
Systems 29 (eds. Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I. &
 Garnett, R.) 163–171 (Curran Associates, 2016).

39.	 Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits
multidimensional dynamic encoding during decision-making.
Nat. Neurosci. 23, 1410–1420 (2020).

40.	 Sani, O. G. et al. Mood variations decoded from multi-site
intracranial human brain activity. Nat. Biotechnol. 36, 954–961
(2018).

41.	 Shanechi, M. M. Brain–machine interfaces from motor to mood.
Nat. Neurosci. 22, 1554–1564 (2019).

42.	 Oganesian, L. L. & Shanechi, M. M. Brain–computer interfaces
for neuropsychiatric disorders. Nat. Rev. Bioeng. 2, 653–670
(2024).

43.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2017).

44.	 Sani, O. G., Pesaran, B. & Shanechi, M. M. Where is all the
nonlinearity: flexible nonlinear modeling of behaviorally relevant
neural dynamics using recurrent neural networks. Preprint at
bioRxiv https://www.biorxiv.org/content/10.1101/2021.09.03.4586
28v1 (2021).

45.	 Wong, Y. T., Putrino, D., Weiss, A. & Pesaran, B. Utilizing movement
synergies to improve decoding performance for a brain machine
interface. In 2013 35th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC) 289–292
(IEEE, 2013).

46.	 Markowitz, D. A., Curtis, C. E. & Pesaran, B. Multiple component
networks support working memory in prefrontal cortex. Proc.
Natl. Acad. Sci. USA 112, 11084–11089 (2015).

47.	 Perich, M. G., Lawlor, P. N., Kording, K. P. & Miller, L. E. Extracellular
neural recordings from macaque primary and dorsal premotor
motor cortex during a sequential reaching task. CRCNS.org
https://doi.org/10.6080/K0FT8J72 (2018).

http://www.nature.com/natureneuroscience
https://nbdt.scholasticahq.com/article/13476-nonlinear-evolution-via-spatially-dependent-linear-dynamics-for-electrophysiology-and-calcium-data
https://nbdt.scholasticahq.com/article/13476-nonlinear-evolution-via-spatially-dependent-linear-dynamics-for-electrophysiology-and-calcium-data
https://nbdt.scholasticahq.com/article/13476-nonlinear-evolution-via-spatially-dependent-linear-dynamics-for-electrophysiology-and-calcium-data
https://doi.org/10.48550/arXiv.1412.6980
https://www.biorxiv.org/content/10.1101/2021.09.03.458628v1
https://www.biorxiv.org/content/10.1101/2021.09.03.458628v1
https://doi.org/10.6080/K0FT8J72

Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2045

Technical Report https://doi.org/10.1038/s41593-024-01731-2

48.	 Lawlor, P. N., Perich, M. G., Miller, L. E. & Kording, K. P.
Linear–nonlinear-time-warp-Poisson models of neural activity.
J. Comput. Neurosci. 45, 173–191 (2018).

49.	 O’Doherty, J. E., Cardoso, M. M. B., Makin, J. G. & Sabes, P. N.
Nonhuman primate reaching with multichannel sensorimotor
cortex electrophysiology. Zenodo https://doi.org/10.5281/
zenodo.3854034 (2020).

50.	 Schalk, G. et al. Decoding two-dimensional movement
trajectories using electrocorticographic signals in humans.
J. Neural Eng. 4, 264–275 (2007).

51.	 Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E. & Slutzky, M. W. Local
field potentials allow accurate decoding of muscle activity.
J. Neurophysiol. 108, 18–24 (2012).

52.	 Stavisky, S. D., Kao, J. C., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V.
A high performing brain–machine interface driven by
low-frequency local field potentials alone and together with
spikes. J. Neural Eng. 12, 036009 (2015).

53.	 Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E. & Donoghue, J. P.
Decoding 3D reach and grasp from hybrid signals in motor and
premotor cortices: spikes, multiunit activity, and local field
potentials. J. Neurophysiol. 107, 1337–1355 (2011).

54.	 Chowdhury, R. H., Glaser, J. I. & Miller, L. E. Area 2 of primary
somatosensory cortex encodes kinematics of the whole arm.
eLife 9, e48198 (2020).

55.	 Pesaran, B. et al. Investigating large-scale brain dynamics
using field potential recordings: analysis and interpretation.
Nat. Neurosci. 21, 903–919 (2018).

56.	 Sani, O. G. Modeling and Control of Behaviorally Relevant Brain
States. PhD Thesis, University of Southern California (2020).

57.	 Büttner, U. & Büttner-Ennever, J. A. Present concepts of
oculomotor organization. In Progress in Brain Research
(ed. Büttner-Ennever, J. A.) 1–42 (Elsevier, 2006).

58.	 Lemon, R. N. Descending pathways in motor control. Annu. Rev.
Neurosci. 31, 195–218 (2008).

59.	 Ebbesen, C. L. & Brecht, M. Motor cortex—to act or not to act?
Nat. Rev. Neurosci. 18, 694–705 (2017).

60.	 Wise, S. P. & Murray, E. A. Arbitrary associations between
antecedents and actions. Trends Neurosci. 23, 271–276 (2000).

61.	 Abbaspourazad, H., Erturk, E., Pesaran, B. & Shanechi, M. M.
Dynamical flexible inference of nonlinear latent factors and
structures in neural population activity. Nat. Biomed. Eng. 8,
85–108 (2024).

62.	 Shanechi, M. M. et al. Rapid control and feedback rates enhance
neuroprosthetic control. Nat. Commun. 8, 13825 (2017).

63.	 Nason, S. R. et al. A low-power band of neuronal spiking activity
dominated by local single units improves the performance of
brain–machine interfaces. Nat. Biomed. Eng. 4, 973–983 (2020).

64.	 Williams, A. H. et al. Discovering precise temporal patterns in
large-scale neural recordings through robust and interpretable
time warping. Neuron 105, 246–259 (2020).

65.	 Walker, E. Y. et al. Inception loops discover what excites neurons
most using deep predictive models. Nat. Neurosci. 22,
2060–2065 (2019).

66.	 Vahidi, P., Sani, O. G. & Shanechi, M. M. Modeling and dissociation
of intrinsic and input-driven neural population dynamics
underlying behavior. Proc. Natl. Acad. Sci. USA 121, e2212887121
(2024).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureneuroscience
https://doi.org/10.5281/zenodo.3854034
https://doi.org/10.5281/zenodo.3854034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Methods
Model formulation
Equation (1) simplifies the DPAD model by showing both of its RNN sec-
tions as one, but the general two-section form of the model is as follows:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[
x(1)k+1
x(2)k+1

] = [
A′(1) (x(1)k)

A′(2) (x(2)k)
] + [

K (1) (yk)

K (2) (yk, x(1)k+1)
]

yk = C (1)
y (x(1)k) + C (2)

y (x(2)k) + ek

zk = C (1)
z (x(1)k) + C (2)

z (x(2)k) + ϵk

. (2)

This equation separates the latent states of Eq. (1) into the follow-
ing two parts: x(1)k ∈ ℝn1 denotes the latent states of the first RNN section
that summarize the behaviorally relevant dynamics, and x(2)k ∈ ℝn2, with
n2 = nx − n1, denotes those of the second RNN section that represent
the other neural dynamics (Supplementary Fig. 1a). Here, A′(1), A′(2), K(1),
K(2), C (1)

y , C (2)
y , C (1)

z and C (2)
z are multi-input–multi-output functions that

parameterize the model, which we learn using a four-step numerical
optimization formulation expanded on in the next section (Supple-
mentary Fig. 1a). DPAD also supports learning the initial value of the
latent states at time 0 (that is, x(1)0 and x(2)0) as a parameter, but in all
analyses in this paper, the initial states are simply set to 0 given their
minimal impact when modeling long data sequences. Each pair of
superscripted parameters (for example, A′(1) and A′(2)) in Eq. (2) is a dis-
sociated version of the corresponding nonsuperscripted parameter
in Eq. (1) (for example, A′). The computation graph for Eq. (2) is provided
in Fig. 1b (and Supplementary Fig. 1a). In Eq. (2), the recursions for
computing x(1)k are not dependent on x(2)k , thus allowing the former to
be computed without the latter. By contrast, x(2)k can depend on x(1)k ,
and this dependence is modeled via K(2) (see Supplementary Note 2).
Note that such dependence of x(2)k on x(1)k via K(2) does not introduce new
dynamics to x(2)k because it does not involve the recursion parameter
A′(2), which describes the dynamics of x(2)k . This two-section RNN for-
mulation is mathematically motivated by equivalent representations
of a dynamical system model in different bases and by the relation
between the predictor and stochastic forms of dynamical systems
(Supplementary Notes 1 and 2).

For the RNN formulated in Eq. (1) or (2), neural activity yk consti-
tutes the input, and predictions of neural and behavioral signals are
the outputs (Fig. 1b) given by

{
̂yk = Cy (xk)

̂zk = Cz (xk)
. (3)

Note that each xk is estimated purely using all past yk (that is, y1, …,
yk – 1), so the predictions in Eq. (3) are one-step-ahead predictions
of yk and zk using past neural observations (Supplementary Note 1).
Once the model parameters are learned, the extraction of latent states
xk involves iteratively applying the first line from Eq. (2), and predicting
behavior or neural activity involves applying Eq. (3) to the extracted
xk. As such, by writing the nonlinear model in predictor form67,68
(Supplementary Note 1), we enable causal and computationally
efficient prediction.

Learning: four-step numerical optimization approach
Background. Unlike nondynamic models1,34–36,69, dynamical models
explicitly model temporal evolution in time series data. Recent dynami-
cal models have gone beyond linear or generalized linear dynami-
cal models2–7,70–81 to incorporate switching linear10–13, locally linear37
or nonlinear14–21,23,24,26,27,38,61,82–90 dynamics, often using deep learning
methods25,91–94. But these recent nonlinear/switching works do not aim
to localize nonlinearity or allow for flexible nonlinearity and do not
enable fully prioritized dissociation of behaviorally relevant neural
dynamics because they either do not consider behavior in their learning

objective at all14,16,37,38,61,95,96 or incorporate it with a mixed neural–behav-
ioral objective9,18,35,61 (Extended Data Table 1).

In DPAD, we develop a four-step learning method for training our
two-section RNN in Eq. (1) and extracting the latent states that (1) ena-
bles dissociation and prioritized learning of the behaviorally relevant
neural dynamics in the nonlinear model, (2) allows for flexible modeling
and localization of nonlinearities, (3) extends to data with diverse
distributions and (4) does all this while also achieving causal decoding
and being applicable to data both with and without a trial structure.
DPAD is for nonlinear modeling, and its multistep learning approach,
in each step, uses numerical optimization tools that are rooted in deep
learning. Thus, DPAD is mathematically distinct from our prior PSID
work for linear models, which is an analytical and linear technique. PSID
is based on analytical linear algebraic projections rooted in control
theory6, which are thus not extendable to nonlinear modeling or to
non-Gaussian, noncontinuous or intermittently sampled data. Thus,
even when we restrict DPAD to linear modeling as a special case, it is
still mathematically different from PSID6.

