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Dissociative and prioritized modeling of 
behaviorally relevant neural dynamics using 
recurrent neural networks

Omid G. Sani    1, Bijan Pesaran    2 & Maryam M. Shanechi    1,3,4,5 

Understanding the dynamical transformation of neural activity to behavior 
requires new capabilities to nonlinearly model, dissociate and prioritize 
behaviorally relevant neural dynamics and test hypotheses about the origin 
of nonlinearity. We present dissociative prioritized analysis of dynamics 
(DPAD), a nonlinear dynamical modeling approach that enables these 
capabilities with a multisection neural network architecture and training 
approach. Analyzing cortical spiking and local field potential activity across 
four movement tasks, we demonstrate five use-cases. DPAD enabled more 
accurate neural–behavioral prediction. It identified nonlinear dynamical 
transformations of local field potentials that were more behavior predictive 
than traditional power features. Further, DPAD achieved behavior-predictive 
nonlinear neural dimensionality reduction. It enabled hypothesis testing 
regarding nonlinearities in neural–behavioral transformation, revealing 
that, in our datasets, nonlinearities could largely be isolated to the 
mapping from latent cortical dynamics to behavior. Finally, DPAD extended 
across continuous, intermittently sampled and categorical behaviors. 
DPAD provides a powerful tool for nonlinear dynamical modeling and 
investigation of neural–behavioral data.

Understanding how neural population dynamics give rise to behavior is 
a major goal in neuroscience. Many methods that relate neural activity 
to behavior use static mappings or embeddings, which do not describe 
the temporal structure in how neural population activity evolves over 
time1. In comparison, dynamical models can describe these temporal 
structures in terms of low-dimensional latent states embedded in the 
high-dimensional space of neural recordings. Prior dynamical models 
have often been linear or generalized linear1–7, thus motivating recent 
work to develop support for piece-wise linear8, locally linear9, switch-
ing linear10–13 or nonlinear14–27 models of neural dynamics, especially 
in applications such as single-trial smoothing of neural population 
activity9,14–19 and decoding behavior20–24,26. Once trained, the latent 

states of these models can subsequently be mapped to behavior1,25 
to learn an overall dynamical transformation from neural activity to 
behavior. However, multiple challenges hinder the dynamical modeling 
and interpretation of neural–behavioral transformations.

First, the neural–behavioral transformation can exhibit nonlin-
earities, which the dynamical model should capture. Moreover, these 
nonlinearities can be in one or more different elements within the 
dynamical model, for example, in the dynamics of the latent state or 
in its embedding. Enabling hypothesis testing regarding the origin of 
nonlinearity (that is, where the nonlinearity can be isolated to within the 
model) is important for interpreting neural computations and devel-
oping neurotechnology but remains largely unaddressed in current 

Received: 22 April 2023

Accepted: 17 July 2024

Published online: 6 September 2024

 Check for updates

1Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA. 
2Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 3Thomas Lord Department of Computer Science, University of Southern 
California, Los Angeles, CA, USA. 4Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA. 5Alfred E. Mann Department 
of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.  e-mail: shanechi@usc.edu

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01731-2
http://orcid.org/0000-0003-3032-5669
http://orcid.org/0000-0003-4116-0038
http://orcid.org/0000-0002-0544-7720
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-024-01731-2&domain=pdf
mailto:shanechi@usc.edu


Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2034

Technical Report https://doi.org/10.1038/s41593-024-01731-2

DPAD’s broad utility as a dynamical modeling tool to investigate the 
nonlinear and dynamical transformation of neural activity to specific 
behaviors across various domains of neuroscience.

nonlinear models. Second, neural dynamics related to a given behavior 
often constitute a minority of the total neural variance28–33. To avoid 
missing or confounding these dynamics, nonlinear dynamical models 
need to dissociate behaviorally relevant neural dynamics from other 
neural dynamics and prioritize the learning of the former, which is cur-
rently not possible. Indeed, existing nonlinear methods for modeling 
neural activity either do not explicitly model temporal dynamics34–36 or 
do not prioritize behaviorally relevant dynamics16,37,38, or have a mixed 
objective18 that may mix behaviorally relevant and other neural dynam-
ics in the same latent states (Discussion and Extended Data Table 1). Our 
prior method, termed PSID6, has enabled prioritized dissociation of 
behaviorally relevant neural dynamics but for linear dynamical models. 
Third, for broad applicability, in addition to continuous behaviors, 
dynamical models should admit categorical (for example, choices) 
or intermittently sampled behaviors (for example, mood reports), 
which are not supported by existing dynamical methods with a mixed 
objective18 or by PSID. To date, learning nonlinear dynamical models 
of neural population activity that can address the above challenges 
has not been achieved.

Here, we develop dissociative prioritized analysis of dynamics 
(DPAD), a nonlinear dynamical modeling framework using recurrent 
neural networks (RNNs) that addresses all the above challenges. DPAD 
models both behaviorally relevant and other neural dynamics but dis-
sociates them into separate latent states and prioritizes the learning of 
the former. To do so, we formulate a two-section RNN as the DPAD non-
linear dynamical model and develop a four-step optimization algorithm 
to train it. The first RNN section learns the behaviorally relevant latent 
states with priority, and the second section learns any remaining neural 
dynamics (Fig. 1a and Supplementary Fig. 1). Moreover, DPAD adjusts 
these optimization steps as needed to admit continuous-valued, cat-
egorical or intermittently sampled data (Methods). Furthermore, to 
capture nonlinearity in the neural–behavioral transformation and 
enable hypothesis testing regarding its origins, DPAD decomposes 
this transformation into the following four interpretable elements and 
allows each element to become linear or nonlinear (Fig. 1a,b): the map-
ping from neural activity to the latent space (neural input), the latent 
state dynamics within this space (recursion) and the mappings of the 
state to neural activity and behavior (neural and behavior readouts). 
Finally, we formulate the DPAD model in predictor form such that the 
learned model can be directly used for inference, enabling causal and 
computationally efficient decoding for data, whether with or without 
a fixed-length trial structure (Methods).

To show its broad utility, we demonstrate five distinct use-cases for 
DPAD across four diverse nonhuman primate (NHP) datasets consisting 
of both population spiking activity and local field potentials (LFPs). 
First, DPAD more accurately models the overall neural–behavioral 
data than alternative nonlinear and linear methods. This is due both 
to DPAD’s prioritized and dynamical modeling of behaviorally relevant 
neural dynamics and to its nonlinearity. Second, DPAD can automati-
cally uncover nonlinear dynamical transformations of raw LFP that are 
more predictive of behavior than traditional LFP power band features 
and in some datasets can even outperform population spiking activity 
in terms of behavior prediction. Further, DPAD reveals that among the 
neural modalities, the degree of nonlinearity is greatest for the raw LFP. 
Third, DPAD enables nonlinear and dynamical neural dimensionality 
reduction while preserving behavior information, thus extracting 
lower-dimensional yet more behavior-predictive latent states from 
past neural activity. Fourth, DPAD enables hypothesis testing regard-
ing the origin of nonlinearity in the neural–behavioral transformation. 
Consistently across our movement-related datasets, doing so revealed 
that summarizing the nonlinearities just in the behavior readout from 
the latent state is largely sufficient for predicting the neural–behavioral 
data (see Discussion). Fifth, DPAD extends to categorical and intermit-
tently observed behaviors, which is important for cognitive neurosci-
ence11,39 and neuropsychiatry40–42. Together, these results highlight 
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Fig. 1 | DPAD overview. a, DPAD decomposes the neural–behavioral 
transformation into four interpretable mapping elements. It learns the mapping of 
neural activity (yk) to latent states (xk), termed neural input in the model; learns the 
dynamics or temporal structure of the latent states, termed recursion in the model; 
dissociates the behaviorally relevant latent states (x(1)k ) that are relevant to a 
measured behavior (zk) from other states (x(2)k ); learns the mapping of the latent 
states to behavior and to neural activity, termed behavior and neural readouts in 
the model; and allows flexible linear or nonlinear mappings in any of its elements. 
DPAD additionally prioritizes the learning of behaviorally relevant neural dynamics 
to learn them accurately. b, Computation graph of the DPAD model consists of a 
two-section RNN whose input is neural activity at the current time step and whose 
outputs are the predicted behavior and neural activity in the next time step 
(Methods). This graph assumes that computations are Markovian, that is, with a 
high enough dimension, latent states can summarize the information from past 
neural data that is useful for predicting future neural–behavioral data. Each of the 
four mapping elements from a has a corresponding parameter in each section of 
the RNN model, indicated by the same colors and termed as introduced in a. c, We 
developed a four-step optimization method to learn all the model parameters from 
training neural–behavioral data (Supplementary Fig. 1a). Further, each model 
parameter can be specified via the ‘nonlinearity setting’ to be linear or nonlinear 
with various options to implement the nonlinearity (Supplementary Fig. 1b,c). After 
a model is learned, only past neural activity is used to decode behavior and predict 
neural activity using the computation graph in b. d, DPAD also has the option of 
automatically selecting the ‘nonlinearity setting’ for the data by fitting candidate 
models and comparing them in terms of both behavior decoding and neural 
self-prediction accuracy (Methods). In this work, we chose among 90 candidate 
models with various nonlinearity settings (Methods). We refer to this automatic 
selection of nonlinearity as ‘DPAD with flexible nonlinearity’.
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Results
Overview of DPAD
Formulation. We model neural activity and behavior jointly and non-
linearly (Methods) as

⎧⎪
⎨⎪
⎩

xk+1 = A′ (xk) + K (yk)

yk = Cy (xk) + ek
zk = Cz (xk) + ϵk

, (1)

where k is the time index, yk ∈ ℝny and zk ∈ ℝnz denote the neural activ-
ity and behavior time series, respectively, xk ∈ ℝnx  is the latent state,  
and ek and ϵk denote neural and behavior dynamics that are unpredict-
able from past neural activity. Multi-input–multi-output functions A′ 
(recursion), K (neural input), Cy (neural readout) and Cz (behavior readout) 
are parameters that fully specify the model and have interpretable 
descriptions (Methods, Supplementary Note 1 and Fig. 1a,b). The adjusted 
formulation for intermittently sampled and noncontinuous-valued  
(for example, categorical) data is provided in Methods. DPAD supports 
both linear and nonlinear modeling, which will be termed linear DPAD 
and nonlinear DPAD (or just DPAD), respectively.

Dissociative and prioritized learning. We further expand the model 
in Eq. (1) in two sections, as depicted in Fig. 1b (Eq. (2) in Methods and 

Supplementary Note 2). The first and second sections describe the 
behaviorally relevant neural dynamics and the other neural dynamics 
with latent states x(1)k ∈ ℝn1 and x(2)k ∈ ℝnx−n1, respectively. We specify 
the parameters of the two RNN sections with superscripts (for example, 
K(1) and K(2)) and learn them all sequentially via a four-step optimization 
(Methods, Supplementary Fig. 1a and Fig. 1b). The first two steps exclu-
sively learn neural dynamics that are behaviorally relevant with the 
objective of behavior prediction, whereas the optional last two steps 
learn any remaining neural dynamics with the objective of residual 
neural prediction (Methods and Supplementary Fig. 1). We implement 
DPAD in Tensorflow and use an ADAM43 optimizer (Methods).

Comparison baselines. As a baseline, we compare DPAD with standard 
nonlinear RNNs fitted to maximize neural prediction, unsupervised 
with respect to behavior. We refer to this baseline as nonlinear neural 
dynamical modeling (NDM)6 or as linear NDM if all RNN parameters 
are linear. NDM is nondissociative and nonprioritized, so compari-
sons with NDM show the benefit of DPAD’s prioritized dissociation 
of behaviorally relevant neural dynamics. We also compare DPAD 
with latent factor analysis via dynamical systems (LFADS)16 and with 
two concurrently44 developed methods with DPAD named targeted 
neural dynamical modeling (TNDM)18 and consistent embeddings of 
high-dimensional recordings using auxiliary variables (CEBRA)36 in 
terms of neural–behavioral prediction; however, as summarized in 
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Fig. 2 | DPAD learns more accurate models of behaviorally relevant neural 
dynamics for all neural modalities by capturing nonlinearities, with raw 
LFP activity benefiting the most from nonlinear modeling. a, The 3D reach 
task, along with example true and decoded behavior dimensions, decoded from 
spiking activity using DPAD, with more example trajectories for all modalities 
shown in Supplementary Fig. 3. b, Cross-validated decoding accuracy correlation 
coefficient (CC) achieved by linear and nonlinear DPAD. Results are shown 
for spiking activity, raw LFP activity and LFP band power activity (Methods). 
For nonlinear DPAD, the nonlinearities are selected automatically based on 
the training data to maximize behavior decoding accuracy (that is, flexible 
nonlinearity). The latent state dimension in each session and fold is chosen 
(among powers of 2 up to 128) as the smallest that reaches peak decoding in 
the training data among all state dimensions (Methods). Bars show the mean, 

whiskers show the s.e.m., and dots show all data points (N = 35 session-folds). 
Asterisks (*) show significance level for a one-sided Wilcoxon signed-rank test 
(*P < 0.05, **P < 0.005 and ***P < 0.0005); NS, not significant. c, The difference 
between the nonlinear and linear results from b shown with the same notations. 
d–f, Same as a–c for the second dataset with saccadic eye movements (N = 35 
session-folds). g,h, Same as a and b for the third dataset, which did not include 
LFP data, with sequential cursor reaches controlled via a 2D manipulandum 
(N = 15 session-folds). Behavior consists of the 2D position and velocity of the 
cursor, denoted as ‘hand kinematics’ in the figure. i–k, Same as a–c for the 
fourth dataset, with random grid virtual reality cursor reaches controlled via 
fingertip movement (N = 35 session-folds). For all DPAD variations, only the first 
two optimization steps were used in this figure (that is, n1 = nx) to only focus on 
learning behaviorally relevant neural dynamics.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | October 2024 | 2033–2045 2036

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Table 1, these and other existing methods differ from 
DPAD in key goals and capabilities and do not enable some of DPAD’s 
use-cases (see Discussion).

Decoding using past neural data. Given DPAD’s learned parameters, 
the latent states can be causally extracted from neural activity by iterat-
ing through the RNN in Eq. (1) (Methods and Supplementary Note 1). 
Note that this decoding always only uses neural activity without seeing 
the behavior data.

