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Single-nucleus transcriptomic profiling 
of human orbitofrontal cortex reveals 
convergent effects of aging and psychiatric 
disease
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Natan Yusupov1,2, Natalie Matosin5,6, Darina Czamara    1, Susann Sauer1, 
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Nikolaos P. Daskalakis    7,8, Janine Knauer-Arloth    1,3, Michael J. Ziller    4 & 
Elisabeth B. Binder    1,10 

Aging is a complex biological process and represents the largest risk 
factor f or n eu ro de ge ne rative disorders. The risk for neurodegenerative 
disorders is also increased in individuals with psychiatric disorders. Here, we 
characterized age-related transcriptomic changes in the brain by profiling 
~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and 
without psychiatric diagnoses and replicated findings in an independent 
cohort with 32 individuals. Aging affects all cell types, with LAMP5+LHX6+ 
interneurons, a cell-type abundant in primates, by far the most affected. 
Disrupted synaptic transmission emerged as a convergently affected 
pathway in aged tissue. Age-related transcriptomic changes overlapped 
with changes observed in Alzheimer’s disease across multiple cell types. 
We find evidence for accelerated transcriptomic aging in individuals with 
psychiatric disorders and demonstrate a converging signature of aging 
a nd p sy ch op at hology across multiple cell types. Our findings shed light on 
cell-type-specific effects and biological pathways underlying age-related 
changes and their convergence with effects driven by psychiatric diagnosis.

Aging is a complex, not yet fully understood biological process, where 
changes at the level of molecules, cells and organs lead to alterations in 
function and physiology. The aging brain is characterized by structural 
and functional remodeling, especially in the prefrontal cortex and 
white matter tracts, ultimately affecting cognition and memory1. At the 
cellular level, reduction in spine density, axonal transport and synapse 
number, changes in neurotransmitter levels and mitochondrial dys-
function and oxidative damage have been described in the aging brain2.

Age represents the strongest risk factor for neurodegenerative 
disorders, suggesting that certain age-related changes could be 

directly involved in disease etiology. Given the increasing life expec-
tancy of current societies, accompanied by a rise in the prevalence 
of neurodegenerative disorders, it is of great importance to better 
characterize underlying mechanisms of normal and pathological 
aging. Moreover, studies indicate common biological pathways 
affected by aging and psychiatric disorders3, another disease group 
with increasing prevalence and substantial socioeconomic burden. 
Transcriptomic and neuroimaging studies suggest that psychiatric 
disorders, such as schizophrenia (SCZ), are associated with acceler-
ated brain age4,5.
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Aging affects the transcriptomes of all cell types
Using single-nucleus RNA transcriptomes, we generated pseudobulk 
counts for each cell type per individual to characterize cell-type-specific 
gene expression aging trajectories. All analyses were adjusted for covar-
iates (disease status, sex, pH, RIN, PMI, library preparation batch and 
principal component 1 (PC1; for hidden confounders inferred from a 
batch-corrected expression matrix)) and corrected for multiple testing 
using the Benjamini–Hochberg (FDR) method18 (Methods). In total, we 
observed 3,299 unique differentially expressed (DE) genes with age 
(FDR-adjusted P < 0.05) across all cell types. Changes in gene expression 
were detected in all identified cell types, with the largest number of DE 
genes in upper-layer excitatory neurons (Exc_L2–L3) neurons (Sup-
plementary Tables 5 and 6). In all cell types except oligodendrocytes, 
microglia and Exc_L5–L6_2 neurons, more than half of the DE genes 
were downregulated with increasing age (Fig. 2a), an effect previously 
reported in bulk brain tissue of rhesus macaques and humans11,19. The 
distribution of fold change values over a period of 10 years per cell 
type is shown in Extended Data Fig. 4b with great symmetry between 
the up- and downregulated genes in their effect size distributions. 
Overall, age-related gene expression direction effects were similar 
between neurotypical individuals and individuals with psychiatric dis-
ease across cell types as revealed by rank–rank hypergeometric overlap 
(RRHO; Extended Data Fig. 5). Differences in the number of DE genes 
among cell types are related to the statistical power to detect DE genes 
in a given cell type, driven by factors including the number of nuclei 
and sequencing reads per cell type20. To estimate how strongly gene 
expression was affected by age in each cell type, we downsampled our 
dataset to 5,000 nuclei per cell type, followed by differential expression 
analysis. This analysis showed that In_LAMP5_2 neurons, an inhibitory 
neuron subtype characterized by the coexpression of LAMP5 and LHX6 
(Extended Data Fig. 3b), showed by far the most relative DE genes with 
age, followed by the deep-layer neuron cluster Exc_L4–L6_2 (Fig. 2b and 
Supplementary Table 7), a finding supported by variance partitioning 
analysis (Extended Data Fig. 4c and Supplementary Table 8). Interest-
ingly, LAMP5+LHX6+ interneurons have become enriched in the cortex 
of primates during evolution21.

Shared and unique signatures of aging across all cell types
Next, we compared DE genes (FDR-adjusted P < 0.05) across cell types. 
The vast majority of DE genes were unique to a single cell type, fol-
lowed by shared DE genes between groups of two to three cell types 
(Extended Data Fig. 6a,b). NRGN was the only gene shared across all 
major cell types at this cutoff (Fig. 2c and Supplementary Table 9), 
whereas no common DE genes across all 21 cell types were identified 
(Extended Data Fig. 6a,b). Examination of the proportions of shared 
DE genes between cell types revealed an overall higher overlap among 
downregulated than among upregulated DE genes, especially across 
excitatory neurons (Fig. 2d). Of the DE genes at an FDR of <0.05 shared 
across multiple cell types, several have been previously associated 
with aging, such as calcium/calmodulin-dependent protein kinase IV 
(CAMK4; Fig. 3a) and FKBP prolyl isomerase 5 (FKBP5; Fig. 3b). CAMK4 
encodes an important transcriptional regulator previously reported 
to be regulated with age across several species7. FKBP5 is one of the 
genes with the highest log2-transformed fold change (log2FC; 0.027 
to 0.045 per year) value overall and with the highest upregulation 
with age in upper-layer excitatory neurons, as previously reported22. 
Single-nucleotide polymorphisms (SNPs) in FKBP5 are associated with 
an increased risk for several psychiatric disorders, and FKBP5 has been 
implicated in Alzheimer’s disease (AD) by interfering with tau process-
ing23,24. Shared effects were also seen for genes relevant for neuronal 
differentiation and regeneration of axons—for example, NREP (Fig. 3c), 
and NPTX2 (Fig. 3d). Microglia have a high fraction of unique DE genes 
(Extended Data Fig. 6a,b), including MS4A6A, the gene with the highest 
log2FC value of all DE genes (log2FC: 0.063 per year; Fig. 3e). MS4A6A has 
important roles in immunity, and SNPs within this gene are associated 

Our current knowledge of the transcriptomic changes involved in 
brain aging is mainly limited to studies in other species, such as mice6 
and nonhuman primates7, and to bulk human postmortem tissue8,9. 
Some studies10,11 in model organisms have implemented single-cell RNA 
sequencing to decipher cell-type-specific age-associated changes in 
gene expression. In humans, a recent single-nucleus RNA-sequencing 
(snRNA-seq) study12 examined changes in gene expression latent fac-
tors with aging, including in the context of SCZ. Understanding the 
unique transcriptomic effects of age for specific genes in individual cell 
types in the human brain and mapping shared or divergent alterations 
and affected molecular pathways and which cell types are most affected 
are important steps toward the development of potential therapeutic 
interventions to prevent or treat age-associated pathologies.