Overview. To dissociate and prioritize the behaviorally relevant
neural dynamics, we devise a four-step optimization approach for
learning the two-section RNN model parameters (Supplementary
Fig. 1a). This approach prioritizes the extraction and learning of the
behaviorally relevant dynamics in the first two steps with states
x(1)k ∈ ℝn1 while also learning the rest of the neural dynamics in the last
two steps with states x(2)k ∈ ℝn2 and dissociating the two subtypes of
dynamics. This prioritization is important for accurate learning of
behaviorally relevant neural dynamics and is achieved because of the
multistep learning approach; the earlier steps learn the behaviorally
relevant dynamics first, that is, with priority, and then the subsequent
steps learn the other neural dynamics later so that they do not mask
or confound the behaviorally relevant dynamics. Importantly, each
optimization step is independent of subsequent steps so all steps can
be performed in order, with no need to iteratively repeat any step. We
define the neural and behavioral prediction losses that are used in
the optimization steps based on the negative log-likelihoods (NLLs)
associated with the neural and behavior distributions, respectively.
This approach benefits from the statistical foundation of maximum
likelihood estimation and facilitates generalizability across behav-
ioral distributions. We now expand on each of the four optimization
steps for RNN training.

Optimization step 1. In the first two optimization steps (Supplemen-
tary Fig. 1a), the objective is to learn the behaviorally relevant latent
states x(1)k and their associated parameters. In the first optimization
step, we learn the parameters A′(1), C (1)

z and K(1) of the RNN

{
x(1)k+1 = A′(1) (x(1)k) + K (1) (yk)

zk = C (1)
z (x(1)k) + ϵk

(4)

and estimate its latent state x(1)k while minimizing the NLL of the behav-
ior zk given by x(1)k . For continuous-valued (Gaussian) behavioral data,
we minimize the following sum of squared prediction error69,97
given by

L(1)z = ∑
k
‖zk − ̂zk‖

2
2 = ∑

k

‖
‖zk − C (1)

z (x(1)k)‖‖
2

2
(5)

where the sum is over all available samples of behavior zk, and ‖.‖2
indicates the two-norm operator. This objective, which is typically used
when fitting models to continuous-valued data69,97, is proportional to
the Gaussian NLL if we assume isotropic Gaussian residuals (that is,
∑𝜖 = σ𝜖I)69,97. If desired, a general nonisotropic residual covariance ∑𝜖
can be empirically computed from model residuals after the above

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

optimization is solved (see Learning noise statistics), although having
∑𝜖 is mainly useful for simulating new data and is not needed when using
the learned model for inference. Similarly, in the subsequent optimiza-
tion steps detailed later, the same points hold regarding how the appro-
priate mean squared error used for continuous-valued data is
proportional to the Gaussian NLL if we assume isotropic Gaussian
residuals and how the residual covariance can be computed empirically
after the optimization if desired.

Optimization step 2. The second optimization step uses the extracted
latent state x(1)k from the RNN and fits the parameter C(1)y in

yk = C (1)
y (x(1)k) + ek (6)

while minimizing the NLL of the neural activity yk given by x(1)k . For
continuous-valued (Gaussian) neural activity yk, we minimize the fol-
lowing sum of squared prediction error69:

L(1)y = ∑
k
‖ yk − ̂yk‖

2
2 = ∑

k

‖
‖ yk − C (1)

y (x(1)k)‖‖
2

2
, (7)

where the sum is over all available samples of yk. Optimization steps 1
and 2 conclude the prioritized extraction and modeling of behaviorally
relevant latent states x(1)k (Fig. 1b) and the learning of the first section
of the RNN model (Supplementary Fig. 1a).

Optimization step 3. In optimization steps 3 and 4 (Supplementary
Fig. 1a), the objective is to learn any additional dynamics in neural
activity that are not learned in the first two optimization steps, that is,
x(2)k and the associated parameters. To do so, in the third optimization
step, we learn the parameters A′(2), C (2)

y and K(2) of the RNN

{
x(2)k+1 = A′(2) (x(2)k) + K (2) (yk, x(1)k+1)

y′k = C (2)
y (x(2)k) + e′k

(8)

and estimate its latent state x(2)k while minimizing the aggregate NLL of
yk given both latent states, that is, by also taking into account the NLL
obtained from step 2 via the C (1)

y (x(1)k) term in Eq. (6). The notations y′k
and e′k in the second line of Eq. (8) signify the fact that it is not yk that is
predicted by the RNN of Eq. (8), rather it is the yet unpredicted parts
of yk (that is, unpredicted after extracting x(1)k) that are being predicted.
In the case of continuous-valued (Gaussian) neural activity yk, we mini-
mize the following loss:

L(2)y = ∑
k

‖
‖ yk − C (1)

y (x(1)k) − C (2)
y (x(2)k)‖‖

2

2
, (9)

where the sum is over all available samples of yk. Note that in the
continuous-valued (Gaussian) case, this loss is equivalent to minimizing
the error in predicting the residual neural activity given by yk − C (1)

y (x(1)k)
and is computed using the previously learned parameter C (1)

y and the

previously extracted states x(1)k in steps 1 and 2. Also, the input to the
RNN in Eq. (8) includes both yk and the extracted x(1)k+1 from optimization
step 1. The above shows how the optimization steps are appropriately
linked together to compute the aggregate likelihoods.

Optimization step 4. If we assume that the second set of states x(2)k do
not contain any information about behavior, we could stop the mod-
eling. However, this may not be the case if the dimension of the states
extracted in the first optimization step (that is, n1) is selected to be very
small such that some behaviorally relevant neural dynamics are not
learned in the first step. To be robust to such selections of n1, we can
use another final numerical optimization to determine based on the
data whether and how x(2)k should affect behavior prediction. Thus, a

fourth optimization step uses the extracted latent state in optimization
steps 1 and 3 and fits Cz in

zk = Cz (x(1)k , x(2)k) + ϵk (10)

while minimizing the negative log-likelihood of behavior given both
latent states. In the case of continuous-valued (Gaussian) behavior zk,
we minimize the following loss:

L(2)z = ∑
k
‖zk − ̂zk‖

2
2 = ∑

k

‖
‖zk − Cz(x(1)k , x(2)k)‖‖

2

2
. (11)

The parameter Cz that is learned in this optimization step will
replace both C (1)

z and C (2)
z in Eq. (2). Optionally, in a final optimization

step, a similar nonlinear mapping from x(1)k and x(2)k can also be learned,
this time to predict yk, which allows DPAD to support nonlinear interac-
tions of x(1)k and x(2)k in predicting neural activity. In this case, the result-
ing learned Cy parameter will replace both C (1)

y and C (2)
y in Eq. (2). This

concludes the learning of both model sections (Supplementary Fig. 1a)
and all model parameters in Eq. (2).

In this work, when optimization steps 1 and 3 are both used to
extract the latent states (that is, when 0 < n1 < nx), we do not perform
the additional fourth optimization step in Eq. (10), and the prediction
of behavior is done solely using the x(1)k states extracted in the first
optimization step. Note that DPAD can also cover NDM as a special case
if we only use the third optimization step to extract the states (that is,
n1 = 0, in which case the first two steps are not needed). In this case, we
use the fourth optimization step to learn Cz, which is the mapping from
the latent states to behavior. Also, in this case, we simply have a unified
state xk as there is no dissociation in NDM, and the only goal is to extract
states that predict neural activity accurately.

Additional generalizations of state dynamics. Finally, the first lines
of Eqs. (4) and (8) can also be written more generally as

x(1)k+1 = A′′(1) (x(1)k , yk) (12)

and

x(2)k+1 = A′′(2) (x(2)k , yk, x(1)k+1) , (13)

where instead of an additive relation between the two terms of the
righthand side, both terms are combined in nonlinear functions A′′(1)
and A′′(2), which as a special case can still learn the additive relation in
Eqs. (4) and (8). Whenever both the state recursion A and neural input
K parameters (with the appropriate superscripts) are specified to be
nonlinear, we use the more general architecture in Eqs. (12) and (13),
and if any one of A or K or both are linear, we use Eqs. (4) and (8).

As another option, both RNN sections can be made bidirectional,
which enables noncausal prediction for DPAD by using future data in
addition to past data, with the goal of improving prediction, espe-
cially in datasets with stereotypical trials. Although this option is not
reported in this work, it is implemented and available for use in DPAD’s
public code library.

Learning noise statistics. Once the learning is complete, we also com-
pute the covariances of the neural and behavior residual time series
ek and 𝜖k as ∑e and ∑𝜖, respectively. This allows the learned model in
Eq. (1) to be usable for generating new simulated data. This applica-
tion is not the focus of this work, but an explanation of it is provided
in Numerical simulations.

Regularization. Adding norm 1 or norm 2 regularization for any
set of parameters and the option to automatically select the regu-
larization weight with inner cross-validation is implemented in the

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

DPAD code. However, we did not use regularization in any of the analy-
ses presented here.

Forecasting. DPAD also enables the capability to predict neural–behav-
ioral data more than one time step into the future. To obtain two-step-ahead
prediction, we pass the one-step-ahead neural predictions of the model
as neural observations into it. This allows us to perform one state update
iteration, that is, line 1 of Eq. (2), with yk being replaced with ̂yk from Eq. (3).
Repeating this procedure m times gives the (m + 1)-step-ahead prediction
of the latent state and neural–behavioral data.

Extending to intermittently measured behaviors
We also extend DPAD to modeling intermittently measured behavior
time series (Extended Data Figs. 8 and 9 and Supplementary Fig. 8).
To do so, when forming the behavior loss (Eqs. (5) and (11)), we only
compute the loss on samples where the behavior is measured and solve
the optimization with this loss.

Extending to noncontinuous-valued data observations
We can also extend DPAD to noncontinuous-valued (non-Gaussian)
observations by devising modified loss functions and observation
models. Here, we demonstrate this extension for categorical behavioral
observations, for example, discrete choices or epochs/phases during
a task (Fig. 7). A similar approach could be used in the future to model
other non-Gaussian behaviors and non-Gaussian (for example, Poisson)
neural modalities, as shown in a thesis56.