Flexible control of nonlinearities. We allow each model parameter (for 
example, Cz) to be an arbitrary multilayer neural network (Supplemen-
tary Fig. 1c), which can universally approximate any smooth nonlinear 
function or implement linear matrix multiplications (Methods and 
Supplementary Fig. 1b). Users can manually specify which param-
eters will be learned as nonlinear and with what architecture (Fig. 1c; 
see application in use-case 4). Alternatively, DPAD can automatically 
determine the best nonlinearity setting for the data by conducting 
a search over nonlinearity options (Fig. 1d and Methods), a process 
that we refer to as flexible nonlinearity. For a fair comparison, we also 
implement this flexible nonlinearity for NDM. To show the benefits of 
nonlinearity, we also compare with linear DPAD, where all parameters 
are set to be linear, in which case Eq. (1) formulates a standard linear 
state-space model in predictor form (Methods).

Evaluation metrics. We evaluate how well the models can use the 
past neural activity to predict the next sample of behavior (termed 
‘decoding’) or the next sample of neural activity itself (termed ‘neu-
ral self-prediction’ or simply ‘self-prediction’). Thus, decoding and 
self-prediction assess the one-step-ahead prediction accuracies and 
reflect the learning of behaviorally relevant and overall neural dynam-
ics, respectively. Both performance measures are always computed 
with cross-validation (Methods).

Our primary interest is to find models that simultaneously reach 
both accurate behavior decoding and accurate neural self-prediction. 
But in some applications, only one of these metrics may be of interest. 
Thus, we use the term ‘performance frontier’ to refer to the range of per-
formances achievable by those models that compared to every other 
model are better in neural self-prediction and/or behavior decoding 
or are similar in terms of both metrics (Methods).

Diverse neural–behavioral datasets
We used DPAD to study the behaviorally relevant neural dynamics in four 
NHPs performing four different tasks (Fig. 2 and Methods). In the first 
task, the animal made naturalistic three-dimensional (3D) reach, grasp 
and return movements to diverse locations while the joint angles in the 
arm, elbow, wrist and fingers were tracked as the behavior (Fig. 2a)6,45. 
In the second task, the animal made saccadic eye movements to one of 
eight possible targets on a screen, with the two-dimensional (2D) eye 
position tracked as the behavior (Fig. 2d)6,46. In the third task, the animal 
made sequential 2D reaches on a screen using a cursor controlled with a 
manipulandum while the 2D cursor position and velocity were tracked as 
the behavior (Fig. 2g)47,48. In the fourth task, the animal made 2D reaches 
to random targets in a virtual-reality-presented grid via a cursor that mir-
rored the animal’s fingertip movements, for which the 2D position and 
velocity were tracked as the behavior (Fig. 2i)49. In tasks 1 and 4, primary 
motor cortical activity was modeled. For tasks 2 and 3, prefrontal cortex 
and dorsal premotor cortical activities were modeled, respectively.

In all datasets, we modeled the Gaussian smoothed spike counts 
as the main neural modality (Methods). In three datasets that had 
LFP, we also modeled the following two additional modalities: (1) raw 
LFP, downsampled to the sampling rate of behavior (that is, 50-ms 
time steps), which in the motor cortex is known as the local motor 
potential50–52 and has been used to decode behavior6,50–53; and (2) LFP 
power in standard frequency bands from delta (0.1–4 Hz) to high 

gamma (130–170 Hz (refs. 5,6,40); Methods). Similar results held for 
all three modalities.

Numerical simulations validate DPAD
We first validate DPAD with linear simulations here (Extended Data 
Fig. 1) and then present nonlinear simulations under use-case 4 below 
(Extended Data Fig. 2 and Supplementary Fig. 2). We simulated general 
random linear models (not emulating any real data) in which only a 
subset of state dimensions contributed to generating behavior and 
thus were behaviorally relevant (Methods). We found that with a 
state dimension equal to that of the true model, DPAD achieved ideal 
cross-validated prediction (that is, similar to the true model) for both 
behavior and neural signals (Extended Data Fig. 1b,d). Moreover, even 
given a minimal state dimension equal to the true behaviorally relevant 
state dimension, DPAD still achieved ideal prediction for behavior 
(Extended Data Fig. 1c). Finally, across various regimens of training 
samples, linear DPAD performed similarly to the linear-algebraic-based 
PSID6 from our prior work (Extended Data Fig. 1). Thus, hereafter, we 
use linear DPAD as our linear modeling benchmark.

Use-case 1: DPAD enables nonlinear neural–behavioral 
modeling across modalities
DPAD captures nonlinearity in behaviorally relevant dynamics. 
We modeled each neural modality (spiking, raw LFP or LFP power) 
along with behavior using linear and nonlinear DPAD and compared 
their cross-validated behavior decoding (Fig. 2b,e,h,j and Supplemen-
tary Fig. 3). Across all neural modalities in all datasets, nonlinear DPAD 
achieved significantly higher decoding accuracy than linear DPAD. This 
result suggests that there is nonlinearity in the dynamical neural–behav-
ioral transformation, which DPAD successfully captures (Fig. 2b,e,h,j).

DPAD better predicts the neural–behavioral data. Across all datasets 
and modalities, compared to nonlinear NDM or linear DPAD, nonlinear 
DPAD reached higher behavior decoding accuracy while also being as 
accurate or better in terms of neural self-prediction (Fig. 3, Extended 
Data Fig. 3 and Supplementary Fig. 4). Indeed, compared to these, 
DPAD was always on the best performance frontier for predicting the 
neural–behavioral data (Fig. 3 and Extended Data Fig. 3). Additionally, 
DPAD was always on the best performance frontier for predicting the 
neural–behavioral data compared to long short-term memory (LSTM) 
networks as well as a concurrently44 developed method with DPAD 
termed CEBRA36 on our four datasets (Fig. 4a–h) in addition to a fifth 
movement dataset54 analyzed in the CEBRA paper (Fig. 4i,j). These 
results suggest that DPAD provides a more accurate description for 
neural–behavioral data.

Beyond one-step-ahead predictions, we next evaluated DPAD 
in terms of multistep-ahead prediction of neural–behavioral data, 
also known as forecasting. To do this, starting with one-step-ahead 
predictions (that is, m = 1), we pass m-step-ahead predictions of neural 
data using the learned models as the neural observation in the next 
time step to obtain (m + 1)-step-ahead predictions (Methods). Non-
linear DPAD was consistently better than nonlinear NDM and linear 
dynamical systems (LDS) modeling in multistep-ahead forecasting of 
behavior (Extended Data Fig. 4). For neural self-prediction, we used a 
naive predictor as a conservative forecasting baseline, which reflects 
how easy it is to predict the future in a model-free way purely based 
on the smoothness of neural data. DPAD significantly outperformed 
this baseline in terms of one-step-ahead and multistep-ahead neural 
self-predictions (Supplementary Fig. 5).

Use-case 2: DPAD extracts behavior-predictive nonlinear 
transformations from raw LFP
We next used DPAD to compare the amount of nonlinearity in the neural– 
behavioral transformation across different neural modalities (Fig. 2 
and Supplementary Fig. 3). To do so, we compared the gain in behavior 
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decoding accuracy when going from linear to nonlinear DPAD modeling 
in each modality. In all datasets, raw LFP activity had the highest gain 
from nonlinearity in behavior decoding accuracy (Fig. 2c,f,k). Nota-
bly, using nonlinear DPAD, raw LFP reached more accurate behavior 
decoding than traditional LFP band powers in all tasks (Fig. 2b,e,j). In 
one dataset, raw LFP even significantly surpassed spiking activity in 
terms of behavior decoding accuracy (Fig. 2e). Note that computing 
LFP powers involves a prespecified nonreversible nonlinear transfor-
mation of raw LFP, which may be discarding important behaviorally 
relevant information that DPAD can uncover directly from raw LFP. 
Interestingly, linear dynamical modeling did worse for raw LFP than 
LFP powers in most tasks (compare linear DPAD for raw LFP versus LFP 
powers), suggesting that nonlinearity, captured by DPAD, was required 
for uncovering the extra behaviorally relevant information in raw LFP.

We next examined the spatial pattern of behaviorally relevant 
information across recording channels. For different channels, we 
compared the neural self-prediction of DPAD’s low-dimensional behav-
iorally relevant latent states (Extended Data Fig. 5). We computed the 
coefficient of variation (defined as standard deviation divided by mean) 
of the self-prediction over recording channels and found that the spa-
tial distribution of behaviorally relevant information was less variable in 
raw LFP than spiking activity (P ≤ 0.00071, one-sided signed-rank test, 
N = 35 for all three datasets with LFP). This could suggest that raw LFPs 
reflect large-scale network-level behaviorally relevant computations, 

which are thus less variable within the same spatial brain area than 
spiking, which represents local, smaller-scale computations55.

Use-case 3: DPAD enables behavior-predictive nonlinear 
dynamical dimensionality reduction
We next found that DPAD extracted latent states that were lower dimen-
sional yet more behavior predictive than both nonlinear NDM and linear 
DPAD (Fig. 5). Specifically, we inspected the dimension required for 
nonlinear DPAD to reach almost (within 5% of) peak behavior decoding 
accuracy in each dataset (Fig. 5b,g,l,o). At this low latent state dimen-
sion, linear DPAD and nonlinear and linear NDM all achieved much 
lower behavior decoding accuracy than nonlinear DPAD across all 
neural modalities (Fig. 5c–e,h–j,m,p–r). The lower decoding accuracy 
of nonlinear NDM suggests that the dominant dynamics in spiking 
and LFP modalities can be unrelated to the modeled behavior. Thus, 
behaviorally relevant dynamics can be missed or confounded unless 
they are prioritized during nonlinear learning, as is done by DPAD. 
Moreover, we visualized the 2D latent state trajectories learned by 
each method (Extended Data Fig. 6). Consistent with the above results, 
DPAD extracted latent states from neural activity that were clearly dif-
ferent for different behavior/movement conditions (Extended Data 
Fig. 6b,e,h,k). In comparison, NDM extracted latent states that did not 
as clearly dissociate different conditions (Extended Data Fig. 6c,f,i,l). 
These results highlight the capability of DPAD for nonlinear dynamical 
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Fig. 3 | DPAD more accurately learns behaviorally relevant neural dynamics 
while also capturing overall neural dynamics as accurately as other methods. 
a, The 3D reach task. b, Cross-validated neural self-prediction accuracy (CC) 
achieved by each method shown on the horizontal axis versus the corresponding 
behavior decoding accuracy on the vertical axis for modeling spiking activity. 
Latent state dimension for each method in each session, and fold is chosen 
(among powers of 2 up to 128) as the smallest that reaches peak neural self-
prediction in training data or reaches peak decoding in training data, whichever 
is larger (Methods). The plus on the plot shows the mean self-prediction and 
decoding accuracy across sessions and folds (N = 35 session-folds), and the 
horizontal and vertical whiskers show the s.e.m. for these two measures, 
respectively. Capital letter annotations denote the methods according to the 
legend to make the plots more accessible. Models whose self-prediction and 
decoding accuracy measures lead to values toward the top-rightmost corner of 
the plot lie on the best performance frontier (indicated by red arrows) as they 

have better performance in both measures and thus better explain the neural–
behavioral data (Methods). c,d, Same as a and b for the second dataset with 
saccadic eye movements (N = 35 session-folds). e,f, Same as a and b for the third 
dataset, with sequential cursor reaches controlled via a 2D manipulandum (N = 15 
session-folds). g,h, Same as a and b for the fourth dataset with random grid 
virtual reality cursor reaches controlled via fingertip position (N = 35 session-
folds). For all DPAD variations, the first 16 latent state dimensions are learned 
using the first two optimization steps, and the remaining dimensions are learned 
using the last two optimization steps (that is, n1 = 16). For nonlinear DPAD/NDM, 
we fit models with different combinations of nonlinearities and then select a final 
model among these fitted models based on either decoding or self-prediction 
accuracy in the training data and report both sets of results (Supplementary 
 Fig. 1 and Methods). DPAD with nonlinearity selected based on neural self-
prediction was better than all other methods overall (b, d, f and h).
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dimensionality reduction in neural data while preserving behaviorally 
relevant neural dynamics.

Next, we found that at low dimensions, nonlinearity could 
improve the accuracy of both behavior decoding (Fig. 5b,g,l,o) and 
neural self-prediction (Extended Data Fig. 7). However, as the state 
dimension was increased, linear methods reached similar neural 
self-prediction performance as nonlinear methods across modali-
ties (Fig. 3 and Extended Data Fig. 3). This was in contrast to behavior 
decoding, which benefited from nonlinearity regardless of how high 
the dimension was (Figs. 2 and 3).

Use-case 4: DPAD localizes the nonlinearity in the  
neural–behavioral transformation
Numerical simulations validate DPAD’s localization. To demonstrate 
that DPAD can correctly find the origin of nonlinearity in the neural–
behavioral transformation (Extended Data Fig. 2 and Supplementary 

Fig. 2), we simulated random models where only one of the parameters was 
set to a random nonlinear function (Methods). DPAD identifies a param-
eter as the origin if models with nonlinearity only in that parameter are 
on the best performance frontier when compared to alternative models, 
that is, models with nonlinearity in other parameters, models with flex-
ible/full nonlinearity and fully linear models (Fig. 6a). DPAD enables this 
assessment due to (1) its flexible control over nonlinearities to train alter-
native models and (2) its simultaneous neural–behavioral modeling and 
evaluation (Methods). In all simulations, DPAD identified that the model 
with the correct nonlinearity origin was on the best performance frontier 
compared to alternative nonlinear models (Extended Data Fig. 2 and 
Supplementary Fig. 2), thus correctly revealing the origin of nonlinearity.