In this study, we profiled single-nucleus transcriptomes of the 
orbitofrontal cortex (OFC) of a cohort of 87 individuals ranging from 
26 to 84 years of age. We focused on the OFC as it has an important 
role in cognitive functions13, suffers structural and functional decline 
during aging14 and is implicated in the pathophysiology of neuropsy-
chiatric diseases15,16. The cohort contained neurotypical individuals 
and individuals diagnosed with a psychiatric disorder, mainly SCZ. 
With ~800,000 nuclei profiled, we provide a comprehensive dataset 
of age-associated genes, pathways and affected cell types that allowed 
us to analyze possible convergence with neurodegenerative and  
psychiatric diseases.

Results
Single-nucleus profiling of the human OFC
To investigate the gene expression changes that occur throughout 
aging in individual cell types, we examined nuclei extracted from 
the OFC. We generated snRNA-seq data from a total of 87 individuals 
(mean age = 54.85 years; range, 26–84 years; 32 women and 55 men; 54 
individuals with a psychiatric disorder and 33 neurotypical individu-
als; Supplementary Tables 1 and 2 and Extended Data Fig. 1a), totaling 
around 800,000 nuclei. Neuropathological examination of the brain 
tissue confirmed the absence of macro- or microscopic changes, except 
for one individual, although cortical areas were unaffected. The two 
groups did not differ in age, sex, RNA integrity number (RIN) and post-
mortem interval (PMI) (Extended Data Fig. 1b). The median number of 
genes and counts per nucleus were 2,210 and 3,900, respectively. There 
was no difference in median number of genes and counts per nucleus 
between individuals with a psychiatric disease and neurotypical indi-
viduals (Extended Data Fig. 1b) and no correlation between age and 
PMI or between age and median number of genes or median number of 
counts (Extended Data Fig. 1c). However, we found a modest negative 
correlation between age and RIN (Extended Data Fig. 1c), which has 
previously been reported17. We applied Leiden clustering using highly 
variable genes to identify cell-type clusters (Fig. 1a–c; see Extended Data 
Fig. 2a–d for additional quality control). We identified 7 major cell types 
and 21 distinct cell types, including endothelial cells, glial cell types 
(oligodendrocytes, oligodendrocyte precursor cells (OPCs), microglia 
and two astrocyte subtypes (fibrous and protoplasmic) and subtypes 
of both excitatory and inhibitory neurons (Fig. 1a–d and Extended Data 
Fig. 3a–c). There was no difference in mean number of nuclei per cell 
type between individuals with a psychiatric disorder and neurotypical 
individuals (Supplementary Table 3).

Cellular composition changes with age
We first investigated changes in cell composition during aging by 
calculating the proportions of each cell type per individual. Most 
cell types did not change in abundance, only the proportion of OPCs 
significantly decreased with age (false discovery rate (FDR)-adjusted 
P = 0.002), going along with a trend-line increase in oligodendro-
cytes (FDR-adjusted P = 0.05) and decrease in VIP inhibitory neurons  
(In_VIP, FDR-adjusted P = 0.05; Extended Data Fig. 4a and Supplemen-
tary Table 4).
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with AD25,26. HLA-DRB1, another unique DE gene in microglia, is signifi-
cantly upregulated in expression with age and has reported genetic 
associations with aging (longevity27) and AD28 (Fig. 3f).

However, because statistical power influences the ability to detect 
significant DE genes and thus shared effects, we performed multi-
variate adaptive shrinkage (mash) analysis29 to leverage information 
sharing across genes and cell types. The mash analysis revealed a total 

of 256 shared DE genes across all 21 cell types (108 up- and 148 down-
regulated) at a local false sign rate of <0.05. These include, ARPP19 
(which is involved in the regulation of mitosis and is regulated with 
age in the brains of both humans and rhesus macaques8,11), CAMK2N1 
(which encodes a calcium-dependent protein kinase inhibitor with 
a role in synaptic long-term potentiation, a process altered during 
aging) and SRRM2 (which encodes a component of the spliceosome 
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Fig. 1 | Identification of cell types. a,b, Uniform manifold approximation and 
projection (UMAP) showing ~800,000 nuclei from the OFC from 87 donors 
colored by major cell-type cluster (a) and individual cell-type cluster (b).  
Cell-type annotation was performed using a label transfer algorithm, followed 
by manual curation based on marker genes described in the literature. c, Bar 
plot depicting the number of nuclei per individual cell-type cluster. d, Left, dot 
plot showing the expression of representative marker genes, which are grouped 

by major cell types. The size of the dot represents the percentage of nuclei 
expressing the gene, and the color indicates the mean expression level. Right, 
dendrogram showing the relationship between identified cell-type clusters 
based on similarity in gene expression; Astro_FB, fibrous astrocytes; Astro_PP, 
protoplasmic astrocytes; Exc, excitatory; In, inhibitory; L, cortical layer; Ba, 
basket; Ch, chandelier; PVALB, parvalbumin.
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and is implicated in neurodegenerative disorders where it mislocalizes 
to tau aggregates in the cytoplasm30,31) (Fig. 3g). This provides evi-
dence that the large number of nuclei sequenced in our dataset allows 
mapping of age-related changes to individual cell types, with specific 
and overlapping effects, enabling insights into the cellular effects of 
age-related genes.

Enrichment of biological pathways and disease
To better understand the shared and cell-type-specific biological pro-
cesses affected by age, we performed over-representation analysis for 
biological pathways of the up- and downregulated genes, respectively. 

We started with the 256 shared genes from the mash analysis and used 
semantic similarity analysis to reduce redundancies in the list of sig-
nificant Gene Ontology (GO) terms (Fig. 3h). Common upregulated 
genes are involved in processes such as mRNA splicing, which has been 
previously described as being affected by aging across tissues and spe-
cies32. Downregulated genes mapped to synaptic signaling at various 
levels, including neurotransmitter secretion, axo-dendritic transport 
and (post)synapse organization, consistent with studies in human 
bulk brain9,33. Cell-type-specific biological processes (Extended Data 
Fig. 7) in microglia included humoral response, positive regulation of 
immune response and cellular response to reactive oxygen species for 
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Fig. 2 | Differential gene expression analysis. a, Bar plot depicting the 
percentage of up- and downregulated DE genes (at FDR-adjusted P < 0.05) for the 
respective cell types. b, Box plot of the numbers of DE genes identified from the 
differential gene expression analysis of downsampled data (5,000 nuclei from 
each cell type were randomly selected ten times (that is, N = 10)). P values were 
calculated by comparing the numbers of DE genes between cell types (two-sided 
Mann–Whitney U-test), followed by multiple testing correction (FDR). For clarity, 
only the P value for the comparison between In_LAMP5_2 neurons and all other 
cell types is shown (***P < 0.001); exact P values are shown in Supplementary 
Table 7. The box plot shows the median (center) and interquartile range  
(IQR; bounds of the boxes), and whiskers extend to either the maxima/minima or 
to the median ± 1.5× IQR, whichever is nearest. Triangles indicate outliers.  