To model categorical behaviors, we devise a new behavior obser-
vation model for DPAD by making three changes. First, we change the
behavior loss (Eqs. (5) and (11)) to the NLL of a categorical distribu-
tion, which we implement using the dedicated class in the TensorFlow
library (that is, tf.keras.losses.CategoricalCrossentropy). Second, we
change the behavior readout parameter Cz to have an output dimen-
sion of nz × nc instead of nz, where nc denotes the number of behavior
categories or classes. Third, we apply Softmax normalization (Eq. (14))
to the output of the behavior readout parameter Cz to ensure that for
each of the nz behavior dimensions, the predicted probabilities for all
the nc classes add up to 1 so that they represent valid probability mass
functions. Softmax normalization can be written as

p(m,n)k =
exp (l (m,n)k)

∑nc
i=1 exp (l

(m,i)
k)

, (14)

where lk ∈ ℝnz×nc is the output of Cz at time k, and the superscript (m,n)
denotes the element of lk associated with the behavior dimension m
and the class/category number n. With these changes, we obtain a new
RNN architecture with categorical behavioral outputs. We then learn
this new RNN architecture with DPAD’s four-step prioritized optimiza-
tion approach as before but now incorporating the modified NLL losses
for categorical data. Together, with these changes, DPAD extends to
modeling categorical behavioral measurements.

Behavior decoding and neural self-prediction metrics and
performance frontier
Cross-validation. To evaluate the learning, we perform a
cross-validation with five folds (unless otherwise noted). We cut the
data from the recording session into five equal continuous segments,
leave these segments out one by one as the test data and train the model
only using the data in the remaining segments. Once the model is
trained using the neural and behavior training data, we pass the neural
test data to the model to get the latent states in the test data using the
first line of Eq. (1) (or Eq. (2), equivalently). We then pass the extracted
latent states to Eq. (3) to get the one-step-ahead prediction of the
behavior and neural test data, which we refer to as behavior decoding
and neural self-prediction, respectively. Note that only past neural data

are used to get the behavior and neural predictions. Also, the behavior
test data are never used in predictions. Given the predicted behavior
and neural time series, we compute the CC between each dimension of
these time series and the actual behavior and neural test time series. We
then take the mean of CC across dimensions of behavior and neural data
to get one final cross-validated CC value for behavior decoding and one
final CC value for neural self-prediction in each cross-validation fold.

Selection of the latent state dimension. We often need to select a
latent state dimension to report an overall behavior decoding and/or
neural self-prediction accuracy for each model/method (for example,
Figs. 2–7). By latent state dimension, we always refer to the total latent
state dimension of the model, that is, nx. For DPAD, unless otherwise
noted, we always used n1 = 16 to extract the first 16 latent state dimen-
sions (or all latent state dimensions when nx ≤ 16) using steps 1 and 2 and
any remaining dimensions using steps 3 and 4. We chose n1 = 16 because
dedicating more, even all, latent state dimensions to behavior predic-
tion only minimally improved it across datasets and neural modalities.
For all methods, to select a state dimension nx, in each cross-validation
fold, we fit models with latent state dimensions 1, 2, 4, 16,…and 128
(powers of 2 from 1 to 128) and select one of these models based on
their decoding and neural self-prediction accuracies within the training
data of that fold. We then report the decoding/self-prediction of this
selected model computed in the test data of that fold. Our goal is often
to select a model that simultaneously explains behavior and neural data
well. For this goal, we pick the state dimension that reaches the peak
neural self-prediction in the training data or the state dimension that
reaches the peak behavior decoding in the training data, whichever
is larger; we then report both the neural self-prediction and the cor-
responding behavior decoding accuracy of the same model with the
selected state dimension in the test data (Figs. 3–4, 6 and 7f, Extended
Data Figs. 3 and 4 and Supplementary Figs. 4–7 and 9). Alternatively,
for all methods, when our goal is to find models that solely aim to
optimize behavior prediction, we report the cross-validated predic-
tion performances for the smallest state dimension that reaches peak
behavior decoding in training data (Figs. 2, 5 and 7d, Extended Data
Fig. 8 and Supplementary Fig. 3). We emphasize that in all cases, the
reported performances are always computed in the test data of the
cross-validation fold, which is not used for any other purpose such as
model fitting or selection of the state dimension.

Performance frontier. When comparing a group of alternative models,
we use the term ‘performance frontier’ to describe the best perfor-
mances reached by models that in every comparison with any alterna-
tive model are in some sense better than or at least comparable to the
alternative model. More precisely, when comparing a group ℳ of
models, model 𝒜𝒜 ∈ ℳ will be described as reaching the best perfor-
mance frontier when compared to every other model ℬ∈ℳ, 𝒜𝒜 is sig-
nificantly better than ℬ in behavior decoding or in neural self-prediction
or is comparable to ℬ in both. Note that 𝒜𝒜 may be better than some
model ℬ1 ∈ ℳ in decoding while being better than another model
ℬ2 ∈ ℳ in self-prediction; nevertheless 𝒜𝒜 will be on the frontier as long
as in every comparison one of the following conditions hold: (1) there
is at least one measure for which 𝒜𝒜 is more performant and (2) 𝒜𝒜 is at
least equally performant in both measures. To avoid exclusion of mod-
els from the best performance frontier due to very minimal perfor-
mance differences, in this analysis, we only declare a difference in
performance significant if in addition to resulting in P ≤ 0.05 in a
one-sided signed-rank test there is also at least 1% relative difference
in the mean performance measures.

DPAD with flexible nonlinearity: automatic determination of
appropriate nonlinearity
Fine-grained control over nonlinearities. Each parameter in the DPAD
model represents an operation in the computation graph of DPAD

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

(Fig. 1b and Supplementary Fig. 1a). We solve the numerical optimiza-
tions involved in model learning in each step of our multistep learning
via standard stochastic gradient descent43, which remains applicable
for any modification of the computation graph that remains acyclic.
Thus, the operation associated with each model parameter (for exam-
ple, A′, K, Cy and Cz) can be replaced with any multilayer neural network
with an arbitrary number of hidden units and layers (Supplementary
Fig. 1c), and the model remains trainable with the same approach. Hav-
ing no hidden layers implements the special case of a linear mapping
(Supplementary Fig. 1b). Of course, given that the training data are
finite, the typical trade-off between model capacity and generalization
error remains69. Given that neural networks can approximate any con-
tinuous function (with a compact domain)98, replacing model param-
eters with neural networks should have the capacity to learn any
nonlinear function in their place99–101. The resulting RNN in Eq. (1) can
in turn approximate any state-space dynamics (under mild condi-
tions)102. In this work, for nonlinear parameters, we use multilayer
feed-forward networks with one or two hidden layers, each with 64 or
128 units. For all hidden layers, we always use a rectified linear unit
(ReLU) nonlinear activation (Supplementary Fig. 1c). Finally, when
making a parameter (for example, Cz) nonlinear, we always do so for
that parameter in both sections of the RNN (for example, both C (1)

z and
C (2)
z ; see Supplementary Fig. 1a) and using the same feed-forward net-

work structure. Given that no existing RNN implementation allowed
individual RNN elements to be independently set to arbitrary multilayer
neural networks, we developed a custom TensorFlow RNN cell to imple-
ment the RNNs in DPAD (Eqs. (4) and (8)). We used the Adam optimizer
to implement gradient descent for all optimization steps43. We contin-
ued each optimization for up to 2,500 epochs but stopped earlier if
the objective function did not improve in three consecutive epochs
(convergence criteria).

Automatic selection of nonlinearity settings. We devise a procedure
for automatically determining the most suitable combination of nonlin-
earities for the data, which we refer to as DPAD with flexible nonlinear-
ity. In this procedure, for each cross-validation fold in each recording
session of each dataset, we try a series of nonlinearities within the train-
ing data and select one based on an inner cross-validation within the
training data (Fig. 1d). Specifically, we consider the following options
for the nonlinearity. First, each of the four main parameters (that is,
A′, K, Cy and Cz) can be linear or nonlinear, resulting in 16 cases (that is,
24). In cases with nonlinearity, we consider four network structures for
the parameters, that is, having one or two hidden layers and having 64
or 128 units in each hidden layer (Supplementary Fig. 1c), resulting in
61 cases (that is, 15 × 4 + 1, where 1 is for the fully linear model) overall.
Finally, specifically for the recursion parameter A′, we also consider
modeling it as an LSTM, with the other parameters still having the
same nonlinearity options as before, resulting in another 29 cases for
when this LSTM recursion is used (that is, 7 × 4 + 1, where 1 is for the
case where the other three model parameters are all linear), bringing
the total number of considered cases to 90. For each of these 90 con-
sidered linear or nonlinear architectures, we perform a twofold inner
cross-validation within the training data to compute an estimate of
the behavior decoding and neural self-prediction of each architecture
using the training data. Note that although this process for automatic
selection of nonlinearities is computationally expensive, it is paral-
lelizable because each candidate model can be fitted independently
on a different processor. Once all candidate architectures are fitted
and evaluated within the training data, we select one final architec-
ture purely based on training data to be used for that cross-validation
fold based on one of the following two criteria: (1) decoding focused:
pick the architecture with the best neural self-prediction in training
data among all those that reach within 1 s.e.m. of the best behavior
decoding; or (2) self-prediction focused: pick the architecture with
the best behavior decoding in training data among all those that reach

within 1 s.e.m. of the best neural self-prediction. The first criterion
prioritizes good behavior decoding in the selection, and the second
criterion prioritizes good neural self-prediction. Note that these two
criteria are used when selecting among different already-learned
models with different nonlinearities and thus are independent of the
four internal objective functions used in learning the parameters for
a given model with the four-step optimization approach (Supple-
mentary Fig. 1a). For example, in the first optimization step of DPAD,
model parameters are always learned to optimize behavior decoding
(Eq. (5)). But once the four-step optimization is concluded and different
models (with different combinations of nonlinearities) are learned, we
can then select among these already-learned models based on either
neural self-prediction or behavior decoding. Thus, whenever neural
self-prediction is also of interest, we report the results for flexible
nonlinearity based on both model selection criteria (for example,
Figs. 3, 4 and 6).

Localization of nonlinearities. DPAD enables an inspection of where
nonlinearities can be localized to by providing two capabilities, with-
out either of which the origin of nonlinearities may be incorrectly
found. As the first capability, DPAD can train alternative models with
different individual nonlinearities and then compare these alterna-
tive nonlinear models not only with a fully linear model but also
with each other and with fully nonlinear models (that is, flexible
nonlinearity). Indeed, our simulations showed that simply compar-
ing a linear model to a model with nonlinearity in a given parameter
may incorrectly identify the origin of nonlinearity (Extended Data
Fig. 2b and Fig. 6a). For example, in Fig. 6a, although the nonlinearity
is just in the neural input parameter, a linear model does worse than
a model with a nonlinear behavior readout parameter. Thus, just a
comparison of the latter model to a linear model would incorrectly
find the origin of nonlinearity to be the behavior readout. This issue
is avoided in DPAD because it can also train a model with the neural
input being nonlinear, thus finding it to be more predictive than
models with any other individual nonlinearity and as predictive as a
fully nonlinear model (Fig. 6a). As the second capability, DPAD can
compare alternative nonlinear models in terms of overall neural–
behavioral prediction rather than either behavior decoding or neural
prediction alone. Indeed, our simulations showed that comparing the
models in terms of just behavior decoding (Extended Data Fig. 2d,f)
or just neural self-prediction (Extended Data Fig. 2d,h) may lead
to incorrect conclusions about the origin of nonlinearities; this is
because a model with the incorrect origin may be equivalent in one
of these metrics to the one with the correct origin. DPAD avoids this
problem by jointly evaluating both neural–behavioral metrics. Here,
when comparing models with nonlinearity in different individual
parameters for localization purposes (for example, Fig. 6), we only
consider one network architecture for the nonlinearity, that is, having
one hidden layer with 64 units.