DPAD consistently localized nonlinearities in the behavior readout. 
Having validated the localization of nonlinearity in simulations, we 
used DPAD to find where in the model nonlinearities could be isolated 
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Fig. 4 | DPAD outperforms various existing methods in neural–behavioral 
prediction. a–h, Figure content is parallel to Fig. 3 (with pluses and whiskers 
defined in the same way) but instead of NDM shows CEBRA and LSTM networks 
as baselines (Methods). i,j, Here, we also add a fifth dataset54 (Methods), 
where in each trial an NHP moves a cursor from a center point to one of eight 
peripheral targets (i). In this fifth dataset (N = 5 folds), we use the exact CEBRA 
hyperparameters that were used for this dataset from the paper introducing 
CEBRA36. In the other four datasets (N = 35 session-folds in b,d and h and N = 15 
session-folds in f), we also show CEBRA results for when hyperparameters are 
picked based on an extensive search (Methods). Two types of LSTM networks 
are shown, one fitted to decode behavior from neural activity and another fitted 
to predict the next time step of neural activity (self-prediction). We also show 
the results for DPAD when only using the first two optimization steps. Note that 

CEBRA-Behavior (denoted by D and F), LSTM for behavior decoding (denoted 
by H) and DPAD when only using the first two optimization steps (denoted by 
G) dedicate all their latent states to behavior-related objectives (for example, 
prediction or contrastive loss), whereas other methods dedicate some or all 
latent states to neural self-prediction. As in Fig. 3, the final latent dimension 
for each method in each session and fold is chosen (among powers of 2 up to 
128) as the smallest that reaches peak neural self-prediction in training data or 
reaches peak decoding in training data, whichever is larger (Methods). Across 
all datasets, DPAD outperforms baseline methods in terms of cross-validated 
neural–behavioral prediction and lies on the best performance frontier. For 
a summary of the fundamental differences in goals and capabilities of these 
methods, see Extended Data Table 1.
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to in our real datasets. We found that having the nonlinearity only in 
the behavior readout parameter Cz was largely sufficient for achieving 
high behavior decoding and neural self-prediction accuracies across 
all our datasets and modalities (Fig. 6b–i and Supplementary Fig. 6). 
First, for spiking activity, models with nonlinearity only in the behavior 
readout parameter Cz reached the best behavior decoding accuracy 
compared to models with other individual nonlinearities (Fig. 6c,e,i) 
while reaching almost the same decoding accuracy as fully nonlinear 

models (Fig. 6c,e,g,i). Second, these models with nonlinearity only in 
the behavior readout also reached a self-prediction accuracy that was 
unmatched by other types of individual nonlinearity (Fig. 6c,e,g,i). 
Overall, this meant that models with nonlinearity only in the behavior 
readout parameter Cz were always on the best performance frontier 
when compared to all other linear or nonlinear models (Fig. 6c,e,g,i). 
This result interestingly also held for both LFP modalities (Supple-
mentary Fig. 6).
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Fig. 5 | DPAD enables nonlinear and prioritized dynamical dimensionality 
reduction, thus learning more accurate models of behaviorally relevant 
neural dynamics with lower-dimensional latent states. a, The 3D reach  
task. b, Cross-validated decoding accuracy (CC) achieved by variations of  
linear/nonlinear DPAD/NDM for different latent state dimensions. For nonlinear 
DPAD/NDM, the nonlinearities are selected automatically based on the training 
data to maximize behavior decoding accuracy (flexible nonlinearity). Solid lines 
show the average across sessions and folds (N = 35 session-folds), and the shaded 
areas show the s.e.m.; Low-dim., low-dimensional. c, Decoding accuracy of 
nonlinear DPAD versus linear DPAD and nonlinear/linear NDM at the latent state 
dimension for which DPAD reaches within 5% of its peak decoding accuracy in the 

training data across all latent state dimensions. Bars, whiskers, dots and asterisks 
are defined as in Fig. 2b (N = 35 session-folds). d, Same as c for modeling of raw 
LFP (N = 35 session-folds). e, Same as c for modeling of LFP band power activity 
(N = 35 session-folds). f–j, Same as a–e for the second dataset with saccadic eye 
movements (N = 35 session-folds). k–m, Same as a–c for the third dataset, which 
did not include LFP data, with sequential cursor reaches controlled via a 2D 
manipulandum (N = 15 session-folds). n–r, Same as a–e for the fourth dataset, 
with random grid virtual reality cursor reaches controlled via fingertip position 
(N = 35 session-folds). For all DPAD variations, only the first two optimization 
steps were used in this figure (that is, n1 = nx) to only focus on learning 
behaviorally relevant neural dynamics in the dimensionality reduction regimen.
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Consistent with the above localization results, DPAD with flexible 
nonlinearity also, very frequently, automatically selected models 
with nonlinearity in the behavior readout parameter (Supplementary 
Fig. 7). However, critically, this observation on its own cannot conclude 
that nonlinearities can be isolated in the behavior readout parameter. 
This is because in the flexible nonlinearity approach, parameters may 
be selected as nonlinear as long as this nonlinearity does not hurt the 
prediction accuracies, which does not imply that such nonlinearities 
are necessary (Methods); this is why we need the hypothesis testing 
procedure above (Fig. 6a). Of note, using an LSTM for the recursion 
parameter A′ is one of the nonlinearity options that is automatically 

considered in DPAD (Extended Data Fig. 3), but we found that LSTM 
was rarely selected in our datasets as the recursion dynamics in the 
flexible search over nonlinearities (Supplementary Fig. 7). Finally, note 
that fitting models with a nonlinear behavior readout via a post hoc 
nonlinear refitting of linear DPAD models (1) cannot identify the origin 
of nonlinearity in general (for example, other brain regions or tasks) 
and (2) even in our datasets resulted in significantly worse decoding 
than the same models being fitted end-to-end as done by nonlinear 
DPAD (P ≤ 0.0027, one-sided signed-rank test, N ≥ 15).

Together, these results highlight the application of DPAD in ena-
bling investigations of nonlinear processing in neural computations 
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Fig. 6 | DPAD reveals that across our datasets, nonlinearities can be largely 
captured in the behavior readout of the model. a, The process of determining 
the origin of nonlinearity via hypothesis testing shown with an example 
simulation. Simulation results are taken from Extended Data Fig. 2b, and the 
origin is correctly identified as K. Pluses and whiskers are defined as in Fig. 3 
(N = 20 random models). b, The 3D reach task. c, DPAD’s hypothesis testing. 
Cross-validated neural self-prediction accuracy (CC) for each nonlinearity and 
the corresponding decoding accuracy. DPAD variations that have only one 
nonlinear parameter (for example, Cz) use a nonlinear neural network for that 
parameter and keep all other parameters linear. Linear and flexible nonlinear 
results are as in Fig. 3. Latent state dimension in each session and fold is chosen 
(among powers of 2 up to 128) as the smallest that reaches peak neural self-
prediction in training data or reaches peak decoding in training data, whichever 

is larger (Methods). Pluses and whiskers are defined as in Fig. 3 (N = 35 session-
folds). Annotated arrows indicate any individual nonlinearities that are on the 
best performance frontier compared to all other models. Results are shown for 
spiking activity here and for raw LFP and LFP power activity in Supplementary 
Fig. 6. d,e, Same as b and c for the second dataset with saccadic eye movements 
(N = 35 session-folds). f,g, Same as b and c for the third dataset, with sequential 
cursor reaches controlled via a 2D manipulandum (N = 15 session-folds).  
h,i, Same as b and c for the fourth dataset, with random grid virtual reality cursor 
reaches controlled via fingertip position (N = 35 session-folds). For all DPAD 
variations, the first 16 latent state dimensions are learned using the first two 
optimization steps, and the remaining dimensions are learned using the last two 
optimization steps (that is, n1 = 16).
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underlying specific behaviors. DPAD’s machinery can not only fit fully 
nonlinear models but also provide evidence for the location in the 
model where the nonlinearity can be isolated (Discussion).

Use-case 5: DPAD extends to noncontinuous and intermittent 
data
DPAD extends to intermittently sampled behavior observations. 
DPAD also supports intermittently sampled behaviors (Methods)56, 
that is, when behavior is measured only during a subset of time steps. 
We first confirmed in numerical simulations with random models 
that DPAD correctly learns the model with intermittently sampled 
behavioral data (Supplementary Fig. 8). Next, in each of our neural 
datasets, we emulated intermittent sampling by randomly discard-
ing up to 90% of behavior samples during learning. DPAD learned 
accurate nonlinear models even in this case (Extended Data Fig. 8). 
This capability is important, for example, in affective neuroscience or 
neuropsychiatry applications where the behavior consists of sparsely 
sampled momentary ecological assessments of mental states such as 
mood40. We next simulated a mood decoding application and found 
that with as low as one behavioral (for example, mood survey) sample 
per day, DPAD still outperformed NDM even when NDM had access to 

continuous behavior samples (Extended Data Fig. 9). These results 
suggest the potential utility of DPAD in such applications, although 
substantial future validation in data is needed7,40–42.

DPAD extends to noncontinuous-valued observations. DPAD also 
extends to modeling of noncontinuous-valued (for example, categori-
cal) behaviors (Methods). To demonstrate this, we modeled the trans-
formation from neural activity to the momentary phase of the task 
in the 3D reach task: reach, hold, return or rest (Fig. 7). Compared to 
nonlinear NDM (which is dynamic) or nonlinear nondynamic methods 
such as support vector machines, DPAD more accurately predicted 
the task phase at each point in time (Fig. 7). This capability can extend 
the utility of DPAD to categorical behaviors such as decision choices 
in cognitive neuroscience39.

Finally, we applied DPAD to nonsmoothed spike counts, where 
we compared the results with two noncausal sequential autoencoder 
methods, termed LFADS16 and TNDM18 (Supplementary Fig. 9), both 
of which have Poisson observations that model nonsmoothed spike 
counts16,18. TNDM18, which was developed after LFADS16 and con-
currently with our work44,56, adds behavioral terms to the objective 
function for a subset of latents but unlike DPAD does so with a mixed 
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dataset, we model spiking activity along with the epoch of the task as discrete 
behavioral data (Methods and Fig. 2a). The epochs/classes are (1) reaching toward 
the target, (2) holding the target, (3) returning to resting position and (4) resting  
until the next reach. b, DPAD’s predicted probability for each class is shown in a 
continuous segment of the test data. Most of the time, DPAD predicts the highest 
probability for the correct class. c, The cross-validated behavior classification 
performance, quantified as the area under curve (AUC) for the four-class 
classification, is shown for different methods at different latent state dimensions. 
Solid lines and shaded areas are defined as in Fig. 5b (N = 35 session-folds). 
AUC of 1 and 0.5 indicate perfect and chance-level classification, respectively. 
We include three nondynamic/static classification methods that map neural 
activity for a given time step to class label at the same time step (Extended Data 
Table 1): (1) multilayer neural network, (2) nonlinear support vector machine 

(SVM) and (3) linear discriminant analysis (LDA). d, Cross-validated behavior 
classification performance (AUC) achieved by each method when choosing 
the state dimension in each session and fold as the smallest that reaches peak 
classification performance in the training data among all state dimensions with 
that method (Methods). Bars, whiskers, dots and asterisks are defined as in Fig. 2b  
(N = 35 session-folds). e, Same as d when all methods use the same latent state 
dimension as DPAD (best nonlinearity for decoding) does in d (N = 35 session-
folds). c and e show DPAD’s benefit for dimensionality reduction.  
f, Cross-validated neural self-prediction accuracy achieved by each method 
versus the corresponding behavior classification performance. Here, the latent 
state dimension for each method in each session and fold is chosen (among 
powers of 2 up to 128) as the smallest that reaches peak neural self-prediction 
in training data or reaches peak decoding in training data, whichever is larger 
(Methods). Pluses and whiskers are defined as in Fig. 3 (N = 35 session-folds).
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objective and thus does not completely dissociate or prioritize behav-
iorally relevant dynamics (Extended Data Table 1 and Supplementary 
Note 3). Compared to both LFADS and TNDM, DPAD remained on the 
best performance frontier for predicting the neural–behavioral data 
(Supplementary Fig. 9a) and more accurately predicted behavior using 
low-dimensional latent states (Supplementary Fig. 9b). Beyond this, 
TNDM and LFADS also have fundamental differences with DPAD and 
do not address some of DPAD’s use-cases (Discussion and Extended 
Data Table 1).

Discussion
We developed DPAD for nonlinear dynamical modeling and investi-
gation of neural dynamics underlying behavior. DPAD can dissociate 
the behaviorally relevant neural dynamics and prioritize their learn-
ing over other neural dynamics, enable hypothesis testing regarding 
the origin of nonlinearity in the neural–behavioral transformation 
and achieve causal decoding. DPAD enables prioritized dynamical 
dimensionality reduction by extracting lower-dimensional yet more 
behavior-predictive latent states from neural population activity and 
supports modeling noncontinuous-valued (for example, categorical) 
and intermittently sampled behavioral data. These attributes make 
DPAD suitable for diverse use-cases across neuroscience and neuro-
technology, some of which we demonstrated here.

We found similar results for three neural modalities: spiking acti
vity, LFP band powers and raw LFP. For all modalities, nonlinear DPAD 
more accurately learned the behaviorally relevant neural dynamics 
than linear DPAD and linear/nonlinear NDM as reflected in its better 
decoding while also reaching the best performance frontier when con-
sidering both behavior decoding and neural self-prediction. Notably, 
the raw LFP activity benefited the most from nonlinear modeling using 
DPAD and outperformed LFP powers in all tasks in terms of decoding. 
This suggests that automatic learning of nonlinear models from raw 
LFP using DPAD reveals behaviorally relevant information that may be 
discarded when extracting traditionally used features such as LFP band 
powers. Also, nonlinearity was necessary to recover the extra informa-
tion in raw LFP, as, unlike DPAD modeling, linear dynamical modeling of 
raw LFP did not outperform that of LFP powers in most datasets. These 
results highlight another use-case of DPAD for automatic dynamic 
feature extraction from LFP data.

As another use-case, DPAD enabled an investigation of which ele-
ment in the neural–behavioral transformation was nonlinear. Interest-
ingly, consistently across our four movement-related datasets, DPAD 
models with nonlinearity only in the behavior readout performed 
similarly to fully nonlinear models, reaching the best performance fron-
tier for predicting future behavior and neural data using past neural  
data. The consistency of this result across our datasets is interesting 
because, as demonstrated in simulations (Extended Data Fig. 2, Supple
mentary Fig. 2 and Fig. 6a), the detected origin of nonlinearity could  
have technically been in any one (or more) of the following four elements  
(Fig. 1a,b): neural input, recurrent dynamics and neural or behavior 
readouts, all of which were correctly localized in simulations (Extended 
Data Fig. 2 and Supplementary Fig. 2). Thus, the consistent localization 
results on our neural datasets provide evidence that across these four 
tasks, neural dynamics in these recorded cortical areas may be largely 
describable with linear dynamics of sufficiently high dimension, with 
additional nonlinearities introduced somewhere between the neural 
state and behavior. This finding may be consistent with (1) introduction  
of nonlinear processing along the downstream neuromuscular pathway 
that goes from the recorded cortical area to the measured behavior  
or any of the convergent inputs along this pathway57–59 or (2) cognition 
intervening nonlinearly between these latent neural states and behav-
ior, for example, by implementing context-dependent computations60. 
This result illustrates how DPAD can provide new hypotheses and 
the machinery to test them in future experiments that would record 
from multiple additional brain regions (for example, both motor and 

cognitive regions) and use DPAD to model them together. Such analy-
ses may narrow down or revise the origin of nonlinearity for the wider 
neural–behavioral measurement set; for example, the state dynamics 
may be found to be nonlinear once additional brain regions are added. 
Localization of nonlinearity could also guide the design of competitive 
deep learning architectures that are more flexible or easier to imple-
ment in neurotechnologies such as brain–computer interfaces61.