c, Scatter plot showing log normalized expression of NRGN corrected for 
covariates across aging across all major cell types. Error bands represent the 
95% confidence interval. d, Illustration of shared and cell-type-specific DE genes 
for upregulated (left) and downregulated (right) DE genes (at FDR-adjusted 
P < 0.05). The number of overlapping DE genes between two cell types was 
normalized to the total number of DE genes of each of the two cell types, and 
the average was taken. The thickness of the black line between the two cell 
types is representative of this shared proportion of DE genes, with a thicker line 
indicating a higher overlap. The size of the circle for each cell type indicates the 
proportion of cell-type-specific DE genes, with a bigger circle indicating a higher 
number of unique DE genes.
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upregulated DE genes (Extended Data Fig. 7a), consistent with previous 
findings of increased immune function in the aged brain in both humans 
and mice34,35. Downregulated DE genes in microglia were enriched for 
terms related to the regulation of amyloid-β formation (Extended Data 
Fig. 7b). Within endothelial cells, downregulated DE genes showed 
enrichment for terms including transport across the blood–brain bar-
rier, supporting potential disruption of the blood–brain barrier as pre-
viously shown in aged humans and mice36,37. Moreover, downregulation 

of DE genes involved in cellular ion homeostasis was observed in 
excitatory and inhibitory neurons. Downregulated DE genes in several 
inhibitory neuron subtypes mapped to metabolic processes, such as 
nucleotide metabolic process, and oxidative phosphorylation was seen 
specifically in several inhibitory neuron subtypes. In_LAMP5_2 neurons 
(the cell type identified as most severely affected by aging) showed 
enrichment for macroautophagy and regulation of apoptotic process 
within its downregulated DE genes. These findings show that although 
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Fig. 3 | Examples of shared and cell-type-specific age-regulated genes and 
enriched pathways. a–f, Scatter plots showing log normalized gene expression 
corrected for covariates across aging of significantly DE genes in respective 
cell types, including CAMK4 (a), FKBP5 (b), NREP (c), NPTX2 (d), MS4A6A (e) 
and HLA-DRB1 (f). Error bands represent the 95% confidence interval. g, Forest 
plots showing effect sizes (posterior log2FC) across cell types for ARPP19, 
CAMK2N1 and SRRM2. Data are represented as posterior mean ± posterior 

s.d.; mashR analysis was performed across all cell types (N = 21). h, Biological 
pathway enrichment results for up- and downregulated genes (mash analysis). 
Significance was determined using a one-sided Fisher’s exact test, followed 
by multiple testing correction (FDR). Semantic similarity analysis was used to 
group related GO terms. The size of each circle corresponds to the number of GO 
terms within the group, and the color represents the lowest P value among the 
summarized GO terms.
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there are cell-type-specific pathways, there is convergence not only 
at the gene level but also at the pathway level (Extended Data Fig. 7).

Disease enrichment analysis revealed that downregulated DE genes 
(FDR < 0.05) were enriched for genes associated with brain-related 
diseases, including neurodegenerative diseases (for example, AD), 
across various inhibitory neuron subtypes, one deep-layer excitatory 
neuron cell type and microglia and oligodendrocytes (Fig. 4a and 
Extended Data Fig. 8a). Additionally, enrichment for psychiatric disor-
ders (for example, SCZ) was found across several excitatory, inhibitory 
and glial cell types. Enrichment for brain-related disorders within the 
upregulated DE genes included demyelinating disease (in microglia),  
mood disorders (in VIP inhibitory neurons) and substance abuse  
(in oligodendrocytes) (Fig. 4b and Extended Data Fig. 8b).

Validation of transcriptomic changes across datasets
To compare our aging-related gene signature with previously published 
bulk datasets in the human postmortem brain, we summed all sequenc-
ing reads to a ‘full pseudobulk’ dataset and performed differential 
expression analysis. The identified DE genes (Supplementary Table 10) 
showed significant overlap with those previously reported in (pre)
frontal cortex bulk data8,9,33 (Supplementary Table 11), emphasizing the 
validity of our analysis. To validate our cell-type-specific findings, we 
compared our identified DE genes in microglia and astrocytes (major 
cell-type cluster) to datasets that have identified gene expression 
changes over the course of aging in purified microglia34 and astro-
cytes38 from the cerebral cortex, respectively. Moreover, we leveraged 
an snRNA-seq dataset from Chatzinakos and colleagues39 derived from 
dorsolateral prefrontal cortex samples from 32 individuals with an age 
range of 26–60 years as a replication dataset. Within this snRNA-seq 
dataset, excitatory and inhibitory neuron subtypes showed sufficient 
power and were used for validation (see Methods for statistics). For all 
investigated cell types except In_PVALB_Ch neurons, Fisher’s exact test 
revealed a significant overlap in upregulated age-associated genes with 
the highest odds ratio in microglia and Exc_L4–L6_1 neurons (Fig. 5a 
and Supplementary Table 12). Downregulated age-associated genes 
significantly overlapped across all cell types, with the highest odds 
ratio in astrocytes, In_LAMP5_2 neurons and microglia (Fig. 5a and 
Supplementary Table 12). Moreover, the directionality of expression 
changes (log2FC) was highly congruent, with high correlations of the 
effect sizes between the overlapping DE genes (Spearman correla-
tion coefficient (ρ) ranging from 0.58 in In_PVALB_Ch neurons to 0.92 
in microglia) (Fig. 5a,b and Supplementary Table 12). These analyses 
underscore the comparability across datasets from different cohorts 
and cortical regions and generated using both snRNA-seq and sequenc-
ing in sorted cell populations.

Age-associated genes enriched in genes dysregulated in AD
To understand the extent to which cell-type-specific DE genes 
associated with aging could have a role in AD, we overlapped the 
age-dependent DE genes with DE genes identified by snRNA-seq in the 
prefrontal cortex of two AD datasets40,41. For both datasets, we found 
that genes upregulated in astrocytes and oligodendrocytes in individu-
als with AD showed significant overlap with the age-upregulated DE 
genes in the corresponding major cell types in our dataset (Fig. 6a,b). 
Genes downregulated in excitatory and inhibitory neurons and astro-
cytes in individuals with AD also showed significant overlap with the 
age-downregulated DE genes in the corresponding cell types in our 
dataset (Fig. 6a,b and Supplementary Table 13). Additionally, the effect 
sizes (log2FC values) were highly correlated in astrocytes and excita-
tory neurons (Fig. 6a,b). Examples of genes with concordant changes 
with age and AD include GRM3 in astrocytes and RPH3A in excitatory 
neurons (Fig. 6c,d). SNPs in GRM3, which is downregulated both with 
age and in AD, have been associated with increased risk for SCZ and 
worse cognitive function42. RPH3A, which is involved in neurotrans-
mitter release, is downregulated in excitatory neurons with age and in 

AD. Higher gene expression in excitatory neurons43 and higher protein 
levels in the prefrontal cortex have been associated with cognitive 
resilience44, whereas lower protein levels have been associated with 
higher amyloid-β burden45. This supports that gradual age-related 
changes in these cell types could contribute to the development of 
AD, possibly when reaching a certain threshold level in the context of 
other risk factors.