Numerical simulations
To validate DPAD in numerical simulations, we perform two sets of
simulations. One set validates linear modeling to show the correct-
ness of the four-step numerical optimization for learning. The other
set validates nonlinear modeling. In the linear simulation, we ran-
domly generate 100 linear models with various dimensionality and
noise statistics, as described in our prior work6. Briefly, the neural
and behavior dimensions are selected from 5 ≤ ny, nz ≤ 10 randomly
with uniform probability. The state dimension is selected as nx = 16,
of which n1 = 4 latent state dimensions are selected to drive behavior.
Eigenvalues of the state transition matrix are selected randomly as
complex conjugate pairs with uniform probability within the unit disk.
Each element in the behavior and neural readout matrices is generated
as a random Gaussian variable. State and neural observation noise
covariances are generated as random positive definite matrices and

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

scaled randomly with a number between 0.003 and 0.3 or between
0.01 and 100, respectively, to obtain a wide range of relative noises
across random models. A separate random linear state-space model
with four latent state dimensions is generated to produce the behav-
ior readout noise 𝜖k, representing the behavior dynamics that are not
encoded in the recorded neural activity. Finally, the behavior readout
matrix is scaled to set the ratio of the signal standard deviation to noise
standard deviation in each behavior dimension to a random number
from 0.5 to 50. We perform model learning and evaluation with twofold
cross-validation (Extended Data Fig. 1).

In the nonlinear simulations that are used to validate both DPAD
and the hypothesis testing procedure it enables to find the origin
of nonlinearity, we start by generating 20 random linear models
(ny = nz = 1) either with nx = nz = ny (Extended Data Fig. 2) or nx = 2 latent
states, only one of which drives behavior (Supplementary Fig. 2). We
then introduce nonlinearity in one of the four model parameters (that
is, A′, K, Cy or Cz) by replacing that parameter with a nonlinear trigono-
metric function, such that roughly one period of the trigonometric
function is visited by the model (while keeping the rest of the param-
eters linear). To do this, we first scale each latent state in the initial
random linear model to find a similarity transform for it where the
latent state has a 95% confidence interval range of 2π. We then add a sine
function to the original parameter that is to be changed to nonlinear
and scale the amplitude of the sine such that its output reaches roughly
0.25 of the range of the outputs from the original linear parameter.
This was done to reduce the chance of generating unrealistic unstable
nonlinear models that produce outputs with infinite energy, which is
likely when A′ is nonlinear. Changing one parameter to nonlinear can
change the range of the statistics of the latent states in the model; thus,
we generate some simulated data from the model and redo the scaling
of the nonlinearity until ratio conditions are met.

To generate data from any nonlinear model in Eq. (1), we first
generate a neural noise time series ek based on its covariance ∑e in the
model and initialize the state as x0 = 0. We then iteratively apply the
second and first lines of Eq. (1) to get the simulated neural activity yk
from line 2 and then the next state xk+1 from line 1, respectively. Finally,
once the state time series is produced, we generate a behavior noise
time series 𝜖k based on its covariance ∑𝜖 in the model and apply the third
line of Eq. (1) to get the simulated behavior zk. Similar to linear simula-
tions, we perform the modeling and evaluation of nonlinear simula-
tions with twofold cross-validation (Extended Data Fig. 2 and
Supplementary Fig. 2).

Neural datasets and behavioral tasks
We evaluate DPAD in five datasets with different behavioral tasks, brain
regions and neural recording modalities to show the generality of our
conclusions. For each dataset, all animal procedures were performed in
compliance with the National Research Council Guide for Care and Use
of Laboratory Animals and were approved by the Institutional Animal
Care and Use Committee at the respective institution, namely New York
University (datasets 1 and 2)6,45,46, Northwestern University (datasets 3
and 5)47,48,54 and University of California San Francisco (dataset 4)21,49.

Across all four main datasets (datasets 1 to 4), the spiking activity
was binned with 10-ms nonoverlapping bins, smoothed with a Gauss-
ian kernel with standard deviation of 50 ms (refs. 6,14,34,103,104) and
downsampled to 50 ms to be used as the neural signal to be modeled.
The behavior time series was also downsampled to a matching 50 ms
before modeling. In the three datasets where LFP activity was also
available, we also studied two types of features extracted from LFP.
As the first LFP feature, we considered raw LFP activity itself, which
was high-pass filtered above 0.5 Hz to remove the baseline, low-pass
filtered below 10 Hz (that is, antialiasing) and downsampled to the
behavior sampling rate of a 50-ms time step (that is, 20 Hz). Note that
in the context of the motor cortex, low-pass-filtered raw LFP is also
referred to as the local motor potential50–52,105,106 and has been used

to decode behavior6,50–53,105–107. As the second feature, we computed
the LFP log-powers5–7,40,77,79,106,108,109 in eight standard frequency bands
(delta: 0.1–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, low beta: 12–24 Hz,
mid-beta: 24–34 Hz, high beta: 34–55 Hz, low gamma: 65–95 Hz and
high gamma: 130–170 Hz) in sliding 300-ms windows at a time step
of 50 ms using Welch’s method (using eight subwindows with 50%
overlap)6. The median analyzed data length for each session across
the datasets ranged from 4.6 to 9.9 min.

First dataset: 3D reaches to random targets. In the first dataset, the
animal (named J) performed reaches to a target randomly positioned
in 3D space within the reach of the animal, grasped the target and
returned its hand to resting position6,45. Kinematic data were acquired
using the Cortex software package (version 5.3) to track retroreflective
markers in 3D (Motion Analysis)6,45. Joint angles were solved from the
3D marker data using a Rhesus macaque musculoskeletal model via the
SIMM toolkit (version 4.0, MusculoGraphics)6,45. Angles of 27 joints in
the shoulder, elbow, wrist and fingers in the active hand (right hand)
were taken as the behavior signal6,45. Neural activity was recorded
with a 137-electrode microdrive (Gray Matter Research), of which 28
electrodes were in the contralateral primary motor cortex M1. The
multiunit spiking activity in these M1 electrodes was used as the neural
signal. For LFP analyses, LFP features were also extracted from the same
M1 electrodes. We analyzed the data from seven recording sessions.

To visualize the low-dimensional latent state trajectories for each
behavioral condition (Extended Data Fig. 6), we determined the peri-
ods of reach and return movements in the data (Fig. 7a), resampled
them to have similar number of time samples and averaged the latent
states across those resampled trials. Given the redundancy in latent
descriptions (that is, any scaling, rotation and so on on the latent
states still gives an equivalent model), before averaging trials across
cross-validation folds and sessions, we devised the following procedure
to standardize the latent states for each fold in the case of 2D latent
states (Extended Data Fig. 6). (1) We z score all state dimensions to have
zero mean and unit variance. (2) We rotate the 2D latent states such that
the average 2D state trajectory for the first condition (here, the reach
epochs) starts from an angle of 0. (3) We estimate the direction of the
rotation for the average 2D state trajectory of the first condition, and if
it is not counterclockwise, we multiply the second state dimension by
–1 to make it so. Note that in each step, the same mapping is applied to
the latent states during the whole test data, regardless of condition, so
this procedure does not alter the relative differences in the state trajec-
tory across different conditions. The procedure also does not change
the learned model and simply corresponds to a similarity transform
that changes the basis of the model. This procedure only removes
the redundancies for describing a 2D latent state-space model and
standardizes the extracted latent states so that trials across different
test sets can be averaged together.

Second dataset: saccadic eye movements. In the second dataset, the
animal (named A) performed saccadic eye movements to one of eight
targets on a display6,46. The visual stimuli in the task with saccadic eye
movements were controlled via custom LabVIEW (version 9.0, National
Instruments) software executed on a real-time embedded system
(NI PXI-8184, National Instruments)46. The 2D position of the eye was
tracked and taken as the behavior signal. Neural activity was recorded
with a 32-electrode microdrive (Gray Matter Research) covering the
prefrontal cortex6,46. Single-unit activity from these electrodes, rang-
ing from 34 to 43 units across different recording sessions, was used
as the neural signal. For LFP analyses, LFP features were also extracted
from the same 32 electrodes. We analyzed the data from the first 7 days
of recordings. We only included data from successful trials where the
animal performed the task correctly by making a saccadic eye move-
ment to the specified target. To visualize the low-dimensional latent
state trajectories for each behavioral condition (Extended Data Fig. 6),

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

we grouped the trials based on their target position. Standardization
across folds before averaging was done as in the first dataset.

Third dataset: sequential reaches with a 2D cursor controlled
with a manipulandum. In the third dataset, which was collected and
made publicly available by the laboratory of L. E. Miller47,48, the animal
(named T) controlled a cursor on a 2D screen using a manipulandum
and performed a sequential reach task47,48. The 2D cursor position and
velocity were taken as the behavior signal. Neural activity was recorded
using a 100-electrode microelectrode array (Blackrock Microsystems)
in the dorsal premotor cortex47,48. Single-unit activity, recorded from
37 to 49 units across recording sessions, was used as the neural signal.
This dataset did not include any LFP recordings, so LFP features could
not be considered. We analyzed the data from all three recording ses-
sions. To visualize the low-dimensional latent state trajectories for
each behavioral condition (Extended Data Fig. 6), we grouped the trials
into eight different conditions based on the angle of the direction of
movement (that is, end position minus starting position) during the
trial, with each condition covering movement directions within a 45°
(that is, 360/8) range. Standardization across folds before averaging
was performed as in the first dataset.

Fourth dataset: virtual reality random reaches with a 2D cursor
controlled with the fingertip. In the fourth dataset, which was col-
lected and made publicly available by the laboratory of P. N. Sabes49, the
animal (named I) controlled a cursor based on the fingertip position on
a 2D surface within a 3D virtual reality environment21,49. The 2D cursor
position and velocity were taken as the behavior signal. Neural activ-
ity was recorded with a 96-electrode microelectrode array (Blackrock
Microsystems)21,49 covering M1. We selected a random subset of 32 of
these electrodes, which had 77 to 99 single units across the record-
ing sessions, as the neural signal. LFP features were also extracted
from the same 32 electrodes. We analyzed the data for the first seven
sessions for which the wideband activity was also available (sessions
20160622/01 to 20160921/01). Grouping into conditions for visualiza-
tion of low-dimensional latent state trajectories (Extended Data Fig. 6)
was done as in the third dataset. Standardization across folds before
averaging was done as in the first dataset.