Interestingly, the behavior decoding aspect of the localiza-
tion finding here is consistent with a prior study22 that explored the 
mapping of the motor cortex to an electromyogram (EMG) during a 
one-dimensional movement task with varying forces and found that a 
fully linear model was worse than a nonlinear EMG readout in decoding 
the EMG22. However, as our simulations show (Extended Data Fig. 2b 
and Fig. 6a), comparing a linear model to a model that has nonlinear 
behavior readout is not sufficient to conclude the origin of nonlinear-
ity, and a stronger test is needed (see Fig. 6a for a counter example 
and details in Methods). Further, this previous study22 used a specific 
condition-dependent nonlinearity for behavior readout rather than a 
universal nonlinear function approximator that DPAD enables. Finally, 
to conclude localization, the model with that specific nonlinearity 
should perform similarly to fully nonlinear models; however, unlike 
our results, a fully nonlinear LSTM model in some cases appears to 
outperform models with nonlinear readout in this prior study (see 
Fig. 7a,b in ref. 22 versus Fig. 9c in ref. 22); it is unclear if this result is 
due to this prior study’s specific readout nonlinearity being suboptimal 
or to the nonlinear origin being different in its dataset22. DPAD can 
address such questions by (1) allowing for training and comparison of 
alternative models with different nonlinear origins and (2) enabling a 
general (versus specific) nonlinearity in model parameters.

When hypothesis testing about where in the model nonlinearity 
can be isolated to, it may be possible to equivalently explain the same 
data with multiple types of nonlinearities (for example, with either 
a nonlinear neural input or a nonlinear readout). Such nonidentifi-
ability is a common limitation for latent models. However, when such 
equivalence exists, we expect all equivalent nonlinear models to have 
similar performance and thus lie on the best performance frontier. 
But this was not the case in our datasets. Instead, we found that the 
nonlinear behavior readout was in most cases the only individual 
nonlinear parameter on the best performance frontier, providing 
evidence that no other individual nonlinear parameter was as suitable 
in our datasets. Alternatively, the best model describing the data may 
require two or more of the four parameters to be nonlinear. But in our 
datasets, models with nonlinearity only in the behavior readout were 
always on the best performance frontier and could not be considerably 
outperformed by models with more than one nonlinearity (Fig. 6). 
Nevertheless, we note that ultimately our analysis simply provides 
evidence for one location of nonlinearity resulting in a better fit to 
data with a parsimonious model, but it does not rule out other pos-
sibilities for explaining the data. For example, one could reformulate 
a nonlinear readout model by adding latent states and representing 
the readout nonlinearity as a recursion nonlinearity for the additional 
states, although such an equivalent but less parsimonious model may 
need more data to be learned as accurately. Finally, we also note that 
our conclusions were based on the datasets and family of nonlinear 
models (recursive RNNs) considered here, and thus we cannot rule out 
different conclusions in other scenarios and/or brain regions. Neverthe-
less, by providing evidence for a nonlinearity configuration, DPAD can 
provide testable hypotheses for future experiments that record from 
more brain regions.

Sequential autoencoders, spearheaded by LFADS16, have been used 
to smooth single-trial neural activity16 without considering relevance to 
behavior, which is a distinct goal as we showed in comparison to PSID in 
our prior work6. Notably, another sequential autoencoder, termed TNDM, 
has been developed concurrently with our work44,56 that adds a behavior 
term to the optimization objective18. However, these approaches do 
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not enable several of the use-cases of DPAD here. First, unlike DPAD’s 
four-step learning approach, TNDM and LFADS use a single learning 
step with a neural-only objective (LFADS)16 or a mixed neural–behavioral 
objective (TNDM)18 that does not fully prioritize the behaviorally relevant 
neural dynamics (Extended Data Table 1 and Supplementary Note 3). 
DPAD’s prioritization is important for accurate learning of behaviorally 
relevant neural dynamics and for preserving them in dimensionality 
reduction, as our results comparing DPAD to TNDM/LFADS suggest 
(Supplementary Fig. 9). Second, TNDM and LFADS16,18, like other prior 
works16,18,20,23,24,26,61, do not provide flexible nonlinearity or explore 
hypotheses regarding the origin of nonlinearities because they use fixed 
nonlinear network structures (use-case 4). Third, TNDM considers spik-
ing activity and continuous behaviors18, whereas DPAD extends across 
diverse neural and behavioral modalities: spiking, raw LFP and LFP pow-
ers and continuous, categorical or intermittent behavioral modalities. 
Fourth, in contrast to these noncausal sequential autoencoders16,18 and 
some other nonlinear methods8,14, DPAD can process the test data caus-
ally and without expensive computations such as iterative expectation 
maximization8,14 or sampling and averaging16,18. This causal efficient 
processing is also important for real-time closed-loop brain–computer 
interfaces62,63. Of note, noncausal processing is also implemented in the 
DPAD code library as an option (Methods), although it is not shown in this 
work. Finally, unlike these prior methods14,16,18, DPAD does not require 
fixed-length trials or trial structure, making it suitable for modeling 
naturalistic behaviors5 and neural dynamics with trial-to-trial variability 
in the alignment to task events64.

Several methods can in some ways prioritize behaviorally relevant 
information while extracting latent embeddings from neural data but 
are distinct from DPAD in terms of goals and capabilities. One group 
includes nondynamic/static methods that do not explicitly model 
temporal dynamics1. These methods build linear maps (for example, as 
in demixed principal component analysis (dPCA)34) or nonlinear maps, 
such as convolutional maps in a concurrently44 developed method 
with DPAD named CEBRA36, to extract latent embeddings that can be 
guided by behavior either as a trial condition34 or indirectly as a con-
trastive loss36. These nondynamic mappings only use a single sample 
or a small fixed window around each sample of neural data to extract 
latent embeddings (Extended Data Table 1). By contrast, DPAD can 
recursively aggregate information from all past neural data by explicitly 
learning a model of temporal dynamics (recursion), which also enables 
forecasting unlike in static/nondynamic methods. These differences 
may be one reason why DPAD outperformed CEBRA in terms of neural–
behavioral prediction (Fig. 4). Another approach is used by task aligned 
manifold estimation (TAME-GP)9, which uses a Gaussian process prior 
(as in Gaussian process factor analysis (GPFA)14) to expand the window 
of neural activity used for extracting the embedding into a complete 
trial. Unlike DPAD, methods with a Gaussian process prior have limited 
support for nonlinearity, often do not have closed-forms for inference 
and thus necessitate numerical optimization even for inference9 and 
often operate noncausally9. Finally, the above methods do not provide 
flexible nonlinearity or hypothesis testing to localize the nonlinearity.

Other prior works have used RNNs either causally20,22–24,26 or non-
causally16,18, for example, for causal decoding of behavior from neural 
activity20,22–24,26. These works20,22–24,26 have similarities to the first step of 
DPAD’s four-step optimization (Supplementary Fig. 1a) in that the RNNs 
in these works learn dynamical models by solely optimizing behavior 
prediction. However, these works do not learn the mapping from the 
RNN latent states to neural activity, which is done in DPAD’s second 
optimization step to enable neural self-prediction (Supplementary 
Fig. 1a). In addition, unlike what the last two optimization steps in DPAD 
enable, these prior works do not model additional neural dynamics 
beyond those that decode behavior and thus do not dissociate the 
two types of neural dynamics (Extended Data Table 1). Finally, as noted 
earlier, these prior works9,20,23,24,26,36,61, similar to prior sequential autoen-
coders16,18, have fixed nonlinear network structures and thus cannot 

explore hypotheses regarding the origin of nonlinearities or flexibly 
learn the best nonlinear structure for the training data (Fig. 1c,d and 
Extended Data Table 1).

DPAD’s optimization objective functions are not convex, similar to 
most nonlinear deep learning methods. Thus, as usual with nonconvex 
optimizations, convergence to a global optimum is not guaranteed. 
Moreover, as with any method, quality and neural–behavioral pre-
diction of the learned models depend on dataset properties such as 
signal-to-noise ratio. Thus, we compare alternative methods within each 
dataset, suggesting that (for example, Fig. 4) across the multiple data-
sets here, DPAD learns more accurate models of neural–behavioral data. 
However, models in other datasets/scenarios may not be as accurate.

Here, we focused on using DPAD to model the transformation of 
neural activity to behavior. DPAD can also be used to study the transfor-
mation between other signals. For example, when modeling data from 
multiple brain regions, one region can be taken as the primary signal (yk) 
and another as the secondary signal (zk) to dissociate their shared ver-
sus distinct dynamics. Alternatively, when modeling the brain response 
to electrical7,41,42 or sensory41,65,66 stimulation, one could take the pri-
mary signal (yk) to be the stimulation and the secondary signal (zk) to 
be neural activity to dissociate and predict neural dynamics that are 
driven by stimulation. Finally, one may apply DPAD to simultaneously 
recorded brain activity from two subjects as primary and secondary 
signals to find shared intersubject dynamics during social interactions.
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Methods
Model formulation
Equation (1) simplifies the DPAD model by showing both of its RNN sec-
tions as one, but the general two-section form of the model is as follows:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[
x(1)k+1
x(2)k+1

] = [
A′(1) (x(1)k )

A′(2) (x(2)k )
] + [

K (1) ( yk)

K (2) (yk, x(1)k+1)
]

yk = C (1)
y (x(1)k ) + C (2)

y (x(2)k ) + ek

zk = C (1)
z (x(1)k ) + C (2)

z (x(2)k ) + ϵk

. (2)

This equation separates the latent states of Eq. (1) into the follow-
ing two parts: x(1)k ∈ ℝn1 denotes the latent states of the first RNN section 
that summarize the behaviorally relevant dynamics, and x(2)k ∈ ℝn2, with 
n2 = nx − n1, denotes those of the second RNN section that represent 
the other neural dynamics (Supplementary Fig. 1a). Here, A′(1), A′(2), K(1), 
K(2), C (1)

y , C (2)
y , C (1)

z  and C (2)
z  are multi-input–multi-output functions that 

parameterize the model, which we learn using a four-step numerical 
optimization formulation expanded on in the next section (Supple-
mentary Fig. 1a). DPAD also supports learning the initial value of the 
latent states at time 0 (that is, x(1)0  and x(2)0 ) as a parameter, but in all 
analyses in this paper, the initial states are simply set to 0 given their 
minimal impact when modeling long data sequences. Each pair of 
superscripted parameters (for example, A′(1) and A′(2)) in Eq. (2) is a dis-
sociated version of the corresponding nonsuperscripted parameter 
in Eq. (1) (for example, A′). The computation graph for Eq. (2) is provided 
in Fig. 1b (and Supplementary Fig. 1a). In Eq. (2), the recursions for 
computing x(1)k  are not dependent on x(2)k , thus allowing the former to 
be computed without the latter. By contrast, x(2)k  can depend on x(1)k , 
and this dependence is modeled via K(2) (see Supplementary Note 2). 
Note that such dependence of x(2)k  on x(1)k  via K(2) does not introduce new 
dynamics to x(2)k  because it does not involve the recursion parameter 
A′(2), which describes the dynamics of x(2)k . This two-section RNN for-
mulation is mathematically motivated by equivalent representations 
of a dynamical system model in different bases and by the relation 
between the predictor and stochastic forms of dynamical systems 
(Supplementary Notes 1 and 2).

For the RNN formulated in Eq. (1) or (2), neural activity yk consti-
tutes the input, and predictions of neural and behavioral signals are 
the outputs (Fig. 1b) given by

{
̂yk = Cy (xk)

̂zk = Cz (xk)
. (3)

Note that each xk is estimated purely using all past yk (that is, y1, …,  
yk – 1), so the predictions in Eq. (3) are one-step-ahead predictions 
of yk and zk using past neural observations (Supplementary Note 1).  
Once the model parameters are learned, the extraction of latent states 
xk involves iteratively applying the first line from Eq. (2), and predicting 
behavior or neural activity involves applying Eq. (3) to the extracted 
xk. As such, by writing the nonlinear model in predictor form67,68  
(Supplementary Note 1), we enable causal and computationally  
efficient prediction.

Learning: four-step numerical optimization approach
Background. Unlike nondynamic models1,34–36,69, dynamical models 
explicitly model temporal evolution in time series data. Recent dynami-
cal models have gone beyond linear or generalized linear dynami-
cal models2–7,70–81 to incorporate switching linear10–13, locally linear37 
or nonlinear14–21,23,24,26,27,38,61,82–90 dynamics, often using deep learning  
methods25,91–94. But these recent nonlinear/switching works do not aim 
to localize nonlinearity or allow for flexible nonlinearity and do not 
enable fully prioritized dissociation of behaviorally relevant neural 
dynamics because they either do not consider behavior in their learning 

objective at all14,16,37,38,61,95,96 or incorporate it with a mixed neural–behav-
ioral objective9,18,35,61 (Extended Data Table 1).

In DPAD, we develop a four-step learning method for training our 
two-section RNN in Eq. (1) and extracting the latent states that (1) ena-
bles dissociation and prioritized learning of the behaviorally relevant 
neural dynamics in the nonlinear model, (2) allows for flexible modeling 
and localization of nonlinearities, (3) extends to data with diverse 
distributions and (4) does all this while also achieving causal decoding 
and being applicable to data both with and without a trial structure. 
DPAD is for nonlinear modeling, and its multistep learning approach, 
in each step, uses numerical optimization tools that are rooted in deep 
learning. Thus, DPAD is mathematically distinct from our prior PSID 
work for linear models, which is an analytical and linear technique. PSID 
is based on analytical linear algebraic projections rooted in control 
theory6, which are thus not extendable to nonlinear modeling or to 
non-Gaussian, noncontinuous or intermittently sampled data. Thus, 
even when we restrict DPAD to linear modeling as a special case, it is 
still mathematically different from PSID6.

Overview. To dissociate and prioritize the behaviorally relevant 
neural dynamics, we devise a four-step optimization approach for 
learning the two-section RNN model parameters (Supplementary 
Fig. 1a). This approach prioritizes the extraction and learning of the 
behaviorally relevant dynamics in the first two steps with states 
x(1)k ∈ ℝn1 while also learning the rest of the neural dynamics in the last 
two steps with states x(2)k ∈ ℝn2  and dissociating the two subtypes of 
dynamics. This prioritization is important for accurate learning of 
behaviorally relevant neural dynamics and is achieved because of the 
multistep learning approach; the earlier steps learn the behaviorally 
relevant dynamics first, that is, with priority, and then the subsequent 
steps learn the other neural dynamics later so that they do not mask 
or confound the behaviorally relevant dynamics. Importantly, each 
optimization step is independent of subsequent steps so all steps can 
be performed in order, with no need to iteratively repeat any step. We 
define the neural and behavioral prediction losses that are used in 
the optimization steps based on the negative log-likelihoods (NLLs) 
associated with the neural and behavior distributions, respectively. 
This approach benefits from the statistical foundation of maximum 
likelihood estimation and facilitates generalizability across behav-
ioral distributions. We now expand on each of the four optimization 
steps for RNN training.