Importantly, we also investigated if there are genes that are oppo-
sitely regulated between age and AD. We identified two genes with 
opposite cell-type-specific regulation with age versus AD that were 
consistent in both AD datasets. LINGO1 and KCTD17 decrease with age 
in excitatory neurons (Fig. 6e), whereas these genes are regulated in 
the opposite direction in AD (Fig. 6f) within the same cell type. These 
may represent protective factors of interest for drug targeting.

Accelerated transcriptomic aging in psychopathology
Psychiatric disorders, transdiagnostically, are associated with lower 
life expectancy46 and an increased risk for neurodegenerative disor-
ders47, which in turn is associated with an increased mortality rate48. 
Various proxies have been used to estimate biological age, such as 
structural magnetic resonance imaging49, transcriptomic data4 and 
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Fig. 4 | Disease enrichment for brain-related diseases of age-regulated genes. 
a,b, Heat maps depicting disease enrichment of age-regulated DE genes  
(at FDR-adjusted P < 0.05) across cell types for downregulated (a) and 
upregulated (b) DE genes. Only cell types with a minimum of one disease 
ontology term were included. Colors represent the number of genes (count) 
contributing to the disease ontology term. Significance was determined 
using a one-sided Fisher’s exact test, followed by multiple testing correction 
(FDR). Asterisks (*) indicate an FDR-adjusted P < 0.05. Gray values indicate not 
applicable. Only enrichment for brain-related diseases is shown.
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DNA methylation (DNAm; epigenetic clocks)50,51. Some studies have 
suggested that biological aging is accelerated with psychiatric disease 
based on DNAm in the blood52–54, gene expression in the brain4 and 
magnetic resonance imaging of the brain5. To investigate biological 
age acceleration within our cohort, we calculated both epigenetic and 
transcriptomic age acceleration.

We profiled bulk DNAm from the same OFC tissue using EPIC arrays 
and calculated DNAm age and DNAm age acceleration using Horvath’s 
multitissue clock50 and a recently developed cortical clock51 derived 
from the cortex. For both epigenetic clocks, DNAm age correlated 
highly with chronological age (Horvath, r = 0.94, P < 2.2 × 10–16; cortical 
clock, r = 0.96, P < 2.2 × 10–16; Extended Data Fig. 9a,b). However, we did 
not observe accelerated epigenetic aging in individuals with psychiatric 
diseases (Supplementary Table 14).

Next, we used a transcriptomic brain age predictor developed 
by Lin et al.4 to construct a transcriptomic brain age estimate and 
calculate transcriptomic age acceleration using our ‘full pseudobulk’ 
dataset. The transcriptomic brain age estimate was highly correlated 
with chronological age (r = 0.83, P < 2.2 × 10–16; Fig. 7a). Multiple linear 
regression confirmed a significant transcriptomic age acceleration in 
individuals with psychiatric disease compared to neurotypical individu-
als (P = 0.02; Supplementary Table 15).

Given the accelerated transcriptomic age and the disease enrich-
ment of age-regulated genes for mental disorders reported above, 
we wanted to further explore how psychopathology affects aging 
trajectories. We therefore tested for interactive effects of age and 
disease status. We identified only three genes with interactive effects. 
These included SLC25A37 in fibrous astrocytes, OXCT1 in a deep-layer 
neuronal cluster (Exc_L4–L6_2) and AC007402.1 in OPCs (Extended 
Data Fig. 9c).

We next wanted to compare age-regulated genes to genes associ-
ated with disease status. We performed differential gene expression 
analysis within our datasets to identify disease-associated genes (Sup-
plementary Table 16). Disease-associated genes were identified in 
four excitatory neuron cell types, of which three cell types showed 
a significant overlap with age-regulated genes (Fisher’s exact test; 
FDR-adjusted P < 0.05; Exc_L2–L3, Exc_L4–L6_1 and Exc_L4–L6_3; 
Supplementary Table 17). Moreover, in all four cell types, more than 
75% of overlapping genes showed concordance of expression change 
between age and disease (Extended Data Fig. 9d). Given that, within 
our dataset, we likely lacked power to detect gene expression changes 
associated with disease, we leveraged results from an snRNA-seq 
meta-analysis comparing neurotypical individuals to individuals 
diagnosed with SCZ55. Across 16 cell types, we could show that age- 
and SCZ-associated genes significantly overlap, and more than 80% 
of overlapping genes are regulated in a concordant direction (Fig. 7b 
and Supplementary Table 18). This supports a convergence of the sig-
nature of aging and psychopathology indicative of accelerated aging 
across multiple cell types. Within our dataset, genes with shifted aging 
trajectories in psychiatric disease include APLF (in Exc_L2–L3, Exc_L4–
L6_1 and Exc_L4–L6_2 neurons), EXPH5 (in Exc_L2–L3 and Exc_L4–L6_3 
neurons) and RHBDL3 (in Exc_L4–L6_2 neurons; Fig. 7c–e). APLF is one 
of the genes with the strongest decrease with age and reduction in 
individuals with psychiatric disease across cell types. APLF encodes 
a histone chaperone involved in DNA repair, a mechanism that has 
been associated with aging56 but so far has not been linked with psy-
chiatric disease. EXPH5 and RHBDL3 have been previously associated 
with aging8,33.

Risk for psychiatric disorders is conveyed by environmental and 
genetic factors, with notable heritability. To understand whether the 
convergent effects of aging and psychopathology are in part driven 
by genetic liability, we first calculated polygenic risk scores (PRSs) 
for SCZ57 and cross-disorder psychiatric disease58 (Supplementary 
Table 19) in our cohort. The cross-disorders PRS was significantly 
higher (P = 0.0056) in individuals with psychiatric disease, and the SCZ 
PRS only trend-line (P = 0.054), consistent with the mixed diagnosis 
within our cohort (Extended Data Fig. 10a). We next examined whether 
age-related DE genes are also identified in genome-wide association 
studies (GWASs) for these disorders using H-MAGMA59. For this, we 
quantified the enrichment of genes associated with several GWAS 
traits (bipolar disorder, major depressive disorder (MDD), SCZ, AD 
and hypertension (as a nonbrain-related trait)) among age-related 
DE genes. This analysis revealed that genes implicated by GWASs for 
AD are enriched in age-associated genes in microglia but not other 
cell types (Fig. 7f). However, we did not find enrichment for any of the 
other tested GWAS traits in any cell type. This suggests that age-related 
transcriptomic changes are not strongly influenced by genetic risk 
for psychiatric disorders and that the convergence of expression sig-
natures likely reflects additional factors such as socioeconomic and 
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behavioral changes associated with living with the disease, environ-
mental exposures and medication.

Discussion
In this study, snRNA-seq was performed to investigate cell-type-specific 
gene expression changes throughout aging in the human OFC. Our 
cohort comprised 87 individuals aged 26–84 years, including both 
neurotypical individuals and those diagnosed with a psychiatric dis-
ease (mainly SCZ), which enabled us to also investigate the effect of 
disease status on aging. Our study revealed that cell-type-specific 
gene expression changes of aging converge onto dysregulation of 
synaptic transmission and mRNA splicing across cell types. Nota-
bly, LAMP5+LHX6+ interneurons were identified as the cell type most 
strongly affected by aging. Moreover, age-associated gene expres-
sion changes across cell types were successfully replicated in inde-
pendent datasets. The study also demonstrated overlapping gene 
expression changes between aging and AD, particularly in astrocytes 
and oligodendrocytes. Additionally, we observed a convergence of 
the transcriptomic effects of aging and psychopathology, especially 

SCZ, supporting findings of accelerated brain aging with psychiatric 
diagnoses across most cell types.