Fifth dataset: center-out cursor control reaching task. In the fifth
dataset, which was collected and made publicly available by the labo-
ratory of L. E. Miller54, the animal (named H) controlled a cursor on
a 2D screen using a manipulandum and performed reaches from a
center point to one of eight peripheral targets (Fig. 4i). The 2D cur-
sor position was taken as the behavior signal. Neural activity was
recorded with a 96-electrode microelectrode array (Blackrock
Microsystems) covering area 2 of the somatosensory cortex54. Pre-
processing for this dataset was done as in ref. 36. Specifically, the spik-
ing activity was binned with 1-ms nonoverlapping bins and smoothed
with a Gaussian kernel with a standard deviation of 40 ms (ref. 110),
with the behavior also being sampled with the same 1-ms sampling
rate. Trials were also aligned as in the same prior work110 with data
from –100 to 500 ms around movement onset of each trial being
used for modeling36.

Additional details for baseline methods
For the fifth dataset, which has been analyzed in ref. 36 and intro-
duces CEBRA, we used the exact same CEBRA hyperparameters as
those reported in ref. 36 (Fig. 4i,j). For each of the other four datasets
(Fig. 4a–h), when learning a CEBRA-Behavior or CEBRA-Time model for
each session, fold and latent dimension, we also performed an extensive
search over CEBRA hyperparameters and picked the best value with
the same inner cross-validation approach as we use for the automatic
selection of nonlinearities in DPAD. We considered 30 different sets
of hyperparameters: 3 options for the ‘time-offset’ hyperparameter

(1, 2 or 10) and 10 options for the ‘temperature’ hyperparameter (from
0.0001 to 0.01), which were designed to include all sets of hyperpa-
rameters reported for primate data in ref. 36. We swept the CEBRA
latent dimension over the same values as DPAD, that is, powers of 2 up
to 128. In all cases, we used a k-nearest neighbors regression to map
the CEBRA-extracted latent embeddings to behavior and neural data
as done in ref. 36 because CEBRA itself does not learn a reconstruction
model36 (Extended Data Table 1).

It is important to note that CEBRA and DPAD have fundamentally
different architectures and goals (Extended Data Table 1). CEBRA
uses a small ten-sample window (when ‘model_architecture’ is
‘offset10-model’) around each datapoint to extract a latent embed-
ding via a series of convolutions. By contrast, DPAD learns a dynamical
model that recursively aggregates all past neural data to extract an
embedding. Also, in contrast to CEBRA-Behavior, DPAD’s embedding
includes and dissociates both behaviorally relevant neural dimen-
sions and other neural dimensions to predict not only the behavior
but also the neural data well. Finally, CEBRA does not automatically
map its latent embeddings back to neural data or to behavior during
learning but does so post hoc, whereas DPAD learns these mappings
for all its latent states. Given these differences, several use-cases of
DPAD are not targeted by CEBRA, including explicit dynamical mod-
eling of neural–behavioral data (use-case 1), flexible nonlinearity,
hypothesis testing regarding the origin of nonlinearity (use-case 4)
and forecasting.

Statistics
We used the Wilcoxon signed-rank test for all paired statistical tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Three of the datasets used in this work are publicly available47–49,54.
The other two datasets used to support the results are available upon
reasonable request from the corresponding author. Source data are
provided with this paper.

Code availability
The code for DPAD is available at https://github.com/ShanechiLab/
DPAD.

References
67.	 Van Overschee, P. & De Moor, B. Subspace Identification for Linear

Systems. (Springer, 1996) .
68.	 Katayama, T. Subspace Methods for System Identification.

(Springer Science & Business Media, 2006).
69.	 Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. (Springer, 2001).
70.	 Wu, W., Kulkarni, J. E., Hatsopoulos, N. G. & Paninski, L. Neural

decoding of hand motion using a linear state-space model
with hidden states. IEEE Trans. Neural Syst. Rehabil. Eng. 17,
370–378 (2009).

71.	 Vargas-Irwin, C. E. et al. Decoding complete reach and grasp
actions from local primary motor cortex populations. J. Neurosci.
30, 9659–9669 (2010).

72.	 Buesing, L., Macke, J. H. & Sahani, M. Spectral learning of linear
dynamics from generalised-linear observations with application
to neural population data. In Advances in Neural Information
Processing Systems 25 (eds. Pereira, F., Burges, C. J. C., Bottou, L. &
Weinberger, K. Q.) 1682–1690 (Curran Associates, 2012).

73.	 Buesing, L., Macke, J. H. & Sahani, M. Learning stable, regularised
latent models of neural population dynamics. Netw. Comput.
Neural Syst. 23, 24–47 (2012).

http://www.nature.com/natureneuroscience
https://github.com/ShanechiLab/DPAD
https://github.com/ShanechiLab/DPAD

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

74.	 Semedo, J., Zandvakili, A., Kohn, A., Machens, C. K. & Yu, B. M.
Extracting latent structure from multiple interacting neural
populations. In Advances in Neural Information Processing
Systems 27 (eds. Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D. & Weinberger, K. Q.) 2942–2950 (Curran
Associates, 2014).

75.	 Gao, Y., Busing, L., Shenoy, K. V. & Cunningham, J. P.
High-dimensional neural spike train analysis with generalized
count linear dynamical systems. In Advances in Neural Information
Processing Systems 28 (eds. Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M. & Garnett, R.) 2044–2052 (Curran Associates, 2015).

76.	 Aghagolzadeh, M. & Truccolo, W. Inference and decoding of
motor cortex low-dimensional dynamics via latent state-space
models. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 272–282 (2016).

77.	 Hsieh, H.-L., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Multiscale
modeling and decoding algorithms for spike-field activity.
J. Neural Eng. 16, 016018 (2018).

78.	 Abbaspourazad, H., Hsieh, H. & Shanechi, M. M. A multiscale
dynamical modeling and identification framework for spike-field
activity. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 1128–1138 (2019).

79.	 Yang, Y., Sani, O. G., Chang, E. F. & Shanechi, M. M. Dynamic
network modeling and dimensionality reduction for human ECoG
activity. J. Neural Eng. 16, 056014 (2019).

80.	 Ahmadipour, P., Yang, Y., Chang, E. F. & Shanechi, M. M. Adaptive
tracking of human ECoG network dynamics. J. Neural Eng. 18,
016011 (2020).

81.	 Ahmadipour, P., Sani, O. G., Pesaran, B. & Shanechi, M. M.
Multimodal subspace identification for modeling
discrete-continuous spiking and field potential population
activity. J. Neural Eng. 21, 026001 (2024).

82.	 Zhao, Y. & Park, I. M. Variational latent Gaussian process for
recovering single-trial dynamics from population spike trains.
Neural Comput. 29, 1293–1316 (2017).

83.	 Yu, B. M. et al. Extracting dynamical structure embedded in neural
activity. In Advances in Neural Information Processing Systems 18
(Weiss, Y., Schölkopf, B. & Platt, J.) 1545–1552 (MIT Press, 2006).

84.	 Xie, Z., Schwartz, O. & Prasad, A. Decoding of finger trajectory
from ECoG using deep learning. J. Neural Eng. 15, 036009 (2018).

85.	 Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis
from neural decoding of spoken sentences. Nature 568, 493
(2019).

86.	 Makin, J. G., Moses, D. A. & Chang, E. F. Machine translation of
cortical activity to text with an encoder–decoder framework. Nat.
Neurosci. 23, 575–582 (2020).

87.	 She, Q. & Wu, A. Neural dynamics discovery via Gaussian process
recurrent neural networks. In Proceedings of The 35th Uncertainty
in Artificial Intelligence Conference (eds. Adams, Ryan P. &
Gogate, Vibhav) 454–464 (PMLR, 2020).

88.	 Moses, D. A. et al. Neuroprosthesis for decoding speech in a
paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227
(2021).

89.	 Schimel, M., Kao, T.-C., Jensen, K. T. & Hennequin, G. iLQR-VAE:
control-based learning of input-driven dynamics with
applications to neural data. In International Conference on
Learning Representations (ICLR, 2022).

90.	 Zhao, Y., Nassar, J., Jordan, I., Bugallo, M. & Park, I. M. Streaming
variational monte carlo. IEEE Trans. Pattern Anal. Mach. Intell. 45,
1150–1161 (2023).

91.	 Richards, B. A. et al. A deep learning framework for neuroscience.
Nat. Neurosci. 22, 1761–1770 (2019).

92.	 Livezey, J. A. & Glaser, J. I. Deep learning approaches for neural
decoding across architectures and recording modalities. Brief.
Bioinform. 22, 1577–1591 (2021).

93.	 Saxe, A., Nelli, S. & Summerfield, C. If deep learning is the answer,
what is the question? Nat. Rev. Neurosci. 22, 55–67 (2021).

94.	 Yang, G. R. & Wang, X.-J. Artificial neural networks for
neuroscientists: a primer. Neuron 107, 1048–1070 (2020).

95.	 Keshtkaran, M. R. et al. A large-scale neural network training
framework for generalized estimation of single-trial population
dynamics. Nat. Methods 19, 1572–1577 (2022).

96.	 Archer, E., Park, I. M., Buesing, L., Cunningham, J. & Paninski, L.
Black box variational inference for state space models. Preprint at
https://doi.org/10.48550/arXiv.1511.07367 (2015).

97.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning
(MIT Press, 2016).

98.	 Lu, Z. et al. The expressive power of neural networks: a view
from the width. In Proc. 31st International Conference on Neural
Information Processing Systems (eds. von Luxburg, U., Guyon,
I., Bengio, S., Wallach, H. & Fergus R.) 6232–6240 (Curran
Associates, 2017).

99.	 Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward
networks are universal approximators. Neural Netw. 2, 359–366
(1989).

100.	Cybenko, G. Approximation by superpositions of a sigmoidal
function. Math. Control Signals Syst. 2, 303–314 (1989).

101.	 Funahashi, K.-I. On the approximate realization of continuous
mappings by neural networks. Neural Netw. 2, 183–192 (1989).

102.	Schäfer, A. M. & Zimmermann, H. G. Recurrent neural networks
are universal approximators. In Artificial Neural Networks—ICANN
2006 (eds. Kollias, S. D., Stafylopatis, A., Duch, W. & Oja, E.)
632–640 (Springer, 2006).

103.	Williams, A. H. et al. Unsupervised discovery of demixed,
low-dimensional neural dynamics across multiple timescales
through tensor component analysis. Neuron 98, 1099–1115
(2018).