Optimization step 1. In the first two optimization steps (Supplemen-
tary Fig. 1a), the objective is to learn the behaviorally relevant latent 
states x(1)k  and their associated parameters. In the first optimization 
step, we learn the parameters A′(1), C (1)

z  and K(1) of the RNN

{
x(1)k+1 = A′(1) (x(1)k ) + K (1) ( yk)

zk = C (1)
z (x(1)k ) + ϵk

(4)

and estimate its latent state x(1)k  while minimizing the NLL of the behav-
ior zk given by x(1)k . For continuous-valued (Gaussian) behavioral data, 
we minimize the following sum of squared prediction error69,97  
given by

L(1)z = ∑
k
‖zk − ̂zk‖

2
2 = ∑

k

‖
‖zk − C (1)

z (x(1)k )‖‖
2

2
(5)

where the sum is over all available samples of behavior zk, and ‖.‖2   
indicates the two-norm operator. This objective, which is typically used 
when fitting models to continuous-valued data69,97, is proportional to 
the Gaussian NLL if we assume isotropic Gaussian residuals (that is, 
∑𝜖 = σ𝜖I)69,97. If desired, a general nonisotropic residual covariance ∑𝜖 
can be empirically computed from model residuals after the above 
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optimization is solved (see Learning noise statistics), although having 
∑𝜖 is mainly useful for simulating new data and is not needed when using 
the learned model for inference. Similarly, in the subsequent optimiza-
tion steps detailed later, the same points hold regarding how the appro-
priate mean squared error used for continuous-valued data is 
proportional to the Gaussian NLL if we assume isotropic Gaussian 
residuals and how the residual covariance can be computed empirically 
after the optimization if desired.

Optimization step 2. The second optimization step uses the extracted 
latent state x(1)k  from the RNN and fits the parameter C(1)y  in

yk = C (1)
y (x(1)k ) + ek (6)

while minimizing the NLL of the neural activity yk given by x(1)k . For 
continuous-valued (Gaussian) neural activity yk, we minimize the fol-
lowing sum of squared prediction error69:

L(1)y = ∑
k
‖ yk − ̂yk‖

2
2 = ∑

k

‖
‖ yk − C (1)

y (x(1)k )‖‖
2

2
, (7)

where the sum is over all available samples of yk. Optimization steps 1 
and 2 conclude the prioritized extraction and modeling of behaviorally 
relevant latent states x(1)k  (Fig. 1b) and the learning of the first section 
of the RNN model (Supplementary Fig. 1a).

Optimization step 3. In optimization steps 3 and 4 (Supplementary 
Fig. 1a), the objective is to learn any additional dynamics in neural 
activity that are not learned in the first two optimization steps, that is, 
x(2)k  and the associated parameters. To do so, in the third optimization 
step, we learn the parameters A′(2), C (2)

y  and K(2) of the RNN

{
x(2)k+1 = A′(2) (x(2)k ) + K (2) (yk, x(1)k+1)

y′k = C (2)
y (x(2)k ) + e′k

(8)

and estimate its latent state x(2)k  while minimizing the aggregate NLL of 
yk given both latent states, that is, by also taking into account the NLL 
obtained from step 2 via the C (1)

y (x(1)k ) term in Eq. (6). The notations y′k  
and e′k  in the second line of Eq. (8) signify the fact that it is not yk that is 
predicted by the RNN of Eq. (8), rather it is the yet unpredicted parts 
of yk (that is, unpredicted after extracting x(1)k ) that are being predicted. 
In the case of continuous-valued (Gaussian) neural activity yk, we mini-
mize the following loss:

L(2)y = ∑
k

‖
‖ yk − C (1)

y (x(1)k ) − C (2)
y (x(2)k )‖‖

2

2
, (9)

where the sum is over all available samples of yk. Note that in the 
continuous-valued (Gaussian) case, this loss is equivalent to minimizing 
the error in predicting the residual neural activity given by yk − C (1)

y (x(1)k ) 
and is computed using the previously learned parameter C (1)

y  and the 

previously extracted states x(1)k  in steps 1 and 2. Also, the input to the 
RNN in Eq. (8) includes both yk and the extracted x(1)k+1 from optimization 
step 1. The above shows how the optimization steps are appropriately 
linked together to compute the aggregate likelihoods.

Optimization step 4. If we assume that the second set of states x(2)k  do 
not contain any information about behavior, we could stop the mod-
eling. However, this may not be the case if the dimension of the states 
extracted in the first optimization step (that is, n1) is selected to be very 
small such that some behaviorally relevant neural dynamics are not 
learned in the first step. To be robust to such selections of n1, we can 
use another final numerical optimization to determine based on the 
data whether and how x(2)k  should affect behavior prediction. Thus, a 

fourth optimization step uses the extracted latent state in optimization 
steps 1 and 3 and fits Cz in

zk = Cz (x(1)k , x(2)k ) + ϵk (10)

while minimizing the negative log-likelihood of behavior given both 
latent states. In the case of continuous-valued (Gaussian) behavior zk, 
we minimize the following loss:

L(2)z = ∑
k
‖zk − ̂zk‖

2
2 = ∑

k

‖
‖zk − Cz(x(1)k , x(2)k )‖‖

2

2
. (11)

The parameter Cz that is learned in this optimization step will 
replace both C (1)

z  and C (2)
z  in Eq. (2). Optionally, in a final optimization 

step, a similar nonlinear mapping from x(1)k  and x(2)k  can also be learned, 
this time to predict yk, which allows DPAD to support nonlinear interac-
tions of x(1)k  and x(2)k  in predicting neural activity. In this case, the result-
ing learned Cy parameter will replace both C (1)

y  and C (2)
y  in Eq. (2). This 

concludes the learning of both model sections (Supplementary Fig. 1a) 
and all model parameters in Eq. (2).

In this work, when optimization steps 1 and 3 are both used to 
extract the latent states (that is, when 0 < n1 < nx), we do not perform 
the additional fourth optimization step in Eq. (10), and the prediction 
of behavior is done solely using the x(1)k  states extracted in the first 
optimization step. Note that DPAD can also cover NDM as a special case 
if we only use the third optimization step to extract the states (that is, 
n1 = 0, in which case the first two steps are not needed). In this case, we 
use the fourth optimization step to learn Cz, which is the mapping from 
the latent states to behavior. Also, in this case, we simply have a unified 
state xk as there is no dissociation in NDM, and the only goal is to extract 
states that predict neural activity accurately.

Additional generalizations of state dynamics. Finally, the first lines 
of Eqs. (4) and (8) can also be written more generally as

x(1)k+1 = A′′(1) (x(1)k , yk) (12)

and

x(2)k+1 = A′′(2) (x(2)k , yk, x(1)k+1) , (13)

where instead of an additive relation between the two terms of the 
righthand side, both terms are combined in nonlinear functions A′′(1) 
and A′′(2), which as a special case can still learn the additive relation in 
Eqs. (4) and (8). Whenever both the state recursion A and neural input 
K parameters (with the appropriate superscripts) are specified to be 
nonlinear, we use the more general architecture in Eqs. (12) and (13), 
and if any one of A or K or both are linear, we use Eqs. (4) and (8).

As another option, both RNN sections can be made bidirectional, 
which enables noncausal prediction for DPAD by using future data in 
addition to past data, with the goal of improving prediction, espe-
cially in datasets with stereotypical trials. Although this option is not 
reported in this work, it is implemented and available for use in DPAD’s 
public code library.

Learning noise statistics. Once the learning is complete, we also com-
pute the covariances of the neural and behavior residual time series 
ek and 𝜖k as ∑e and ∑𝜖, respectively. This allows the learned model in  
Eq. (1) to be usable for generating new simulated data. This applica-
tion is not the focus of this work, but an explanation of it is provided 
in Numerical simulations.

Regularization. Adding norm 1 or norm 2 regularization for any 
set of parameters and the option to automatically select the regu-
larization weight with inner cross-validation is implemented in the  
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DPAD code. However, we did not use regularization in any of the analy-
ses presented here.

Forecasting. DPAD also enables the capability to predict neural–behav-
ioral data more than one time step into the future. To obtain two-step-ahead 
prediction, we pass the one-step-ahead neural predictions of the model 
as neural observations into it. This allows us to perform one state update 
iteration, that is, line 1 of Eq. (2), with yk being replaced with ̂yk from Eq. (3). 
Repeating this procedure m times gives the (m + 1)-step-ahead prediction 
of the latent state and neural–behavioral data.

Extending to intermittently measured behaviors
We also extend DPAD to modeling intermittently measured behavior 
time series (Extended Data Figs. 8 and 9 and Supplementary Fig. 8). 
To do so, when forming the behavior loss (Eqs. (5) and (11)), we only 
compute the loss on samples where the behavior is measured and solve 
the optimization with this loss.

Extending to noncontinuous-valued data observations
We can also extend DPAD to noncontinuous-valued (non-Gaussian) 
observations by devising modified loss functions and observation 
models. Here, we demonstrate this extension for categorical behavioral 
observations, for example, discrete choices or epochs/phases during 
a task (Fig. 7). A similar approach could be used in the future to model 
other non-Gaussian behaviors and non-Gaussian (for example, Poisson) 
neural modalities, as shown in a thesis56.

To model categorical behaviors, we devise a new behavior obser-
vation model for DPAD by making three changes. First, we change the 
behavior loss (Eqs. (5) and (11)) to the NLL of a categorical distribu-
tion, which we implement using the dedicated class in the TensorFlow 
library (that is, tf.keras.losses.CategoricalCrossentropy). Second, we 
change the behavior readout parameter Cz to have an output dimen-
sion of nz × nc instead of nz, where nc denotes the number of behavior 
categories or classes. Third, we apply Softmax normalization (Eq. (14)) 
to the output of the behavior readout parameter Cz to ensure that for 
each of the nz behavior dimensions, the predicted probabilities for all 
the nc classes add up to 1 so that they represent valid probability mass 
functions. Softmax normalization can be written as

p(m,n)k =
exp (l (m,n)k )

∑nc
i=1 exp (l

(m,i)
k )

, (14)

where lk ∈ ℝnz×nc is the output of Cz at time k, and the superscript (m,n) 
denotes the element of lk associated with the behavior dimension m 
and the class/category number n. With these changes, we obtain a new 
RNN architecture with categorical behavioral outputs. We then learn 
this new RNN architecture with DPAD’s four-step prioritized optimiza-
tion approach as before but now incorporating the modified NLL losses 
for categorical data. Together, with these changes, DPAD extends to 
modeling categorical behavioral measurements.

Behavior decoding and neural self-prediction metrics and 
performance frontier
Cross-validation. To evaluate the learning, we perform a 
cross-validation with five folds (unless otherwise noted). We cut the 
data from the recording session into five equal continuous segments, 
leave these segments out one by one as the test data and train the model 
only using the data in the remaining segments. Once the model is 
trained using the neural and behavior training data, we pass the neural 
test data to the model to get the latent states in the test data using the 
first line of Eq. (1) (or Eq. (2), equivalently). We then pass the extracted 
latent states to Eq. (3) to get the one-step-ahead prediction of the 
behavior and neural test data, which we refer to as behavior decoding 
and neural self-prediction, respectively. Note that only past neural data 

are used to get the behavior and neural predictions. Also, the behavior 
test data are never used in predictions. Given the predicted behavior 
and neural time series, we compute the CC between each dimension of 
these time series and the actual behavior and neural test time series. We 
then take the mean of CC across dimensions of behavior and neural data 
to get one final cross-validated CC value for behavior decoding and one 
final CC value for neural self-prediction in each cross-validation fold.

Selection of the latent state dimension. We often need to select a 
latent state dimension to report an overall behavior decoding and/or 
neural self-prediction accuracy for each model/method (for example, 
Figs. 2–7). By latent state dimension, we always refer to the total latent 
state dimension of the model, that is, nx. For DPAD, unless otherwise 
noted, we always used n1 = 16 to extract the first 16 latent state dimen-
sions (or all latent state dimensions when nx ≤ 16) using steps 1 and 2 and 
any remaining dimensions using steps 3 and 4. We chose n1 = 16 because 
dedicating more, even all, latent state dimensions to behavior predic-
tion only minimally improved it across datasets and neural modalities. 
For all methods, to select a state dimension nx, in each cross-validation 
fold, we fit models with latent state dimensions 1, 2, 4, 16,…and 128 
(powers of 2 from 1 to 128) and select one of these models based on 
their decoding and neural self-prediction accuracies within the training 
data of that fold. We then report the decoding/self-prediction of this 
selected model computed in the test data of that fold. Our goal is often 
to select a model that simultaneously explains behavior and neural data 
well. For this goal, we pick the state dimension that reaches the peak 
neural self-prediction in the training data or the state dimension that 
reaches the peak behavior decoding in the training data, whichever 
is larger; we then report both the neural self-prediction and the cor-
responding behavior decoding accuracy of the same model with the 
selected state dimension in the test data (Figs. 3–4, 6 and 7f, Extended 
Data Figs. 3 and 4 and Supplementary Figs. 4–7 and 9). Alternatively, 
for all methods, when our goal is to find models that solely aim to 
optimize behavior prediction, we report the cross-validated predic-
tion performances for the smallest state dimension that reaches peak 
behavior decoding in training data (Figs. 2, 5 and 7d, Extended Data 
Fig. 8 and Supplementary Fig. 3). We emphasize that in all cases, the 
reported performances are always computed in the test data of the 
cross-validation fold, which is not used for any other purpose such as 
model fitting or selection of the state dimension.

Performance frontier. When comparing a group of alternative models, 
we use the term ‘performance frontier’ to describe the best perfor-
mances reached by models that in every comparison with any alterna-
tive model are in some sense better than or at least comparable to the 
alternative model. More precisely, when comparing a group ℳ  of 
models, model 𝒜𝒜 ∈ ℳ  will be described as reaching the best perfor-
mance frontier when compared to every other model ℬ∈ℳ, 𝒜𝒜 is sig-
nificantly better than ℬ in behavior decoding or in neural self-prediction 
or is comparable to ℬ in both. Note that 𝒜𝒜 may be better than some 
model ℬ1 ∈ ℳ  in decoding while being better than another model 
ℬ2 ∈ ℳ in self-prediction; nevertheless 𝒜𝒜 will be on the frontier as long 
as in every comparison one of the following conditions hold: (1) there 
is at least one measure for which 𝒜𝒜 is more performant and (2) 𝒜𝒜 is at 
least equally performant in both measures. To avoid exclusion of mod-
els from the best performance frontier due to very minimal perfor-
mance differences, in this analysis, we only declare a difference in 
performance significant if in addition to resulting in P ≤ 0.05 in a 
one-sided signed-rank test there is also at least 1% relative difference 
in the mean performance measures.