First, we examined age-related changes in cell-type proportions 
and found no significant changes, except for a significant decrease 
in OPCs, changes previously reported in animals10,11. However, future 
studies with larger sample sizes may uncover additional changes in 
cell-type proportions, and brain region-specific differences may exist.

Differential gene expression analysis within the identified 21 cell 
types indicated that all cell types are affected by aging and that the 
majority of age-associated transcriptional changes are cell-type spe-
cific. However, a specific cell type (inhibitory LAMP5+LHX6+ neurons 
(In_LAMP5_2)) seems to be most strongly affected by aging. Interest-
ingly, this LAMP5+LHX6+ subtype has been reported to increase in 
abundance in the primate cortex and to most closely resemble ivy cells 
of the mouse hippocampus21. Ivy cells belong to the neuroglia-form 
family of cells characterized by slow spiking patterns and are involved 
in both feedforward and feedback inhibition60.

GO analysis of age-regulated genes identified disrupted synap-
tic signaling and mRNA splicing as converging pathways affected  
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Fig. 6 | Comparison of age-regulated and AD-associated genes across cell 
types. a,b, Heat map depicting the odds ratio of overlapping upregulated 
(yellow) and downregulated (green) DE genes and Spearman correlations  
(ρ; two sided) of their log2FC)values for age-regulated and AD-associated 
genes across major cell types. The significance of overlap was determined 
using a one-sided Fisher’s exact test, followed by multiple testing correction 
(FDR). Asterisks (*) indicate FDR-adjusted P < 0.05. Exact P values are shown in 
Supplementary Table 13. AD datasets were from Mathys et al.40 (a) and Lau et al.41 
(b). c,d, Normalized (log-transformed) gene expression corrected for covariates 

throughout aging of RPH3A and GRM3 in respective major cell types (c), which 
show a congruent change in AD40. A bar plot showing the mean expression levels 
and log2FC values between neurotypical individuals and individuals with AD40 is 
also shown (d). e, Normalized (log-transformed) gene expression corrected for 
covariates throughout aging of KCTD17 and LINGO1 in excitatory neurons that 
show opposite directionality in AD40. f, Mean expression levels of KCTD17 and 
LINGO1 and log2FC values between neurotypical individuals and individuals  
with AD40 is also shown (f). Error bands in scatter plots represent the 95% 
confidence interval.
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Fig. 7 | Evidence for accelerated transcriptomic age in psychopathology. 
a, Scatter plot showing the Pearson’s correlation (R; two sided) between 
chronological age (x axis) and transcriptomic age (transcriptomic brain age 
estimate; y axis). The error band represents the 95% confidence interval.  
b, Number of genes associated with both age and SCZ. The size of the circle 
is proportional to the number of overlapping genes, and color indicates 
the percentage of genes regulated in the same (common) direction across 
respective cell types. c–e, Normalized expression (log-transformed) across 
aging (corrected for covariates) of genes associated with both aging and disease 

status in respective cell types (APLF (c), EXPH5 (d) and RHBLD3 (e)). Error bands 
represent the 95% confidence interval. f, Heat map depicting the enrichment 
of genes implicated by GWAS for several traits in age-associated genes across 
cell types. Enrichment was tested using H-MAGMA’s two-sided gene property 
analysis (linear regression model), followed by multiple testing correction (FDR). 
Color indicates the FDR-adjusted P value. Asterisks (*) indicate an FDR-adjusted 
P < 0.05 (for microglia, FDR-adjusted P = 0.033); BPD, bipolar disorder; HTN, 
hypertension.
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across cell types. This supports and extends recent findings12 of 
age-related alterations in transcriptomic latent factors enriched for 
genes relevant for synaptic functions across neurons and astrocytes. 
Several inhibitory neuron subtypes displayed dysregulation in diverse 
metabolic pathways and oxidative phosphorylation, indicating mito-
chondrial dysfunction, which has been previously described in aging 
and neurodegeneration61. Particularly, LAMP5+LHX6+ inhibitory neu-
rons specifically exhibited dysregulation in macroautophagy and 
apoptosis. A recent study62 described reduced numbers of inhibitory 
LAMP5+ neurons in mouse models of AD and in human brains of indi-
viduals with AD, potentially driven by the here-described effects of 
age-associated cellular disruptions. Microglia exhibited age-related 
upregulation in immune pathways, consistent with previous studies 
of primed microglia with aging in different species11,34,63,64. Intrigu-
ingly, despite microglial immune activation, there was no evidence of 
reactive astrocytes in aging, contrasting results from Krawczyk et al.38 
who reported an upregulation in cytokine signaling in aged astrocytes.

We validated our findings at the bulk and single-cell level. Indeed, 
our dataset replicated age-related changes from bulk sequencing; 
however, as expected, certain cell-type changes were diluted in bulk 
differential gene expression. We also used two studies, which had 
previously identified age-related genes in sorted cell populations 
of astrocytes38 and microglia34 by RNA-seq and another snRNA-seq 
dataset39, to replicate identified cell-type-specific DE genes and to 
show a significant correlation of the effect sizes (log2FC values) for 
most cell types, demonstrating comparability between methodological 
approaches across cohorts and cortical regions.

To relate age-associated transcriptional changes to those observed 
in AD, we compared our data to two independent AD snRNA-seq data-
sets40,41. This analysis revealed a convergence of age-regulated genes 
and genes dysregulated in AD, suggesting threshold effects contribute 
to disease. The most pronounced convergence occurred with upregu-
lated genes in astrocytes and oligodendrocytes and downregulated 
genes in astrocytes. The overlap between age-related genes and those 
dysregulated in AD in astrocytes did not stem from immune-related 
pathways, as there was no evidence of reactive astrocytes in aging. 
Instead, it indicated a shared deficit in neuronal support as a common 
affected mechanism. Notably, two genes, KCTD17 and LINGO1, exhib-
ited opposite regulation between aging and AD in excitatory neurons. 
KCTD17 encodes a member of the potassium channel tetramerization 
domain-containing protein family, which has been associated with 
neurodegeneration and psychiatric diseases65. LINGO1 encodes a regu-
lator of myelination66 that interacts with amyloid-β precursor protein, 
affecting its cleavage67. Interestingly, administration of anti-LINGO1 
antibodies has been shown to decrease amyloid-β deposition and 
improve cognitive impairment in a transgenic mouse model of AD68. 
This directionality would fit to upregulation with AD and downregu-
lation in aging not accompanied by neurodegeneration (Fig. 6e,f). 
LINGO1 and KCTD17 could thus represent interesting targets for thera-
peutic interventions.