104.	Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. &
Miller, L. E. Long-term stability of cortical population dynamics
underlying consistent behavior. Nat. Neurosci. 23, 260–270
(2020).

105.	Flint, R. D., Wright, Z. A., Scheid, M. R. & Slutzky, M. W. Long
term, stable brain machine interface performance using
local field potentials and multiunit spikes. J. Neural Eng. 10,
056005 (2013).

106.	Bundy, D. T., Pahwa, M., Szrama, N. & Leuthardt, E. C. Decoding
three-dimensional reaching movements using electrocorticographic
signals in humans. J. Neural Eng. 13, 026021 (2016).

107.	 Mehring, C. et al. Inference of hand movements from local
field potentials in monkey motor cortex. Nat. Neurosci. 6,
1253–1254 (2003).

108.	Chestek, C. A. et al. Hand posture classification using
electrocorticography signals in the gamma band over human
sensorimotor brain areas. J. Neural Eng. 10, 026002 (2013).

109.	Hsieh, H.-L. & Shanechi, M. M. Optimizing the learning rate for
adaptive estimation of neural encoding models. PLoS Comput.
Biol. 14, e1006168 (2018).

110.	 Pei, F. et al. Neural Latents Benchmark '21: Evaluating latent
variable models of neural population activity. In Advances in
Neural Information Processing Systems (NeurIPS), Track on Datasets
and Benchmarks https://datasets-benchmarks-proceedings.
neurips.cc/paper_files/paper/2021/file/979d472a84804b9f647bc1
85a877a8b5-Paper-round2.pdf (2021).

Acknowledgements
This work was supported, in part, by the following organizations
and grants: the Office of Naval Research (ONR) Young Investigator
Program under contract N00014-19-1-2128, National Institutes of
Health (NIH) Director’s New Innovator Award DP2-MH126378, NIH
R01MH123770, NIH BRAIN Initiative R61MH135407 and the Army
Research Office (ARO) under contract W911NF-16-1-0368 as part
of the collaboration between the US DOD, the UK MOD and the

http://www.nature.com/natureneuroscience
https://doi.org/10.48550/arXiv.1511.07367
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper-round2.pdf

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

UK Engineering and Physical Research Council (EPSRC) under the
Multidisciplinary University Research Initiative (MURI) (to M.M.S.) and
a University of Southern California Annenberg Fellowship (to O.G.S.).

Author contributions
O.G.S. and M.M.S. conceived the study, developed the DPAD
algorithm and wrote the manuscript, and O.G.S. performed all the
analyses. B.P. designed and performed the experiments for two
of the NHP datasets and provided feedback on the manuscript.
M.M.S. supervised the work.

Competing interests
University of Southern California has a patent related to modeling
and decoding of shared dynamics between signals in which
M.M.S. and O.G.S. are inventors. The other author declares no
competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41593-024-01731-2.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41593-024-01731-2.

Correspondence and requests for materials should be addressed to
Maryam M. Shanechi.

Peer review information Nature Neuroscience thanks Il Memming Park
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01731-2
https://doi.org/10.1038/s41593-024-01731-2
http://www.nature.com/reprints

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 1 | DPAD dissociates and prioritizes the behaviorally
relevant neural dynamics while also learning the other neural dynamics
in numerical simulations of linear models. a, Example data generated from
one of 100 random models (Methods). These random models do not emulate
real data but for terminological consistency, we still refer to the primary signal
(that is, yk in Eq. (1)) as the ‘neural activity’ and to the secondary signal (that is,
zk in Eq. (1)) as the ‘behavior’. b, Cross-validated behavior decoding accuracy
(correlation coefficient, CC) for each method as a function of the number
of training samples when we use a state dimension equal to the total state
dimension of the true model. The performance measures for each random model
are normalized by their ideal values that were achieved by the true model itself.
Performance for the true model is shown in black. Solid lines and shaded areas
are defined as in Fig. 5b (N = 100 random models). c, Same as b but when learned
models have low-dimensional latent states with enough dimensions just for the
behaviorally relevant latent states (that is, nx = n1). d-e, Same as b-c showing the

cross-validated normalized neural self-prediction accuracy. Linear NDM, which
learns the parameters using a numerical optimization, performs similarly to a
linear algebraic subspace-based implementation of linear NDM67, thus validating
NDM’s numerical optimization implementation. Linear DPAD, just like PSID6,
achieves almost ideal behavior decoding even with low-dimensional latent
states (c); this shows that DPAD correctly dissociates and prioritizes behaviorally
relevant dynamics, as opposed to aiming to simply explain the most neural
variance as non-prioritized methods such as NDM do. For this reason, with a low-
dimensional state, non-prioritized NDM methods can explain neural activity well
(e) but prioritized methods can explain behavior much better (c). Nevertheless,
using the second stage of PSID and the last two optimization steps in DPAD, these
two prioritized techniques are still able to learn the overall neural dynamics
accurately if state dimension is high enough (d). Overall, the performance of
linear DPAD and PSID6 are similar for the special case of linear modeling.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

a b c d

e f g h

(
)

0.85 0.90 0.95 1.00
Normalized neural
self-prediction CC

0.90

0.95

1.00

N
or

m
al

iz
ed

 d
ec

od
in

g
C

C

A

B

C

D

E

F

(
)

0.8 0.9 1.0
Normalized neural
self-prediction CC

0.990

0.995

1.000

N
or

m
al

iz
ed

 d
ec

od
in

g
C

C

AB
C

DE F

(
)

Learned
True

0.6 0.8 1.0
Normalized neural
self-prediction CC

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 d
ec

od
in

g
C

C

A

B

C

D

E

F

′(
)

0.7 0.8 0.9 1.0
Normalized neural
self-prediction CC

0.98

0.99

1.00

N
or

m
al

iz
ed

 d
ec

od
in

g
C

C

A

B

C
D

E

F

(E) Linear
(D) Nonlinear

(A) Nonlinear ′

DPAD linear/nonlinearity:

(B) Nonlinear
(C) Nonlinear y

(F) Flexible nonlinearity

˰
+1

˰
+1

˰

−1

˰

+1′ ′′ : Neural input

′: Recursion

: Neural readout

: Behavior readout

correctly
is the best

 correctly
is the best

Si
m

ul
at

ed
 m

od
el

s
w

ith
 n

on
lin

ea
riy

 in

Si
m

ul
at

ed
 m

od
el

s
w

ith
 n

on
lin

ea
riy

 in

′

Si
m

ul
at

ed
 m

od
el

s
w

ith
 n

on
lin

ea
riy

 in

Si
m

ul
at

ed
 m

od
el

s
w

ith
 n

on
lin

ea
riy

 in

′ correctly
is the best

 correctly
is the best

Extended Data Fig. 2 | DPAD successfully identifies the origin of nonlinearity
and learns it in numerical simulations. DPAD can perform hypothesis
testing regarding the origin of nonlinearity by considering both behavior
decoding (vertical axis) and neural self-prediction (horizontal axis). a, True
value for nonlinear neural input parameter K in an example random model
with nonlinearity only in K and the nonlinear value that DPAD learned for this
parameter when only K in the learned model was set to be nonlinear. The true
and learned mappings match and almost exactly overlap. b, Behavior decoding
and neural self-prediction accuracy achieved by DPAD models with different
locations of nonlinearities. These accuracies are for data generated from
20 random models that only had nonlinearity in the neural input parameter K.
Performance measures for each random model are normalized by their ideal
values that were achieved by the true model itself. Pluses and whiskers are

defined as in Fig. 3 (N = 20 random models). c,d, Same as a,b for data simulated
from models that only have nonlinearity in the recursion parameter A′. e-f, Same
as a,b for data simulated from models that only have nonlinearity in the neural
readout parameter Cy. g,h, Same as a,b for data simulated from models that only
have nonlinearity in the behavior readout parameter Cz. In each case (b,d,f,h),
the nonlinearity option that reaches closest to the upper-rightmost corner
of the plot, that is, has both the best behavior decoding and the best neural
self-prediction, is chosen as the model that specifies the origin of nonlinearity.
Regardless of the true location of nonlinearity (b,d,f,h), always the correct
location (for example, K in b) achieves the best performance overall compared
with all other locations of nonlinearities. These results provide evidence that
by fitting and comparing DPAD models with different nonlinearities, we can
correctly find the origin of nonlinearity in simulated data.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

0.4 0.6 0.8
Neural self-prediction

0.50

0.55

C
or

re
sp

on
di

ng
 d

ec
od

in
g

C
C A B

CD

E
F

GH

I

0.4 0.6 0.8
Neural self-prediction

0.5

0.6

C
or

re
sp

on
di

ng
 d

ec
od

in
g

C
C A

B

C
D

E

F

G
H

I

0.6 0.8
Neural self-prediction

0.6

0.7

0.8

C
or

re
sp

on
di

ng
 d

ec
od

in
g

C
C

A

B

C

D E
F

G

H

I

0.4 0.6 0.8
Neural self-prediction

0.5

0.6

0.7

C
or

re
sp

on
di

ng
 d

ec
od

in
g

C
C

A
B

C

D
E
F

GH

I

0.5 0.6 0.7
Neural self-prediction

0.4

0.5

0.6 A B

C

D
E

F

GH

I

0.6 0.7
Neural self-prediction

0.4

0.5

0.6

0.7

A B

C

D
E

F

G

H

I

0.5 0.6 0.7 0.8
Neural self-prediction

0.4

0.5

A B

C

D

E

F

G
H

I

0.5 0.6 0.7 0.8
Neural self-prediction

0.50

0.55

0.60

A

B

C

D E
F

G

H

I

0.4 0.6 0.8
Neural self-prediction

0.4

0.5

0.6 A
B

C

D

E

F

G

H

I

0.5 0.6 0.7 0.8
Neural self-prediction

0.3

0.4

0.5
A

B

C

D
E
F

G

H

I

Best performance frontiers are
reached by nonlinear DPAD

Go

Cue

1

2

3

4

Target 1

Target 2

a b

e f

i j

k l

c

g

m

d

h

n

(A) DPAD (best nonlinearity for decoding)
(B) DPAD (best nonlinearity for self-prediction)
(C) Linear DPAD
(D) NDM (best nonlinearity for decoding)
(E) NDM (best nonlinearity for self-prediction)
(F) Linear NDM

(H) LSTM for behavior decoding
(I) LSTM for neural self-prediction

(G) DPAD (only using the first two optimization
 steps, best nonlinearity for decoding)