DPAD with flexible nonlinearity: automatic determination of 
appropriate nonlinearity
Fine-grained control over nonlinearities. Each parameter in the DPAD 
model represents an operation in the computation graph of DPAD 
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(Fig. 1b and Supplementary Fig. 1a). We solve the numerical optimiza-
tions involved in model learning in each step of our multistep learning 
via standard stochastic gradient descent43, which remains applicable 
for any modification of the computation graph that remains acyclic. 
Thus, the operation associated with each model parameter (for exam-
ple, A′, K, Cy and Cz) can be replaced with any multilayer neural network 
with an arbitrary number of hidden units and layers (Supplementary 
Fig. 1c), and the model remains trainable with the same approach. Hav-
ing no hidden layers implements the special case of a linear mapping 
(Supplementary Fig. 1b). Of course, given that the training data are 
finite, the typical trade-off between model capacity and generalization 
error remains69. Given that neural networks can approximate any con-
tinuous function (with a compact domain)98, replacing model param-
eters with neural networks should have the capacity to learn any 
nonlinear function in their place99–101. The resulting RNN in Eq. (1) can 
in turn approximate any state-space dynamics (under mild condi-
tions)102. In this work, for nonlinear parameters, we use multilayer 
feed-forward networks with one or two hidden layers, each with 64 or 
128 units. For all hidden layers, we always use a rectified linear unit 
(ReLU) nonlinear activation (Supplementary Fig. 1c). Finally, when 
making a parameter (for example, Cz) nonlinear, we always do so for 
that parameter in both sections of the RNN (for example, both C (1)

z  and 
C (2)
z ; see Supplementary Fig. 1a) and using the same feed-forward net-

work structure. Given that no existing RNN implementation allowed 
individual RNN elements to be independently set to arbitrary multilayer 
neural networks, we developed a custom TensorFlow RNN cell to imple-
ment the RNNs in DPAD (Eqs. (4) and (8)). We used the Adam optimizer 
to implement gradient descent for all optimization steps43. We contin-
ued each optimization for up to 2,500 epochs but stopped earlier if 
the objective function did not improve in three consecutive epochs 
(convergence criteria).

Automatic selection of nonlinearity settings. We devise a procedure 
for automatically determining the most suitable combination of nonlin-
earities for the data, which we refer to as DPAD with flexible nonlinear-
ity. In this procedure, for each cross-validation fold in each recording 
session of each dataset, we try a series of nonlinearities within the train-
ing data and select one based on an inner cross-validation within the 
training data (Fig. 1d). Specifically, we consider the following options 
for the nonlinearity. First, each of the four main parameters (that is, 
A′, K, Cy and Cz) can be linear or nonlinear, resulting in 16 cases (that is, 
24). In cases with nonlinearity, we consider four network structures for 
the parameters, that is, having one or two hidden layers and having 64 
or 128 units in each hidden layer (Supplementary Fig. 1c), resulting in 
61 cases (that is, 15 × 4 + 1, where 1 is for the fully linear model) overall. 
Finally, specifically for the recursion parameter A′, we also consider 
modeling it as an LSTM, with the other parameters still having the 
same nonlinearity options as before, resulting in another 29 cases for 
when this LSTM recursion is used (that is, 7 × 4 + 1, where 1 is for the 
case where the other three model parameters are all linear), bringing 
the total number of considered cases to 90. For each of these 90 con-
sidered linear or nonlinear architectures, we perform a twofold inner 
cross-validation within the training data to compute an estimate of 
the behavior decoding and neural self-prediction of each architecture 
using the training data. Note that although this process for automatic 
selection of nonlinearities is computationally expensive, it is paral-
lelizable because each candidate model can be fitted independently 
on a different processor. Once all candidate architectures are fitted 
and evaluated within the training data, we select one final architec-
ture purely based on training data to be used for that cross-validation 
fold based on one of the following two criteria: (1) decoding focused: 
pick the architecture with the best neural self-prediction in training 
data among all those that reach within 1 s.e.m. of the best behavior 
decoding; or (2) self-prediction focused: pick the architecture with 
the best behavior decoding in training data among all those that reach 

within 1 s.e.m. of the best neural self-prediction. The first criterion 
prioritizes good behavior decoding in the selection, and the second 
criterion prioritizes good neural self-prediction. Note that these two 
criteria are used when selecting among different already-learned 
models with different nonlinearities and thus are independent of the 
four internal objective functions used in learning the parameters for 
a given model with the four-step optimization approach (Supple-
mentary Fig. 1a). For example, in the first optimization step of DPAD, 
model parameters are always learned to optimize behavior decoding  
(Eq. (5)). But once the four-step optimization is concluded and different 
models (with different combinations of nonlinearities) are learned, we 
can then select among these already-learned models based on either 
neural self-prediction or behavior decoding. Thus, whenever neural 
self-prediction is also of interest, we report the results for flexible 
nonlinearity based on both model selection criteria (for example, 
Figs. 3, 4 and 6).

Localization of nonlinearities. DPAD enables an inspection of where 
nonlinearities can be localized to by providing two capabilities, with-
out either of which the origin of nonlinearities may be incorrectly 
found. As the first capability, DPAD can train alternative models with 
different individual nonlinearities and then compare these alterna-
tive nonlinear models not only with a fully linear model but also 
with each other and with fully nonlinear models (that is, flexible 
nonlinearity). Indeed, our simulations showed that simply compar-
ing a linear model to a model with nonlinearity in a given parameter 
may incorrectly identify the origin of nonlinearity (Extended Data 
Fig. 2b and Fig. 6a). For example, in Fig. 6a, although the nonlinearity 
is just in the neural input parameter, a linear model does worse than 
a model with a nonlinear behavior readout parameter. Thus, just a 
comparison of the latter model to a linear model would incorrectly 
find the origin of nonlinearity to be the behavior readout. This issue 
is avoided in DPAD because it can also train a model with the neural 
input being nonlinear, thus finding it to be more predictive than 
models with any other individual nonlinearity and as predictive as a 
fully nonlinear model (Fig. 6a). As the second capability, DPAD can 
compare alternative nonlinear models in terms of overall neural–
behavioral prediction rather than either behavior decoding or neural 
prediction alone. Indeed, our simulations showed that comparing the 
models in terms of just behavior decoding (Extended Data Fig. 2d,f) 
or just neural self-prediction (Extended Data Fig. 2d,h) may lead 
to incorrect conclusions about the origin of nonlinearities; this is 
because a model with the incorrect origin may be equivalent in one 
of these metrics to the one with the correct origin. DPAD avoids this 
problem by jointly evaluating both neural–behavioral metrics. Here, 
when comparing models with nonlinearity in different individual 
parameters for localization purposes (for example, Fig. 6), we only 
consider one network architecture for the nonlinearity, that is, having 
one hidden layer with 64 units.

Numerical simulations
To validate DPAD in numerical simulations, we perform two sets of 
simulations. One set validates linear modeling to show the correct-
ness of the four-step numerical optimization for learning. The other 
set validates nonlinear modeling. In the linear simulation, we ran-
domly generate 100 linear models with various dimensionality and 
noise statistics, as described in our prior work6. Briefly, the neural 
and behavior dimensions are selected from 5 ≤ ny, nz ≤ 10 randomly 
with uniform probability. The state dimension is selected as nx = 16, 
of which n1 = 4 latent state dimensions are selected to drive behavior. 
Eigenvalues of the state transition matrix are selected randomly as 
complex conjugate pairs with uniform probability within the unit disk. 
Each element in the behavior and neural readout matrices is generated 
as a random Gaussian variable. State and neural observation noise 
covariances are generated as random positive definite matrices and 
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scaled randomly with a number between 0.003 and 0.3 or between 
0.01 and 100, respectively, to obtain a wide range of relative noises 
across random models. A separate random linear state-space model 
with four latent state dimensions is generated to produce the behav-
ior readout noise 𝜖k, representing the behavior dynamics that are not 
encoded in the recorded neural activity. Finally, the behavior readout 
matrix is scaled to set the ratio of the signal standard deviation to noise 
standard deviation in each behavior dimension to a random number 
from 0.5 to 50. We perform model learning and evaluation with twofold 
cross-validation (Extended Data Fig. 1).

In the nonlinear simulations that are used to validate both DPAD 
and the hypothesis testing procedure it enables to find the origin 
of nonlinearity, we start by generating 20 random linear models 
(ny = nz = 1) either with nx = nz = ny (Extended Data Fig. 2) or nx = 2 latent 
states, only one of which drives behavior (Supplementary Fig. 2). We 
then introduce nonlinearity in one of the four model parameters (that 
is, A′, K, Cy or Cz) by replacing that parameter with a nonlinear trigono-
metric function, such that roughly one period of the trigonometric 
function is visited by the model (while keeping the rest of the param-
eters linear). To do this, we first scale each latent state in the initial 
random linear model to find a similarity transform for it where the 
latent state has a 95% confidence interval range of 2π. We then add a sine 
function to the original parameter that is to be changed to nonlinear 
and scale the amplitude of the sine such that its output reaches roughly 
0.25 of the range of the outputs from the original linear parameter. 
This was done to reduce the chance of generating unrealistic unstable 
nonlinear models that produce outputs with infinite energy, which is 
likely when A′ is nonlinear. Changing one parameter to nonlinear can 
change the range of the statistics of the latent states in the model; thus, 
we generate some simulated data from the model and redo the scaling 
of the nonlinearity until ratio conditions are met.

To generate data from any nonlinear model in Eq. (1), we first 
generate a neural noise time series ek based on its covariance ∑e in the 
model and initialize the state as x0 = 0. We then iteratively apply the 
second and first lines of Eq. (1) to get the simulated neural activity yk 
from line 2 and then the next state xk+1 from line 1, respectively. Finally, 
once the state time series is produced, we generate a behavior noise 
time series 𝜖k based on its covariance ∑𝜖 in the model and apply the third 
line of Eq. (1) to get the simulated behavior zk. Similar to linear simula-
tions, we perform the modeling and evaluation of nonlinear simula-
tions with twofold cross-validation (Extended Data Fig. 2 and 
Supplementary Fig. 2).

Neural datasets and behavioral tasks
We evaluate DPAD in five datasets with different behavioral tasks, brain 
regions and neural recording modalities to show the generality of our 
conclusions. For each dataset, all animal procedures were performed in 
compliance with the National Research Council Guide for Care and Use 
of Laboratory Animals and were approved by the Institutional Animal 
Care and Use Committee at the respective institution, namely New York 
University (datasets 1 and 2)6,45,46, Northwestern University (datasets 3 
and 5)47,48,54 and University of California San Francisco (dataset 4)21,49.

Across all four main datasets (datasets 1 to 4), the spiking activity 
was binned with 10-ms nonoverlapping bins, smoothed with a Gauss-
ian kernel with standard deviation of 50 ms (refs. 6,14,34,103,104) and 
downsampled to 50 ms to be used as the neural signal to be modeled. 
The behavior time series was also downsampled to a matching 50 ms 
before modeling. In the three datasets where LFP activity was also 
available, we also studied two types of features extracted from LFP. 
As the first LFP feature, we considered raw LFP activity itself, which 
was high-pass filtered above 0.5 Hz to remove the baseline, low-pass 
filtered below 10 Hz (that is, antialiasing) and downsampled to the 
behavior sampling rate of a 50-ms time step (that is, 20 Hz). Note that 
in the context of the motor cortex, low-pass-filtered raw LFP is also 
referred to as the local motor potential50–52,105,106 and has been used 

to decode behavior6,50–53,105–107. As the second feature, we computed 
the LFP log-powers5–7,40,77,79,106,108,109 in eight standard frequency bands 
(delta: 0.1–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, low beta: 12–24 Hz, 
mid-beta: 24–34 Hz, high beta: 34–55 Hz, low gamma: 65–95 Hz and 
high gamma: 130–170 Hz) in sliding 300-ms windows at a time step 
of 50 ms using Welch’s method (using eight subwindows with 50% 
overlap)6. The median analyzed data length for each session across 
the datasets ranged from 4.6 to 9.9 min.

First dataset: 3D reaches to random targets. In the first dataset, the 
animal (named J) performed reaches to a target randomly positioned 
in 3D space within the reach of the animal, grasped the target and 
returned its hand to resting position6,45. Kinematic data were acquired 
using the Cortex software package (version 5.3) to track retroreflective 
markers in 3D (Motion Analysis)6,45. Joint angles were solved from the 
3D marker data using a Rhesus macaque musculoskeletal model via the 
SIMM toolkit (version 4.0, MusculoGraphics)6,45. Angles of 27 joints in 
the shoulder, elbow, wrist and fingers in the active hand (right hand) 
were taken as the behavior signal6,45. Neural activity was recorded 
with a 137-electrode microdrive (Gray Matter Research), of which 28 
electrodes were in the contralateral primary motor cortex M1. The 
multiunit spiking activity in these M1 electrodes was used as the neural 
signal. For LFP analyses, LFP features were also extracted from the same 
M1 electrodes. We analyzed the data from seven recording sessions.

To visualize the low-dimensional latent state trajectories for each 
behavioral condition (Extended Data Fig. 6), we determined the peri-
ods of reach and return movements in the data (Fig. 7a), resampled 
them to have similar number of time samples and averaged the latent 
states across those resampled trials. Given the redundancy in latent 
descriptions (that is, any scaling, rotation and so on on the latent 
states still gives an equivalent model), before averaging trials across 
cross-validation folds and sessions, we devised the following procedure 
to standardize the latent states for each fold in the case of 2D latent 
states (Extended Data Fig. 6). (1) We z score all state dimensions to have 
zero mean and unit variance. (2) We rotate the 2D latent states such that 
the average 2D state trajectory for the first condition (here, the reach 
epochs) starts from an angle of 0. (3) We estimate the direction of the 
rotation for the average 2D state trajectory of the first condition, and if 
it is not counterclockwise, we multiply the second state dimension by 
–1 to make it so. Note that in each step, the same mapping is applied to 
the latent states during the whole test data, regardless of condition, so 
this procedure does not alter the relative differences in the state trajec-
tory across different conditions. The procedure also does not change 
the learned model and simply corresponds to a similarity transform 
that changes the basis of the model. This procedure only removes 
the redundancies for describing a 2D latent state-space model and 
standardizes the extracted latent states so that trials across different 
test sets can be averaged together.