Disease enrichment analyses of age-associated genes revealed 
enrichment of genes associated with psychiatric disorders, including 
SCZ, across several neuronal and glial cell types. This observation aligns 
with findings in bulk brain tissue of rhesus macaques11. Furthermore, 
we confirmed previously described accelerated transcriptomic age 
in individuals diagnosed with psychiatric disorders4 and identified 
convergent regulation of genes associated with both age and psychi-
atric disease using data from an snRNA-seq meta-analysis in SCZ55. 
The overlap in directionality between age- and disease-associated 
genes supports that aging trajectories could be shifted in psychiatric 
disorders, and neurodegenerating disease-relevant thresholds may 
be reached earlier. This could explain accelerated aging observed 
in individuals with psychiatric disorders and the increased risk for 
neurodegenerative disease in this group of individuals. Importantly, 
these convergent changes do not seem to be driven by genetic risk for 

psychiatric disease but rather reflect exposure to additional risk factors 
that are associated with having lived with the disease.

Certain limitations of the study should be noted. Although nuclei 
have been demonstrated to be comparable to whole-cell transcrip-
tomes69,70, certain aspects such as mitochondrial transcription, an 
important pathway affected in aging and neurodegeneration, cannot 
be profiled. Moreover, the applied three-prime sequencing does not 
allow for investigation of differential splicing, another process affected 
in aging, neurodegeneration71,72 and psychiatric disorders73,74. Addition-
ally, not all cells of the brain vasculature, such as pericytes or vascular 
smooth muscle cells, were detected, prohibiting the investigation of 
their transcriptomes. Although all brains were free from macro- and 
microscopic changes in cortical areas, contributions from pathological 
aging cannot be completely ruled out. The lack of evidence of accel-
erated epigenetic aging in psychiatric disease might be attributed to 
the EPIC array’s inability to capture specific age- and disease-related 
methylation changes. Given the high non-CpG methylation in neurons, 
alternative profiling methods for non-CpG methylation and epigenetic 
clocks may prove necessary. In addition, we were not sufficiently pow-
ered to investigate diagnosis- or sex-specific effects, both important 
research questions.

In summary, we provide a comprehensive dataset of cell-type- 
specific age-associated genes and pathways in the human OFC. We 
identify inhibitory LAMP5+LHX6+ neurons as transcriptionally most 
affected by aging. Notably, numerous gradual age-related changes 
overlap on the cell-type level with changes observed in AD. Addition-
ally, we pinpoint genes with opposite regulation as potential targets for 
therapeutic interventions. Moreover, we also find evidence for accel-
erated transcriptomic aging in individuals with psychiatric disorders 
at the single-cell level, with a converging signature across multiple 
cell types. We envision that these data will provide a starting point for 
furthering our understanding of the aging process and development 
of new therapeutic targets for aging-associated pathologies.
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Methods
Postmortem brain cohort
The study was approved by the Ethikkommission bei der LMU München 
(Ludwig Maximilians-Universität Munich Ethics Committee, 22-0523) 
and the Human Research Ethics Committees at the University of Wol-
longong (HE2018/351). Informed consent for brain autopsy was pro-
vided by the donors or their next of kin. No compensation was provided 
for donors or their next of kin. Donors were classified as neurotypical 
controls based on the absence of any psychiatric diagnosis, whereas 
individuals with psychiatric disease had been diagnosed with SCZ, 
schizoaffective disorder, bipolar disorder or MDD. None of the brain 
donors in this study were diagnosed with a neurodegenerative dis-
order. All included brains were neuropathologically examined, and 
Braak stage was determined. Only one individual (an individual with 
psychiatric disease) showed macro- and microscopic changes (Braak 
NFT stage III) but not in cortical areas. Fresh-frozen postmortem tis-
sue of the OFC was obtained from the New South Wales Brain Tissue 
Resource Centre in Sydney, Australia, and was used for snRNA-seq. 
Only gray matter was sampled. BA11 was dissected from the third 8- to 
10-mm coronal slice. The level was chosen based on visual inspection of 
neuroanatomical landmarks (primarily the straight and medial orbital 
gyri) in a slice anterior to the corpus callosum for comparability across 
donors. Sampling was performed using a straight edge razor blade. 
Supplementary Table 1 provides a summary of sample characteristics, 
and Supplementary Table 2 provides detailed information on all donor 
characteristics. Sample size was not predefined based on statistical 
power analysis but is comparable to (or even larger than) previous 
snRNA-seq studies in human postmortem brain40,41,75,76 and was based 
on tissue availability.

Nuclei extraction
Nuclei were extracted from 50–60 mg of frozen tissue following a modi-
fied version of a published protocol77. In brief, nuclei were obtained 
using Dounce homogenization on ice in 1 ml of nucleus extraction 
buffer (10 mM Tris-HCl (pH 8.1), 0.1 mM EDTA, 0.32 M sucrose, 3 mM 
magnesium acetate, 5 mM CaCl2, 0.1% IGEPAL CA-630 and 40 U ml–1 
RiboLock RNase-Inhibitor (Thermo Scientific)). Samples were layered 
onto 1.8 ml of sucrose cushion (10 mM Tris-HCl (pH 8.1), 1.8 M sucrose 
and 3 mM magnesium acetate), followed by ultracentrifugation at 
107,200g at 4 °C for 2.5 h (Thermo Scientific Sorvall WX+ ultracentri-
fuge). The supernatant was discarded using vacuum suction, and nuclei 
were diluted in 80 µl of resuspension buffer (1× PBS, 3 mM magnesium 
acetate, 5 mM CaCl2, 1% bovine serum albumin and 40 U ml–1 RiboLock 
RNase-Inhibitor). Nuclei were filtered through a preseparation filter 
(20 µm; Miltenyi Biotec), stained with DAPI (1:1,000) and quantified 
on a hemocytometer.

Library preparation
snRNA-seq libraries were prepared following the manufacturer’s 
instructions in the 10x Genomics user guide (Chromium Single Cell  
3′ Reagents kit v3.1). We targeted a recovery of 10,000 nuclei per sam-
ple. Equimolar amounts of each library were pooled, subsequently 
treated with Illumina Free Adapter Blocking Reagent and sequenced 
in two batches on a NovaSeq 6000 System (Illumina).

Sequence alignment, filtering, normalization and clustering
Sequence reads were demultiplexed using the sample index and 
aligned to a pre-mRNA reference, and unique molecular identifiers 
were counted after demultiplexing of nuclei barcodes using Cell Ranger 
v6.0.1 (10x Genomics). Reads were downsampled per nucleus to the 
75% quartile of reads per cell (14,786 reads). Count matrices of all indi-
viduals were combined and further processed using Scanpy (v1.7.1)78. 
Nuclei were filtered according to counts, minimum genes expressed 
and percentage of mitochondrial genes (nuclei with <500 counts,  
<300 genes or a mitochondrial percentage of ≥15 were removed).  

Genes expressed in <500 nuclei were removed. Doublets were fil-
tered out using DoubletDetection v3.0 (https://zenodo.org/
records/6349517#.ZHdK4-xBxAc). Data were normalized using 
sctransform (v0.3.2)79. Leiden clustering using highly variable genes 
was applied for clustering. One cluster was removed because three indi-
viduals contributed >25% of the nuclei of that cluster, which resulted 
in a final dataset with 787,685 nuclei.