LFP band activityRaw LFP activitySpiking activity

No LFP
data

No LFP
data

Extended Data Fig. 3 | Across spiking and LFP neural modalities, DPAD is
on the best performance frontier for neural-behavioral prediction unlike
LSTMs, which are fitted to explain neural data or behavioral data. a, The
3D reach task. b, Cross-validated neural self-prediction accuracy achieved
by each method versus the corresponding behavior decoding accuracy on
the vertical axis. Latent state dimension for each method in each session and
fold is chosen (among powers of 2 up to 128) as the smallest that reaches peak
neural self-prediction in training data or reaches peak decoding in training
data, whichever is larger (Methods). Pluses and whiskers are defined as in Fig.
3 (N = 35 session-folds). Note that DPAD considers an LSTM as a special case
(Methods). Nevertheless, results are also shown for LSTM networks fitted to
decode behavior from neural activity (that is, RNN decoders in Extended Data
Table 1) or to predict the next time step of neural activity (self-prediction). Also,
note that LSTM for behavior decoding (denoted by H) and DPAD when only using
the first two optimization steps (denoted by G) dedicate all their latent states to

behavior prediction, whereas other methods dedicate some or all latent states
to neural self-prediction. Compared with all methods including these LSTM
networks, DPAD always reaches the best performance frontier for predicting
the neural-behavioral data whereas LSTM does not; this is partly due to the four-
step optimization algorithm in DPAD that allows for overall neural-behavioral
description rather than one or the other, and that prioritizes the learning of the
behaviorally relevant neural dynamics. c, Same as b for raw LFP activity (N = 35
session-folds). d, Same as b for LFP band power activity (N = 35 session-folds).
e-h, Same as a-d for the second dataset, with saccadic eye movements (N = 35
session-folds). i,j, Same as a and b for the third dataset, with sequential cursor
reaches controlled via a 2D manipulandum (N = 15 session-folds). k-n, Same
as a-d for the fourth dataset, with random grid virtual reality cursor reaches
controlled via fingertip position (N = 35 session-folds). Results and conclusions
are consistent across all datasets.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 4 | DPAD can also be used for multi-step-ahead
forecasting of behavior. a, The 3D reach task. b, Cross-validated behavior
decoding accuracy for various numbers of steps into the future. For m-step-
ahead prediction, behavior at time step k is predicted using neural activity
up to time step k−m. All models are taken from Fig. 3, without any retraining
or finetuning, with m-step-ahead forecasting done by repeatedly (m−1 times)
passing the neural predictions of the model as its neural observation in the next
time step (Methods). Solid lines and shaded areas are defined as in Fig. 5b (N = 35
session-folds). Across the number of steps ahead, the statistical significance of

a one-sided pairwise comparison between nonlinear DPAD vs nonlinear NDM is
shown with the orange top horizontal line with p-value indicated by asterisks next
to the line as defined in Fig. 2b (N = 35 session-folds). Similar pairwise comparison
between nonlinear DPAD vs linear dynamical system (LDS) modeling is shown
with the purple top horizontal line. c-d, Same as a-b for the second dataset, with
saccadic eye movements (N = session-folds). e-f, Same as a-b for the third dataset,
with sequential cursor reaches controlled via a 2D manipulandum (N = 15 session-
folds). g-h, Same as a-b for the fourth dataset, with random grid virtual reality
cursor reaches controlled via fingertip position (N = 35 session-folds).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 5 | Neural self-prediction accuracy of nonlinear DPAD
across recording electrodes for low-dimensional behaviorally relevant
latent states. a, The 3D reach task. b, Average neural self-prediction correlation
coefficient (CC) achieved by nonlinear DPAD for analyzed smoothed spiking
activity is shown for each recording electrode (N = 35 session-folds; best
nonlinearity for decoding). c, Same as b for modeling of raw LFP activity.
d, Same as b for modeling of LFP band power activity. Here, prediction accuracy
averaged across all 8 band powers (Methods) of a given recording electrode is
shown for that electrode. e-h, Same a-d for the second dataset, with saccadic

eye movements (N = 35 session-folds). For datasets with single-unit activity
(Methods), spiking self-prediction of each electrode is averaged across the
units associated with that electrode. i-j, Same as a,b for the third dataset, with
sequential cursor reaches controlled via a 2D manipulandum (N = 15 session-
folds). White areas are due to electrodes that did not have a neuron associated
with them in the data. k-n, Same as a-d for the fourth dataset, with random grid
virtual reality cursor reaches controlled via fingertip position (N = 35 session-
folds). For all results, the latent state dimension was 16, and all these dimensions
were learned using the first optimization step (that is, n1 = 16).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 6 | Nonlinear DPAD extracted distinct low dimensional
latent states from neural activity for all datasets, which were more
behaviorally relevant than those extracted using nonlinear NDM. a, The 3D
reach task. b, The latent state trajectory for 2D states extracted from spiking
activity using nonlinear DPAD, averaged across all reach and return epochs
across sessions and folds. Here only optimization steps 1-2 of DPAD are used to
just extract 2D behaviorally relevant states. c, Same as b for 2D states extracted
using nonlinear NDM (special case of using just DPAD optimization steps 3-4).
d, Saccadic eye movement task. Trials are averaged depending on the eye
movement direction. e, The latent state trajectory for 2D states extracted using
DPAD (extracted using optimizations steps 1-2), averaged across all trials of the
same movement direction condition across sessions and folds. f, Same as d for
2D states extracted using nonlinear NDM. g-i, Same as d-f for the third dataset,
with sequential cursor reaches controlled via a 2D manipulandum. j-l, Same as d-f
for the fourth dataset, with random grid virtual reality cursor reaches controlled

via fingertip position. Overall, in each dataset, latent states extracted by DPAD
were clearly different for different behavior conditions in that dataset (b,e,h,k),
whereas NDM’s extracted latent states did not as clearly dissociate different
conditions (c,f,i,l). Of note, in the first dataset, DPAD revealed latent states with
rotational dynamics that reversed direction during reach versus return epochs,
which is consistent with the behavior roughly reversing direction. In contrast,
NDM’s latent states showed rotational dynamics that did not reverse direction,
thus were less congruent with behavior. In this first dataset, in our earlier work6,
we had compared PSID and a subspace-based linear NDM method and, similar to
b and c here, had found that only PSID uncovers reverse-directional rotational
patterns across reach and return movement conditions. These results thus
also complement our prior work6 by showing that even nonlinear NDM models
may not uncover the distinct reverse-directional dynamics in this dataset, thus
highlighting the need for dissociative and prioritized learning even in nonlinear
modeling, as enabled by DPAD.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 7 | Neural self-prediction across latent state dimensions.
a, The 3D reach task. b, Cross-validated neural self-prediction accuracy (CC)
achieved by variations of nonlinear and linear DPAD/NDM, for different latent
state dimensions. Solid lines and shaded areas are defined as in Fig. 5b (N = 35
session-folds). Across latent state dimensions, the statistical significance of
a one-sided pairwise comparison between nonlinear DPAD/NDM (with best
nonlinearity for self-prediction) vs linear DPAD/NDM is shown with a horizontal
green/orange line with p-value indicated by asterisks next to the line as defined
in Fig. 2b (N = 35 session-folds). c,d, Same as a,b for the second dataset, with
saccadic eye movements (N = 35 session-folds). e,f, Same as a,b for the third
dataset, with sequential cursor reaches controlled via a 2D manipulandum
(N = 15 session-folds). g,h Same as a,b for the fourth dataset, with random grid
virtual reality cursor reaches controlled via fingertip position (N = 35 session-
folds). For all DPAD variations, the first 16 latent state dimensions are learned
using the first two optimization steps and the remaining dimensions are learned

using the last two optimization steps (that is, n1 = 16). As expected, at low state
dimensions, DPAD’s latent states achieve higher behavior decoding (Fig. 5) but
lower neural self-prediction than NDM because DPAD prioritizes the behaviorally
relevant neural dynamics in these dimensions. However, by increasing the state
dimension and utilizing optimization steps 3-4, DPAD can reach similar neural
self-prediction to NDM while doing better in terms of behavior decoding (Fig. 3).
Also, for low dimensional latent states, nonlinear DPAD/NDM consistently result
in significantly more accurate neural self-prediction than linear DPAD/NDM. For
high enough state dimensions, linear DPAD/NDM eventually reach similar neural
self-prediction accuracy to nonlinear DPAD/NDM. Given that NDM solely aims to
optimize neural self-prediction (irrespective of the relevance of neural dynamics
to behavior), the latter result suggests that the overall neural dynamics can be
approximated with linear dynamical models but only with high-dimensional
latent states. Note that in contrast to neural self-prediction, behavior decoding of
nonlinear DPAD is higher than linear DPAD even at high state dimensions (Fig. 3).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 8 | DPAD accurately learns the mapping from neural
activity to behavior dynamics in all datasets even if behavioral samples are
intermittently available in the training data. Nonlinear DPAD can perform
accurately and better than linear DPAD even when as little as 20% of training
behavior samples are kept. a, The 3D reach task. b, Examples are shown from one
of the joints in the original behavior time series (light gray) and intermittently
subsampled versions of it (cyan) where a subset of the time samples of the
behavior time series are randomly chosen to be kept for use in training. In each
subsampling, all dimensions of the behavior data are sampled together at the
same time steps; this means that at any given time step, either all behavior
dimensions are kept or all are dropped to emulate the realistic case with
intermittent measurements. c, Cross-validated behavior decoding accuracy
(CC) achieved by linear DPAD and by nonlinear DPAD with nonlinearity in the

behavior readout parameter Cz. For this nonlinear DPAD, we show the CC when
trained with different percentage of behavior samples kept (that is, we emulate
different rates of intermittent sampling). The state dimension in each session
and fold is chosen (among powers of 2 up to 128) as the smallest that reaches
peak decoding in training data. Bars, whiskers, dots, and asterisks are defined
as in Fig. 2b (N = 35 session-folds). d,e, Same as a,c for the second dataset, with
saccadic eye movements (N = 35 session-folds). f,g, Same as a,c for the third
dataset, with sequential cursor reaches controlled via a 2D manipulandum (N = 15
session-folds). h,i, Same as a,c for the fourth dataset, with random grid virtual
reality cursor reaches controlled via fingertip position (N = 35 session-folds). For
all DPAD variations, the first 16 latent state dimensions are learned using the first
two optimization steps and the remaining dimensions are learned using the last
two optimization steps (that is, n1 = 16).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 9 | Simulations suggest that DPAD may be applicable with
sparse sampling of behavior, for example with behavior being a self-reported
mood survey value collected once per day. a, We simulated the application of
decoding self-reported mood variations from neural signals40,41. Neural data is
simulated based on linear models fitted to intracranial neural data recorded from
epilepsy subjects. Each recorded region in each subject is simulated as a linear
state-space model with a 3-dimensional latent state, with the same parameters as
those fitted to neural recordings from that region. Simulated latent states from
a subset of regions were linearly combined to generate a simulated mood signal
(that is, biomarker). As the simulated models were linear, we used the linear
versions of DPAD and NDM (NDM used the subspace identification method that
we found does similarly to numerical optimization for linear models in Extended