Second dataset: saccadic eye movements. In the second dataset, the 
animal (named A) performed saccadic eye movements to one of eight 
targets on a display6,46. The visual stimuli in the task with saccadic eye 
movements were controlled via custom LabVIEW (version 9.0, National 
Instruments) software executed on a real-time embedded system 
(NI PXI-8184, National Instruments)46. The 2D position of the eye was 
tracked and taken as the behavior signal. Neural activity was recorded 
with a 32-electrode microdrive (Gray Matter Research) covering the 
prefrontal cortex6,46. Single-unit activity from these electrodes, rang-
ing from 34 to 43 units across different recording sessions, was used 
as the neural signal. For LFP analyses, LFP features were also extracted 
from the same 32 electrodes. We analyzed the data from the first 7 days 
of recordings. We only included data from successful trials where the 
animal performed the task correctly by making a saccadic eye move-
ment to the specified target. To visualize the low-dimensional latent 
state trajectories for each behavioral condition (Extended Data Fig. 6), 
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we grouped the trials based on their target position. Standardization 
across folds before averaging was done as in the first dataset.

Third dataset: sequential reaches with a 2D cursor controlled 
with a manipulandum. In the third dataset, which was collected and 
made publicly available by the laboratory of L. E. Miller47,48, the animal 
(named T) controlled a cursor on a 2D screen using a manipulandum 
and performed a sequential reach task47,48. The 2D cursor position and 
velocity were taken as the behavior signal. Neural activity was recorded 
using a 100-electrode microelectrode array (Blackrock Microsystems) 
in the dorsal premotor cortex47,48. Single-unit activity, recorded from 
37 to 49 units across recording sessions, was used as the neural signal. 
This dataset did not include any LFP recordings, so LFP features could 
not be considered. We analyzed the data from all three recording ses-
sions. To visualize the low-dimensional latent state trajectories for 
each behavioral condition (Extended Data Fig. 6), we grouped the trials 
into eight different conditions based on the angle of the direction of 
movement (that is, end position minus starting position) during the 
trial, with each condition covering movement directions within a 45° 
(that is, 360/8) range. Standardization across folds before averaging 
was performed as in the first dataset.

Fourth dataset: virtual reality random reaches with a 2D cursor 
controlled with the fingertip. In the fourth dataset, which was col-
lected and made publicly available by the laboratory of P. N. Sabes49, the 
animal (named I) controlled a cursor based on the fingertip position on 
a 2D surface within a 3D virtual reality environment21,49. The 2D cursor 
position and velocity were taken as the behavior signal. Neural activ-
ity was recorded with a 96-electrode microelectrode array (Blackrock 
Microsystems)21,49 covering M1. We selected a random subset of 32 of 
these electrodes, which had 77 to 99 single units across the record-
ing sessions, as the neural signal. LFP features were also extracted 
from the same 32 electrodes. We analyzed the data for the first seven 
sessions for which the wideband activity was also available (sessions 
20160622/01 to 20160921/01). Grouping into conditions for visualiza-
tion of low-dimensional latent state trajectories (Extended Data Fig. 6) 
was done as in the third dataset. Standardization across folds before 
averaging was done as in the first dataset.

Fifth dataset: center-out cursor control reaching task. In the fifth 
dataset, which was collected and made publicly available by the labo-
ratory of L. E. Miller54, the animal (named H) controlled a cursor on 
a 2D screen using a manipulandum and performed reaches from a 
center point to one of eight peripheral targets (Fig. 4i). The 2D cur-
sor position was taken as the behavior signal. Neural activity was  
recorded with a 96-electrode microelectrode array (Blackrock 
Microsystems) covering area 2 of the somatosensory cortex54. Pre-
processing for this dataset was done as in ref. 36. Specifically, the spik-
ing activity was binned with 1-ms nonoverlapping bins and smoothed 
with a Gaussian kernel with a standard deviation of 40 ms (ref. 110), 
with the behavior also being sampled with the same 1-ms sampling 
rate. Trials were also aligned as in the same prior work110 with data 
from –100 to 500 ms around movement onset of each trial being 
used for modeling36.

Additional details for baseline methods
For the fifth dataset, which has been analyzed in ref. 36 and intro-
duces CEBRA, we used the exact same CEBRA hyperparameters as 
those reported in ref. 36 (Fig. 4i,j). For each of the other four datasets 
(Fig. 4a–h), when learning a CEBRA-Behavior or CEBRA-Time model for 
each session, fold and latent dimension, we also performed an extensive 
search over CEBRA hyperparameters and picked the best value with 
the same inner cross-validation approach as we use for the automatic 
selection of nonlinearities in DPAD. We considered 30 different sets 
of hyperparameters: 3 options for the ‘time-offset’ hyperparameter 

(1, 2 or 10) and 10 options for the ‘temperature’ hyperparameter (from 
0.0001 to 0.01), which were designed to include all sets of hyperpa-
rameters reported for primate data in ref. 36. We swept the CEBRA 
latent dimension over the same values as DPAD, that is, powers of 2 up 
to 128. In all cases, we used a k-nearest neighbors regression to map 
the CEBRA-extracted latent embeddings to behavior and neural data 
as done in ref. 36 because CEBRA itself does not learn a reconstruction 
model36 (Extended Data Table 1).

It is important to note that CEBRA and DPAD have fundamentally 
different architectures and goals (Extended Data Table 1). CEBRA  
uses a small ten-sample window (when ‘model_architecture’ is  
‘offset10-model’) around each datapoint to extract a latent embed-
ding via a series of convolutions. By contrast, DPAD learns a dynamical 
model that recursively aggregates all past neural data to extract an 
embedding. Also, in contrast to CEBRA-Behavior, DPAD’s embedding 
includes and dissociates both behaviorally relevant neural dimen-
sions and other neural dimensions to predict not only the behavior 
but also the neural data well. Finally, CEBRA does not automatically 
map its latent embeddings back to neural data or to behavior during 
learning but does so post hoc, whereas DPAD learns these mappings 
for all its latent states. Given these differences, several use-cases of 
DPAD are not targeted by CEBRA, including explicit dynamical mod-
eling of neural–behavioral data (use-case 1), flexible nonlinearity, 
hypothesis testing regarding the origin of nonlinearity (use-case 4) 
and forecasting.

Statistics
We used the Wilcoxon signed-rank test for all paired statistical tests.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Three of the datasets used in this work are publicly available47–49,54. 
The other two datasets used to support the results are available upon 
reasonable request from the corresponding author. Source data are 
provided with this paper.

Code availability
The code for DPAD is available at https://github.com/ShanechiLab/
DPAD.
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Extended Data Fig. 1 | DPAD dissociates and prioritizes the behaviorally 
relevant neural dynamics while also learning the other neural dynamics 
in numerical simulations of linear models. a, Example data generated from 
one of 100 random models (Methods). These random models do not emulate 
real data but for terminological consistency, we still refer to the primary signal 
(that is, yk in Eq. (1)) as the ‘neural activity’ and to the secondary signal (that is, 
zk in Eq. (1)) as the ‘behavior’. b, Cross-validated behavior decoding accuracy 
(correlation coefficient, CC) for each method as a function of the number 
of training samples when we use a state dimension equal to the total state 
dimension of the true model. The performance measures for each random model 
are normalized by their ideal values that were achieved by the true model itself. 
Performance for the true model is shown in black. Solid lines and shaded areas 
are defined as in Fig. 5b (N = 100 random models). c, Same as b but when learned 
models have low-dimensional latent states with enough dimensions just for the 
behaviorally relevant latent states (that is, nx = n1). d-e, Same as b-c showing the 

cross-validated normalized neural self-prediction accuracy. Linear NDM, which 
learns the parameters using a numerical optimization, performs similarly to a 
linear algebraic subspace-based implementation of linear NDM67, thus validating 
NDM’s numerical optimization implementation. Linear DPAD, just like PSID6, 
achieves almost ideal behavior decoding even with low-dimensional latent 
states (c); this shows that DPAD correctly dissociates and prioritizes behaviorally 
relevant dynamics, as opposed to aiming to simply explain the most neural 
variance as non-prioritized methods such as NDM do. For this reason, with a low-
dimensional state, non-prioritized NDM methods can explain neural activity well 
(e) but prioritized methods can explain behavior much better (c). Nevertheless, 
using the second stage of PSID and the last two optimization steps in DPAD, these 
two prioritized techniques are still able to learn the overall neural dynamics 
accurately if state dimension is high enough (d). Overall, the performance of 
linear DPAD and PSID6 are similar for the special case of linear modeling.
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Extended Data Fig. 2 | DPAD successfully identifies the origin of nonlinearity 
and learns it in numerical simulations. DPAD can perform hypothesis 
testing regarding the origin of nonlinearity by considering both behavior 
decoding (vertical axis) and neural self-prediction (horizontal axis). a, True 
value for nonlinear neural input parameter K in an example random model 
with nonlinearity only in K and the nonlinear value that DPAD learned for this 
parameter when only K in the learned model was set to be nonlinear. The true 
and learned mappings match and almost exactly overlap. b, Behavior decoding 
and neural self-prediction accuracy achieved by DPAD models with different 
locations of nonlinearities. These accuracies are for data generated from  
20 random models that only had nonlinearity in the neural input parameter K. 
Performance measures for each random model are normalized by their ideal 
values that were achieved by the true model itself. Pluses and whiskers are 

defined as in Fig. 3 (N = 20 random models). c,d, Same as a,b for data simulated 
from models that only have nonlinearity in the recursion parameter A′. e-f, Same 
as a,b for data simulated from models that only have nonlinearity in the neural 
readout parameter Cy. g,h, Same as a,b for data simulated from models that only 
have nonlinearity in the behavior readout parameter Cz. In each case (b,d,f,h), 
the nonlinearity option that reaches closest to the upper-rightmost corner 
of the plot, that is, has both the best behavior decoding and the best neural 
self-prediction, is chosen as the model that specifies the origin of nonlinearity. 
Regardless of the true location of nonlinearity (b,d,f,h), always the correct 
location (for example, K in b) achieves the best performance overall compared 
with all other locations of nonlinearities. These results provide evidence that 
by fitting and comparing DPAD models with different nonlinearities, we can 
correctly find the origin of nonlinearity in simulated data.
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Extended Data Fig. 3 | Across spiking and LFP neural modalities, DPAD is 
on the best performance frontier for neural-behavioral prediction unlike 
LSTMs, which are fitted to explain neural data or behavioral data. a, The 
3D reach task. b, Cross-validated neural self-prediction accuracy achieved 
by each method versus the corresponding behavior decoding accuracy on 
the vertical axis. Latent state dimension for each method in each session and 
fold is chosen (among powers of 2 up to 128) as the smallest that reaches peak 
neural self-prediction in training data or reaches peak decoding in training 
data, whichever is larger (Methods). Pluses and whiskers are defined as in Fig. 
3 (N = 35 session-folds). Note that DPAD considers an LSTM as a special case 
(Methods). Nevertheless, results are also shown for LSTM networks fitted to 
decode behavior from neural activity (that is, RNN decoders in Extended Data 
Table 1) or to predict the next time step of neural activity (self-prediction). Also, 
note that LSTM for behavior decoding (denoted by H) and DPAD when only using 
the first two optimization steps (denoted by G) dedicate all their latent states to 

behavior prediction, whereas other methods dedicate some or all latent states 
to neural self-prediction. Compared with all methods including these LSTM 
networks, DPAD always reaches the best performance frontier for predicting 
the neural-behavioral data whereas LSTM does not; this is partly due to the four-
step optimization algorithm in DPAD that allows for overall neural-behavioral 
description rather than one or the other, and that prioritizes the learning of the 
behaviorally relevant neural dynamics. c, Same as b for raw LFP activity (N = 35 
session-folds). d, Same as b for LFP band power activity (N = 35 session-folds). 
e-h, Same as a-d for the second dataset, with saccadic eye movements (N = 35 
session-folds). i,j, Same as a and b for the third dataset, with sequential cursor 
reaches controlled via a 2D manipulandum (N = 15 session-folds). k-n, Same 
as a-d for the fourth dataset, with random grid virtual reality cursor reaches 
controlled via fingertip position (N = 35 session-folds). Results and conclusions 
are consistent across all datasets.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 4 | DPAD can also be used for multi-step-ahead 
forecasting of behavior. a, The 3D reach task. b, Cross-validated behavior 
decoding accuracy for various numbers of steps into the future. For m-step-
ahead prediction, behavior at time step k is predicted using neural activity 
up to time step k−m. All models are taken from Fig. 3, without any retraining 
or finetuning, with m-step-ahead forecasting done by repeatedly (m−1 times) 
passing the neural predictions of the model as its neural observation in the next 
time step (Methods). Solid lines and shaded areas are defined as in Fig. 5b (N = 35 
session-folds). Across the number of steps ahead, the statistical significance of 

a one-sided pairwise comparison between nonlinear DPAD vs nonlinear NDM is 
shown with the orange top horizontal line with p-value indicated by asterisks next 
to the line as defined in Fig. 2b (N = 35 session-folds). Similar pairwise comparison 
between nonlinear DPAD vs linear dynamical system (LDS) modeling is shown 
with the purple top horizontal line. c-d, Same as a-b for the second dataset, with 
saccadic eye movements (N = session-folds). e-f, Same as a-b for the third dataset, 
with sequential cursor reaches controlled via a 2D manipulandum (N = 15 session-
folds). g-h, Same as a-b for the fourth dataset, with random grid virtual reality 
cursor reaches controlled via fingertip position (N = 35 session-folds).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 5 | Neural self-prediction accuracy of nonlinear DPAD 
across recording electrodes for low-dimensional behaviorally relevant 
latent states. a, The 3D reach task. b, Average neural self-prediction correlation 
coefficient (CC) achieved by nonlinear DPAD for analyzed smoothed spiking 
activity is shown for each recording electrode (N = 35 session-folds; best 
nonlinearity for decoding). c, Same as b for modeling of raw LFP activity.  
d, Same as b for modeling of LFP band power activity. Here, prediction accuracy 
averaged across all 8 band powers (Methods) of a given recording electrode is 
shown for that electrode. e-h, Same a-d for the second dataset, with saccadic 