Cell-type assignment
A label transfer algorithm (scarches v0.4.0 (ref. 80)) was used for 
an initial cell-type assignment. Cell-type labels from the Allen 
Brain Atlas (Human Multiple Cortical Areas SMART-seq, available 
at https://portal.brain-map.org/atlases-and-data/rnaseq/human- 
multiple-cortical-areas-smart-seq) were taken as a reference for our 
dataset. These initial assignments were refined by a manual curation 
based on marker gene expression75,76,81.

Known marker genes for major cell types included astrocytes 
(AQP4, GFAP and GJA1), endothelial cells (CLDN5, FLT1 and SYNE2), 
excitatory neurons (SLC17A7, SLC17A6 and SATB2), inhibitory neurons 
(GAD1, GAD2 and NXPH1), microglia (APBB1IP, C3 and P2RY12), oligoden-
drocytes (MPB, MOBP and PLP1) and OPCs (OLIG1, PDGFRA and VCAN).

Two subtypes of astrocytes were identified based on higher GFAP 
and ARHGEF4 expression in fibrous astrocytes and higher expression 
of ATP1A2, GJA1 and SGCD in protoplasmic astrocytes75. Subtypes of 
excitatory neurons were assigned based on the expression of corti-
cal layer-specific marker genes (layers 2–3: CUX2 and RFX3; layer 4: 
IL1RAPL2, CRIM1 and RORB; layers 5–6: RXFP1, TOX, DLC1 and TLE4  
(refs. 75,76)). Subtypes of inhibitory neurons were assigned based 
on the expression of interneuron markers LAMP5, PVALB, RELN, SST 
and VIP. For PVALB inhibitory neurons, two subtypes (basket cells 
(In_PVALB_Ba) and chandelier cells (In_PVALB_Ch)) could be identi-
fied (based on the high expression of RORA, TRPS1, NFIB and UNC5B in 
chandelier cells as described by Bakken et al.81). For the identification 
of subtypes within the In_LAMP5 cluster, Leiden clustering restricted 
to this cluster was performed, resulting in two subtypes (In_LAMP5_1 
and In_LAMP5_2).

Selection of covariates for differential expression analysis
Given that technical covariates are assumed to be the same across all 
cell types, we created a full pseudobulk count matrix by summing the 
gene-wise counts over all cell types and applied a stringent filter to 
obtain only genes of a minimum of ten counts in 90% of the individu-
als. Variance stabilizing transformation (vsd, DESeq2, v1.42.0)82 was 
applied, and PC analysis (PCAtools v2.14.0)83 was performed. Sig-
nificant correlation of continuous variables with PCs was observed for 
RIN, PMI, pH and age. Canonical correlation analysis further identified 
library preparation batch (lib_batch) as a covariate. Sex and disease sta-
tus (0 = control and 1 = psychiatric case) were included as covariates. To 
account for hidden confounders, we performed PC analysis after hav-
ing calculated the normfactors, performed voom transformation and 
removed batch effects of all covariates using removeBatchEffect84 to 
obtain a batch-corrected expression matrix. The first PC was included 
as an additional covariate, resulting in the final model: (~age + disease 
status + sex + pH + RIN + PMI + lib_batch + PC1). Variance partitioning85 
(variancePartition v1.33.0) was applied to obtain the variance explained 
by each of the covariates (Extended Data Fig. 10c). The RIN was not 
available for one individual and thus was set to the median.

Differential expression analysis
We performed differential gene expression analysis using the R pack-
age dreamlet (v1.1.1)86, which uses a pseudobulk approach summing 
the gene-wise counts within the 21 identified cell types and the 7 
major cell-type clusters, respectively. Additionally, we generated a 
‘full pseudobulk’ count matrix by summing the gene-wise counts over 
all cell types for comparison with previously published bulk datasets. 
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Normalization was performed using the processAssays function 
with genes and nuclei being filtered based on the following cutoffs: 
min.count = 10, min.prop = 0.8, min.cells = 5 and min.samples = 61. 
Using dreamlet’s function dreamlet, we performed differential gene 
expression analysis including the selected covariates. To identify 
age-regulated genes, we modeled library preparation batch (lib_batch), 
sex and disease status as random effects. P values were adjusted for mul-
tiple testing using the FDR method considering all tested genes across 
all cell types. Age-regulated DE genes with an adjusted P value of <0.05 
were considered for downstream analysis unless otherwise specified. 
For easier readability, genes more highly expressed in older individuals 
will be referred to as ‘upregulated’, whereas genes more lowly expressed 
in older individuals will be referred to as ‘downregulated’.

To examine shared age-related gene expression changes across 
all cell types, we performed mash analysis (mashR v.0.2.79)29 to lever-
age information sharing across genes and cell types using dreamlet’s 
run_mash function. Genes were considered significant at a local false 
sign rate of <0.05.

To identify disease-associated genes, we modeled lib_batch and 
sex as random effects. P values were adjusted for multiple testing using 
the FDR method considering all tested genes within the respective cell 
type. DE genes with an adjusted P value of <0.1 were considered for 
downstream analysis.

To identify genes with an interactive effect between age and dis-
ease status, the interaction term age:disease status was included.  
P values were adjusted for multiple testing using the FDR method  
considering all tested genes within the respective cell type, and differ-
ences were considered significant at an FDR-adjusted P < 0.1.

As a similarity measure of the DE genes between two cell types  
(A and B), the overlap index (O) was calculated using the following 
formula and then visualized using qgraph (v1.9.8)87:

O(A,B) = ( |A ∩ B|
|A| + |A ∩ B|

|B| )/2

This overlap index is similar to the Jaccard index but differs, however, 
in the fact that the overlap proportion is considered in comparison to 
each of the two cell types separately and not the union (as for the Jac-
card index), giving equal weight to each of the cell types (which may 
have large differences in the number of DE genes).

Downsampling to determine the most strongly affected cell 
type by aging
To calculate the number of age-associated DE genes across cell types 
normalized to the number of nuclei in each cell type, 5,000 nuclei from 
each cell type were randomly selected ten times. Differential expres-
sion analysis was then performed for each of the ten randomly selected 
subsets. Next, the average number of DE genes for each cell type was 
calculated. To assess whether there were differences in the number of 
DE genes per cell type in the downsampling analyses, we compared the 
number of DE genes across cell types using a Mann–Whitney U-test.  
P values were adjusted for multiple testing using the FDR method.

RRHO analysis to compare age-related gene expression 
patterns between neurotypical individuals and individuals 
with psychiatric disease
To compare overall gene expression patterns between neurotypi-
cal individuals and individuals with psychiatric disease, we split 
the snRNA-seq dataset and performed differential gene expression 
analysis (as described above) to identify age-regulated genes in 
the two groups, respectively. We next performed rank–rank hyper-
geometric overlap analysis using the RRHO2 package (v1.0)88,89 by 
ranking the genes according to the log2FC value multiplied by the 
negative base 10 logarithm of the uncorrected P value from differential  
expression analysis.