Data Fig. 1). We generated the equivalent of 3 weeks of intracranial recordings,
which is on the order the time-duration of the real intracranial recordings. We
then subsampled the simulated mood signal (behavior) to emulate intermittent
behavioral measures such as mood surveys. b, Behavior decoding results
in unseen simulated test data, across N = 87 simulated models, for different
sampling rates of behavior in the training data. Box edges show the 25th and 75th
percentiles, solid horizontal lines show the median, whiskers show the range
of data, and dots show all data points (N = 87 simulated models). Asterisks are
defined as in Fig. 2b. DPAD consistently outperformed NDM regardless of how
sparse behavior measures were, even when these measures were available just
once per day (P < 0.0005, one-sided signed-rank, N = 87).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Table 1 | Architectural differences between DPAD and various other methods

 Figure

Input
samples
used to

infer latent
Dynamic or

static Non-linearity
Hypothesis
testing on

non-
linearities

Prioritize
behaviorally

relevant neural
dynamics

Dissociate
behaviorally
relevant and
other neural

dynamics

Learn
reconstruc-
tion models

DPAD All 1 … −1
(causal)

Dynamic
(recursive) Yes (and flexible) Yes Yes Yes Neural and

behavioral

NDM
3,5,7

ED1,3,…
S4

1 … −1
(causal)

1 … −1
(causal)

Dynamic
(recursive) Yes No No No Neural

RNN
decoders

20,22–24,26
4, ED3

Dynamic
(recursive) Yes No Yes No Behavioral

PSID6 ED1 1 … −1
(causal)

Dynamic
(recursive) Linear No Yes Yes Neural and

behavioral

CEBRA36 4 −5 … +4
(non-causal) Convolutional

Yes, but without
recursive dynamics No Indirectly, via

contrastive loss No -

LFADS16 S9 1 …
(non-causal)

Dynamic
(sequential-

autoencoder)
Yes No No No Neural

TNDM18 S9 1 …
(non-causal)

Dynamic
(sequential-

autoencoder)
Yes No

Partially, with mixed
neural-behavioral

objective
No Neural and

behavioral

GPFA14 - 1 …
(non-causal)

Dynamic
(Gaussian
process)

Linear time variant No No No Neural

TAME-
GP9 - 1 …

(non-causal)

Dynamic
(Gaussian
process)

Linear time variant No
Partially, with mixed

neural-behavioral
objective

No Neural

DFINE61 - Causal and
non-causal

Dynamic
(recursive)

Yes, but with state
evolving in a linear
dynamical system

No
Partially, with mixed

neural-behavioral
objective

No Neural and
behavioral

VIND37 - 1 …
(non-causal) Dynamic Yes, but with locally

linear state dynamics No No No Neural

fLDS38,96 - 1 …
(non-causal) Dynamic Yes, but with linear

state dynamics No No No Neural

pi-VAE35 -
(causal) Static Yes, but with no

dynamics No
Partially, with mixed

neural-behavioral
objective

No Neural

dPCA34 -
(causal) Static Linear No

Yes, but only with
categorical behavior

conditions

Yes, but only
with categorical

behavior
conditions

Neural

LDA69 7
(causal) Static Linear No Yes No Behavioral

SVM,
SVR69 7

(causal) Static Yes, but with no
dynamics No Yes No Behavioral

An extended description for some columns is provided in Supplementary Note 4. Here we provide a summary. Figure: Figure numbers for figures that show results from the named method.
ED: Extended Data Figure. S: Supplementary Figure. Input samples used to infer latent xk: The subset of the input neural time series {y1, y2,…} that are used to estimate the latent variable
xk associated with time sample k. Dynamic or static: Dynamic models have an explicit description of the temporal structure in data, which allows them to aggregate information over time.
In contrast, static models consider each given data sample on its own, and thus extract the same encoding regardless of the temporal order/structure of the input sequence. Convolutional
models (for example, CEBRA) consider each small data window on its own and can’t aggregate information beyond that window, and in this sense are similar to static models. Nonlinearity:
Nonlinear models can learn nonlinear mappings within some model elements, but unlike DPAD, they have not been flexible in terms of which model elements are made nonlinear and with
what structure (note in this work we also implement NDM with flexible nonlinearity). Hypothesis testing on nonlinearities: DPAD is the only method that provides fine-grained control over
the nonlinearity versus linearity of each model element and thus enables localization of nonlinearities and hypothesis testing regarding them (Fig. 6). Prioritize behaviorally relevant neural
dynamics: Methods that can incorporate the reconstruction of behavior from neural data as part of their learning objective, ideally with priority. Dissociate behaviorally relevant and other
neural dynamics: DPAD is the only dynamical nonlinear method that learns both behaviorally relevant neural dynamics and other neural dynamics, and dissociates the two into separate
latent states. Learned reconstruction models: The reconstruction models that are natively learned by the method when extracting latents, in order to reconstruct neural or behavioral data
from these learned latents.

http://www.nature.com/natureneuroscience

1

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Corresponding author(s): Maryam M. Shanechi

Last updated by author(s): 2024/07/10

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Dataset 1: Kinematic data were acquired using the Cortex software package (version 5.3) to track retroreflective markers in 3D (Motion

Analysis, Inc USA). Joint angles were solved from the 3D marker data using a Rhesus macaque musculoskeletal model via the SIMM toolkit

(version 4.0, MusculoGraphics Inc., USA).

Dataset 2: The visual stimuli in the task with saccadic eye movements were controlled via custom LabVIEW (version 9.0, National Instruments)

software executed on a real-time embedded system (NI PXI-8184, National Instruments).

This data collection is also described in prior work:

- https://www.nature.com/articles/s41593-020-00733-0

- https://doi.org/10.1073/pnas.1504172112

Data analysis Custom code (python version 3.9) for the DPAD algorithm is available online at https://github.com/ShanechiLab/DPAD

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

2

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets

- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Three of the datasets used in this work are publicly available (refs. 47–49,54). The other two datasets used to support the results are available upon reasonable

request from the corresponding author. Source data are provided with this paper.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study did not involve human participants.

Reporting on race, ethnicity, or

other socially relevant

groupings

This study did not involve human participants.

Population characteristics This study did not involve human participants.

Recruitment This study did not involve human participants.

Ethics oversight This study did not involve human participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A sample size of five non-human primate subjects was used, consisting of one non-human primate subject for each of the five behavioral

tasks. This is comparable with the sample sizes reported in previous non-human primate neurophysiology publications (e.g., https://

www.nature.com/articles/s41593-020-00733-0). All results held for all subjects.

Data exclusions No data was excluded from the study.

Replication Results were replicated in all subjects performing all experimental tasks and all attempts at replication were successful.

Randomization Not relevant for this study. Identical analyses were performed on data from each subject and the results were reported for each subject.

There was no grouping of subjects.

Blinding Not relevant for this study. There was no group allocation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

3

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals Main datasets (datasets 1-4): four adult male rhesus macaques (macaca mulatta) ages 5 (subject J), 8 (subject A), 10 (subject T), and

11 (subject I) years old.

Wild animals This study did not involve wild animals.

Reporting on sex Main datasets (datasets 1-4) were from four adult male rhesus macaques.

Field-collected samples This study did not involve field-collected samples.

Ethics oversight For each dataset, all animal procedures were performed in compliance with the National Research Council Guide for Care and Use of

Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at the respective institution, namely

New York University (datasets 1 and 2), Northwestern University (datasets 3 and 5), or University of California San Francisco (dataset

4).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

	Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks

	Results

	Overview of DPAD

	Formulation
	Dissociative and prioritized learning
	Comparison baselines
	Decoding using past neural data
	Flexible control of nonlinearities
	Evaluation metrics

	Diverse neural–behavioral datasets

	Numerical simulations validate DPAD

	Use-case 1: DPAD enables nonlinear neural–behavioral modeling across modalities

	DPAD captures nonlinearity in behaviorally relevant dynamics
	DPAD better predicts the neural–behavioral data

	Use-case 2: DPAD extracts behavior-predictive nonlinear transformations from raw LFP

	Use-case 3: DPAD enables behavior-predictive nonlinear dynamical dimensionality reduction

	Use-case 4: DPAD localizes the nonlinearity in the neural–behavioral transformation

	Numerical simulations validate DPAD’s localization
	DPAD consistently localized nonlinearities in the behavior readout

	Use-case 5: DPAD extends to noncontinuous and intermittent data

	DPAD extends to intermittently sampled behavior observations
	DPAD extends to noncontinuous-valued observations

	Discussion

	Online content

	Fig. 1 DPAD overview.
	Fig. 2 DPAD learns more accurate models of behaviorally relevant neural dynamics for all neural modalities by capturing nonlinearities, with raw LFP activity benefiting the most from nonlinear modeling.
	Fig. 3 DPAD more accurately learns behaviorally relevant neural dynamics while also capturing overall neural dynamics as accurately as other methods.
	Fig. 4 DPAD outperforms various existing methods in neural–behavioral prediction.
	Fig. 5 DPAD enables nonlinear and prioritized dynamical dimensionality reduction, thus learning more accurate models of behaviorally relevant neural dynamics with lower-dimensional latent states.
	Fig. 6 DPAD reveals that across our datasets, nonlinearities can be largely captured in the behavior readout of the model.
	Fig. 7 DPAD extends to modeling categorical behaviors.
	Extended Data Fig. 1 DPAD dissociates and prioritizes the behaviorally relevant neural dynamics while also learning the other neural dynamics in numerical simulations of linear models.
	Extended Data Fig. 2 DPAD successfully identifies the origin of nonlinearity and learns it in numerical simulations.
	Extended Data Fig. 3 Across spiking and LFP neural modalities, DPAD is on the best performance frontier for neural-behavioral prediction unlike LSTMs, which are fitted to explain neural data or behavioral data.
	Extended Data Fig. 4 DPAD can also be used for multi-step-ahead forecasting of behavior.
	Extended Data Fig. 5 Neural self-prediction accuracy of nonlinear DPAD across recording electrodes for low-dimensional behaviorally relevant latent states.
	Extended Data Fig. 6 Nonlinear DPAD extracted distinct low dimensional latent states from neural activity for all datasets, which were more behaviorally relevant than those extracted using nonlinear NDM.
	Extended Data Fig. 7 Neural self-prediction across latent state dimensions.
	Extended Data Fig. 8 DPAD accurately learns the mapping from neural activity to behavior dynamics in all datasets even if behavioral samples are intermittently available in the training data.
	Extended Data Fig. 9 Simulations suggest that DPAD may be applicable with sparse sampling of behavior, for example with behavior being a self-reported mood survey value collected once per day.
	Extended Data Table 1 Architectural differences between DPAD and various other methods.