eye movements (N = 35 session-folds). For datasets with single-unit activity 
(Methods), spiking self-prediction of each electrode is averaged across the 
units associated with that electrode. i-j, Same as a,b for the third dataset, with 
sequential cursor reaches controlled via a 2D manipulandum (N = 15 session-
folds). White areas are due to electrodes that did not have a neuron associated 
with them in the data. k-n, Same as a-d for the fourth dataset, with random grid 
virtual reality cursor reaches controlled via fingertip position (N = 35 session-
folds). For all results, the latent state dimension was 16, and all these dimensions 
were learned using the first optimization step (that is, n1 = 16).
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Extended Data Fig. 6 | Nonlinear DPAD extracted distinct low dimensional 
latent states from neural activity for all datasets, which were more 
behaviorally relevant than those extracted using nonlinear NDM. a, The 3D 
reach task. b, The latent state trajectory for 2D states extracted from spiking 
activity using nonlinear DPAD, averaged across all reach and return epochs 
across sessions and folds. Here only optimization steps 1-2 of DPAD are used to 
just extract 2D behaviorally relevant states. c, Same as b for 2D states extracted 
using nonlinear NDM (special case of using just DPAD optimization steps 3-4). 
d, Saccadic eye movement task. Trials are averaged depending on the eye 
movement direction. e, The latent state trajectory for 2D states extracted using 
DPAD (extracted using optimizations steps 1-2), averaged across all trials of the 
same movement direction condition across sessions and folds. f, Same as d for 
2D states extracted using nonlinear NDM. g-i, Same as d-f for the third dataset, 
with sequential cursor reaches controlled via a 2D manipulandum. j-l, Same as d-f 
for the fourth dataset, with random grid virtual reality cursor reaches controlled 

via fingertip position. Overall, in each dataset, latent states extracted by DPAD 
were clearly different for different behavior conditions in that dataset (b,e,h,k), 
whereas NDM’s extracted latent states did not as clearly dissociate different 
conditions (c,f,i,l). Of note, in the first dataset, DPAD revealed latent states with 
rotational dynamics that reversed direction during reach versus return epochs, 
which is consistent with the behavior roughly reversing direction. In contrast, 
NDM’s latent states showed rotational dynamics that did not reverse direction, 
thus were less congruent with behavior. In this first dataset, in our earlier work6, 
we had compared PSID and a subspace-based linear NDM method and, similar to 
b and c here, had found that only PSID uncovers reverse-directional rotational 
patterns across reach and return movement conditions. These results thus 
also complement our prior work6 by showing that even nonlinear NDM models 
may not uncover the distinct reverse-directional dynamics in this dataset, thus 
highlighting the need for dissociative and prioritized learning even in nonlinear 
modeling, as enabled by DPAD.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01731-2

Extended Data Fig. 7 | Neural self-prediction across latent state dimensions. 
a, The 3D reach task. b, Cross-validated neural self-prediction accuracy (CC) 
achieved by variations of nonlinear and linear DPAD/NDM, for different latent 
state dimensions. Solid lines and shaded areas are defined as in Fig. 5b (N = 35 
session-folds). Across latent state dimensions, the statistical significance of 
a one-sided pairwise comparison between nonlinear DPAD/NDM (with best 
nonlinearity for self-prediction) vs linear DPAD/NDM is shown with a horizontal 
green/orange line with p-value indicated by asterisks next to the line as defined 
in Fig. 2b (N = 35 session-folds). c,d, Same as a,b for the second dataset, with 
saccadic eye movements (N = 35 session-folds). e,f, Same as a,b for the third 
dataset, with sequential cursor reaches controlled via a 2D manipulandum 
(N = 15 session-folds). g,h Same as a,b for the fourth dataset, with random grid 
virtual reality cursor reaches controlled via fingertip position (N = 35 session-
folds). For all DPAD variations, the first 16 latent state dimensions are learned 
using the first two optimization steps and the remaining dimensions are learned 

using the last two optimization steps (that is, n1 = 16). As expected, at low state 
dimensions, DPAD’s latent states achieve higher behavior decoding (Fig. 5) but 
lower neural self-prediction than NDM because DPAD prioritizes the behaviorally 
relevant neural dynamics in these dimensions. However, by increasing the state 
dimension and utilizing optimization steps 3-4, DPAD can reach similar neural 
self-prediction to NDM while doing better in terms of behavior decoding (Fig. 3). 
Also, for low dimensional latent states, nonlinear DPAD/NDM consistently result 
in significantly more accurate neural self-prediction than linear DPAD/NDM. For 
high enough state dimensions, linear DPAD/NDM eventually reach similar neural 
self-prediction accuracy to nonlinear DPAD/NDM. Given that NDM solely aims to 
optimize neural self-prediction (irrespective of the relevance of neural dynamics 
to behavior), the latter result suggests that the overall neural dynamics can be 
approximated with linear dynamical models but only with high-dimensional 
latent states. Note that in contrast to neural self-prediction, behavior decoding of 
nonlinear DPAD is higher than linear DPAD even at high state dimensions (Fig. 3).
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Extended Data Fig. 8 | DPAD accurately learns the mapping from neural 
activity to behavior dynamics in all datasets even if behavioral samples are 
intermittently available in the training data. Nonlinear DPAD can perform 
accurately and better than linear DPAD even when as little as 20% of training 
behavior samples are kept. a, The 3D reach task. b, Examples are shown from one 
of the joints in the original behavior time series (light gray) and intermittently 
subsampled versions of it (cyan) where a subset of the time samples of the 
behavior time series are randomly chosen to be kept for use in training. In each 
subsampling, all dimensions of the behavior data are sampled together at the 
same time steps; this means that at any given time step, either all behavior 
dimensions are kept or all are dropped to emulate the realistic case with 
intermittent measurements. c, Cross-validated behavior decoding accuracy 
(CC) achieved by linear DPAD and by nonlinear DPAD with nonlinearity in the 

behavior readout parameter Cz. For this nonlinear DPAD, we show the CC when 
trained with different percentage of behavior samples kept (that is, we emulate 
different rates of intermittent sampling). The state dimension in each session 
and fold is chosen (among powers of 2 up to 128) as the smallest that reaches 
peak decoding in training data. Bars, whiskers, dots, and asterisks are defined 
as in Fig. 2b (N = 35 session-folds). d,e, Same as a,c for the second dataset, with 
saccadic eye movements (N = 35 session-folds). f,g, Same as a,c for the third 
dataset, with sequential cursor reaches controlled via a 2D manipulandum (N = 15 
session-folds). h,i, Same as a,c for the fourth dataset, with random grid virtual 
reality cursor reaches controlled via fingertip position (N = 35 session-folds). For 
all DPAD variations, the first 16 latent state dimensions are learned using the first 
two optimization steps and the remaining dimensions are learned using the last 
two optimization steps (that is, n1 = 16).
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Extended Data Fig. 9 | Simulations suggest that DPAD may be applicable with 
sparse sampling of behavior, for example with behavior being a self-reported 
mood survey value collected once per day. a, We simulated the application of 
decoding self-reported mood variations from neural signals40,41. Neural data is 
simulated based on linear models fitted to intracranial neural data recorded from 
epilepsy subjects. Each recorded region in each subject is simulated as a linear 
state-space model with a 3-dimensional latent state, with the same parameters as 
those fitted to neural recordings from that region. Simulated latent states from 
a subset of regions were linearly combined to generate a simulated mood signal 
(that is, biomarker). As the simulated models were linear, we used the linear 
versions of DPAD and NDM (NDM used the subspace identification method that 
we found does similarly to numerical optimization for linear models in Extended 

Data Fig. 1). We generated the equivalent of 3 weeks of intracranial recordings, 
which is on the order the time-duration of the real intracranial recordings. We 
then subsampled the simulated mood signal (behavior) to emulate intermittent 
behavioral measures such as mood surveys. b, Behavior decoding results 
in unseen simulated test data, across N = 87 simulated models, for different 
sampling rates of behavior in the training data. Box edges show the 25th and 75th 
percentiles, solid horizontal lines show the median, whiskers show the range 
of data, and dots show all data points (N = 87 simulated models). Asterisks are 
defined as in Fig. 2b. DPAD consistently outperformed NDM regardless of how 
sparse behavior measures were, even when these measures were available just 
once per day (P < 0.0005, one-sided signed-rank, N = 87).
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Extended Data Table 1 | Architectural differences between DPAD and various other methods

 Figure 

Input
samples
used to

infer latent
Dynamic or 

static Non-linearity 
Hypothesis 
testing on 

non-
linearities 

Prioritize 
behaviorally 

relevant neural 
dynamics 

Dissociate 
behaviorally 
relevant and 
other neural 

dynamics  

Learn 
reconstruc-
tion models 

DPAD All 1 … −1 
(causal) 

Dynamic 
(recursive) Yes (and flexible) Yes Yes Yes Neural and 

behavioral 

NDM 
3,5,7 

ED1,3,…  
S4  

1 … −1 
(causal) 

1 … −1 
(causal) 

Dynamic 
(recursive) Yes No No No Neural 

RNN 
decoders

20,22–24,26 
4, ED3  

Dynamic 
(recursive) Yes No Yes No Behavioral 

PSID6 ED1 1 … −1 
(causal) 

Dynamic
(recursive) Linear No Yes Yes Neural and 

behavioral 

CEBRA36 4 −5 … +4 
(non-causal) Convolutional 

Yes, but without 
recursive dynamics No Indirectly, via 

contrastive loss No - 

LFADS16 S9 1 …  
(non-causal) 

Dynamic 
(sequential-

autoencoder) 
Yes No No No Neural 

TNDM18 S9 1 …  
(non-causal) 

Dynamic 
(sequential-

autoencoder) 
Yes No 

Partially, with mixed 
neural-behavioral 

objective 
No Neural and 

behavioral 

GPFA14 - 1 …  
(non-causal) 

Dynamic 
(Gaussian 
process) 

Linear time variant No No No Neural 

TAME-
GP9 - 1 …  

(non-causal) 

Dynamic 
(Gaussian 
process) 

Linear time variant No 
Partially, with mixed 

neural-behavioral 
objective 

No Neural 

DFINE61 - Causal and 
non-causal 

Dynamic
(recursive) 

Yes, but with state 
evolving in a linear 
dynamical system 

No 
Partially, with mixed 

neural-behavioral 
objective 

No Neural and 
behavioral 

VIND37 - 1 …  
(non-causal) Dynamic Yes, but with locally 

linear state dynamics No No No Neural 

fLDS38,96 - 1 …  
(non-causal) Dynamic Yes, but with linear 

state dynamics No No No Neural 

pi-VAE35 -  
(causal) Static Yes, but with no 

dynamics No 
Partially, with mixed 

neural-behavioral 
objective 

No Neural 

dPCA34 -  
(causal) Static Linear No 

Yes, but only with 
categorical behavior 

conditions 

Yes, but only 
with categorical 

behavior 
conditions 

Neural 

LDA69 7  
(causal) Static Linear No Yes No Behavioral 

SVM, 
SVR69 7  

(causal) Static Yes, but with no 
dynamics No Yes No Behavioral 

  
An extended description for some columns is provided in Supplementary Note 4. Here we provide a summary. Figure: Figure numbers for figures that show results from the named method. 
ED: Extended Data Figure. S: Supplementary Figure. Input samples used to infer latent xk: The subset of the input neural time series {y1, y2,…} that are used to estimate the latent variable 
xk associated with time sample k. Dynamic or static: Dynamic models have an explicit description of the temporal structure in data, which allows them to aggregate information over time. 
In contrast, static models consider each given data sample on its own, and thus extract the same encoding regardless of the temporal order/structure of the input sequence. Convolutional 
models (for example, CEBRA) consider each small data window on its own and can’t aggregate information beyond that window, and in this sense are similar to static models. Nonlinearity: 
Nonlinear models can learn nonlinear mappings within some model elements, but unlike DPAD, they have not been flexible in terms of which model elements are made nonlinear and with 
what structure (note in this work we also implement NDM with flexible nonlinearity). Hypothesis testing on nonlinearities: DPAD is the only method that provides fine-grained control over 
the nonlinearity versus linearity of each model element and thus enables localization of nonlinearities and hypothesis testing regarding them (Fig. 6). Prioritize behaviorally relevant neural 
dynamics: Methods that can incorporate the reconstruction of behavior from neural data as part of their learning objective, ideally with priority. Dissociate behaviorally relevant and other 
neural dynamics: DPAD is the only dynamical nonlinear method that learns both behaviorally relevant neural dynamics and other neural dynamics, and dissociates the two into separate 
latent states. Learned reconstruction models: The reconstruction models that are natively learned by the method when extracting latents, in order to reconstruct neural or behavioral data 
from these learned latents.

http://www.nature.com/natureneuroscience
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Dataset 1: Kinematic data were acquired using the Cortex software package (version 5.3) to track retroreflective markers in 3D (Motion 

Analysis, Inc USA). Joint angles were solved from the 3D marker data using a Rhesus macaque musculoskeletal model via the SIMM toolkit 

(version 4.0, MusculoGraphics Inc., USA). 

Dataset 2: The visual stimuli in the task with saccadic eye movements were controlled via custom LabVIEW (version 9.0, National Instruments) 

software executed on a real-time embedded system (NI PXI-8184, National Instruments). 

 

This data collection is also described in prior work:  

- https://www.nature.com/articles/s41593-020-00733-0 

- https://doi.org/10.1073/pnas.1504172112

Data analysis Custom code (python version 3.9) for the DPAD algorithm is available online at https://github.com/ShanechiLab/DPAD

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Three of the datasets used in this work are publicly available (refs. 47–49,54). The other two datasets used to support the results are available upon reasonable 

request from the corresponding author. Source data are provided with this paper.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study did not involve human participants.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

This study did not involve human participants.

Population characteristics This study did not involve human participants.

Recruitment This study did not involve human participants.

Ethics oversight This study did not involve human participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A sample size of five non-human primate subjects was used, consisting of one non-human primate subject for each of the five behavioral 

tasks. This is comparable with the sample sizes reported in previous non-human primate neurophysiology publications (e.g., https://

www.nature.com/articles/s41593-020-00733-0). All results held for all subjects.

Data exclusions No data was excluded from the study.

Replication Results were replicated in all subjects performing all experimental tasks and all attempts at replication were successful.

Randomization Not relevant for this study. Identical analyses were performed on data from each subject and the results were reported for each subject. 

There was no grouping of subjects.

Blinding Not relevant for this study. There was no group allocation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Main datasets (datasets 1-4): four adult male rhesus macaques (macaca mulatta) ages 5 (subject J), 8 (subject A), 10 (subject T), and 

11 (subject I) years old.

Wild animals This study did not involve wild animals.

Reporting on sex Main datasets (datasets 1-4) were from four adult male rhesus macaques.

Field-collected samples This study did not involve field-collected samples.

Ethics oversight For each dataset, all animal procedures were performed in compliance with the National Research Council Guide for Care and Use of 

Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at the respective institution, namely 

New York University (datasets 1 and 2), Northwestern University (datasets 3 and 5), or University of California San Francisco (dataset 

4).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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