Visualization of DE genes
For visualization (ggplot2 (v3.4.4)90 and ggpubr v0.6.0 (ref. 91) of 
DE genes (Figs. 2c, 3a–f, 6c,e and 7c–e and Extended Data Fig. 9c), 
cell-type-specific pseudobulk matrices (filtered for genes with a mini-
mum of ten counts in 60% of the individuals) were normalized using 
the calcNormFactors function (edgeR, v4.0.1)92 followed by voom 
transformation (limma, v3.58.1)84. To visualize age-related genes, 
batch effects (disease status + sex + pH + RIN + PMI + lib_batch + PC1) 
were then removed using the function removeBatchEffect (limma, 
v3.58.1)84. To visualize age- and disease-related genes, batch effects 
(sex + pH + RIN + PMI + lib_batch + PC1) were removed using the func-
tion removeBatchEffect (limma, v3.58.1)84.

Cell-type composition analysis
For each individual, we calculated cell-type proportions of each cell 
type by dividing the number of nuclei in a specific cell type by the total 
number of nuclei of the respective individual. We then used multiple 
linear regression to test for associations between age and cell-type 
composition for each cell type controlling for covariates (sex, disease 
status, pH, RIN, PMI and lib_batch). Associations were considered 
significant at an FDR-adjusted P < 0.05.

Comparison of gene expression changes to previously 
published data
For all datasets, the significance of overlap was determined using a 
Fisher’s exact test (R package GeneOverlap)93.

Validation of age-regulated genes from bulk datasets. For compari-
son with previously identified age-related genes in bulk brain tissue 
(cortex), three datasets (Gonzalez-Velasco et al.33, Kumar et al. (frontal 
cortex)8 and Lu et al. (frontal pole)9) were used. DE genes from the vali-
dation datasets not tested (expressed) in the ‘full pseudobulk’ count 
matrix were removed. Gonzalez-Velasco et al.33 identified age-regulated 
genes in a meta-analysis across three datasets of the cortex. DE genes 
were split into up- and downregulated genes, respectively, and were 
tested for significant overlap. The DE genes in the Kumar et al.8 dataset 
were filtered for the significant genes in both the discovery and rep-
lication datasets in the frontal cortex. Gene symbols were mapped to 
Ensembl IDs. Because the directionality of gene expression change was 
not available in the supplementary data, overlap was tested independ-
ent of directionality of expression change. The DE probes identified 
using Affymetrix HG-U95Av2 by Lu et al.9 were mapped to Ensembl IDs. 
DE genes were split into up- and downregulated genes, respectively, 
and were tested for significant overlap.

Cell-type-specific validation of age-regulated genes. To validate 
our cell-type specific findings, we compared our identified DE genes 
(FDR-adjusted P < 0.05) in microglia and astrocytes (major cell-type 
cluster) to datasets that identified gene expression changes over the 
course of aging in purified microglia from the parietal cortex (Galatro 
et al.34, FDR-adjusted P < 0.05) and astrocytes derived from the cerebral 
cortex obtained during brain surgery (Krawczyk et al.38, FDR-adjusted 
P < 0.05), respectively. Ensembl IDs not tested (expressed) in the micro-
glia/astrocyte (major cell-type cluster) pseudoexpression matrix were 
removed. Furthermore, we leveraged an snRNA-seq dataset of the 
dorsolateral prefrontal cortex39. Differential expression analysis to 
identify age-regulated genes was performed on the summed pseu-
dobulk expression matrix that was filtered and voom normalized. 
Differential expression analysis for age was performed with limma84 
adjusting for age, sex, PMI, genetic PC1, primary psychiatric diagnosis 
(that is, neurotypical, MDD and post-traumatic stress disorder), lifetime 
antipsychotic use, day of the experiment, percentage of cells in the 
cell cluster over the total number of cells and batch. Given the smaller 
sample size (N = 32) of this replication dataset and thus reduced power 
to detect age-regulated genes, we examined the P value distribution of 
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age-regulated genes. Cell types in which the 15th percentile of nominal 
P values was <0.1 were chosen for validation, and genes with a nominal 
P value of <0.05 were considered. Of these DE genes, genes not tested 
(expressed) in the pseudoexpression matrix were removed. DE genes 
were split into up- and downregulated genes and were tested for sig-
nificant overlap with our respective DE genes in the corresponding cell 
type. We also conducted a Spearman correlation of the fold change val-
ues. P values were adjusted for multiple testing using the FDR method18.

Cell-type-specific comparison of age-regulated genes to AD- 
associated genes. To compare DE genes associated with aging (age DE 
genes) to genes dysregulated in AD, we used two studies that had identi-
fied cell-type-specific DE genes in AD in the prefrontal cortex40,41. Both 
single-nucleus AD studies had only assigned major cell types (excita-
tory neurons, inhibitory neurons, astrocytes, endothelial cells, micro-
glia, oligodendrocytes and OPCs (only in Mathys et al.40)). We used the 
cell-type-specific up- and downregulated AD-associated DE genes 
and overlapped them with the up- and downregulated age-associated 
DE genes (at an FDR-adjusted P < 0.1) of the corresponding major cell 
types after removing the AD-associated DE genes not expressed in 
the respective cell-type cluster. Moreover, we calculated a Spearman 
correlation of the fold change values.

Cell-type-specific comparison of age-associated genes with 
psychopathology-associated genes. To compare DE genes associated 
with aging (age DE genes) to genes associated with psychiatric disease, 
we overlapped age-associated genes and disease status-associated 
genes identified using our differential expression analysis as  
detailed above.

Moreover, to test for enrichment of DE genes associated with aging 
(age DE genes) with genes associated with SCZ, we leveraged results 
from an snRNA-seq meta-analysis comparing healthy control individu-
als to individuals diagnosed with SCZ55. We used the cell-type-specific 
SCZ-associated DE genes (FDR-adjusted P < 0.05 and absolute log2FC 
of >0.1) and overlapped them with the age-associated DE genes (at an 
FDR-adjusted P < 0.1) of the corresponding cell types after removing 
the SCZ-associated DE genes not expressed in the respective cell- 
type cluster.

GO and disease enrichment analysis
We performed over-representation analysis of biological processes 
using clusterProfiler (v4.10.0)94 and over-representation analysis of dis-
eases using DOSE (v3.28.0)95 for up- and downregulated age-associated 
DE genes. For shared genes across cell types (mash results), all genes 
expressed in at least one cell type were considered background. For 
cell-type-specific enrichment, all genes tested in the respective cell 
type were considered background. We accounted for the differences in 
the number of DE genes for the different cell types by only considering 
GO/disease terms with a minimum of 5% of DE genes overlapping with 
the term genes and at least two genes per term. GO terms were consid-
ered significant at an FDR-adjusted P < 0.05. We then used GO-Figure! 
(v1.0.1)96 to reduce the redundancy of the list of GO terms.

DNA extraction
Genomic DNA was extracted from ~10 mg of frozen OFC tissue using a 
QIAamp DNA mini kit (Qiagen) following the manufacturer’s instruc-
tions (‘Protocol: DNA Purification from Tissues’) without performing 
the RNase A treatment. DNA samples were concentrated using a DNA 
Clean & Concentrator-5 kit (Zymo Research).

DNAm measurement and calculation of epigenetic clocks
Bisulfite conversion of 400 ng of DNA was performed using an EZ-96 
DNA Methylation kit (Zymo Research). Epigenome-wide DNAm analysis 
was performed with an Illumina Infinium MethylationEPIC BeadChip 
(Illumina) according to the manufacturer’s guidelines.

DNAm data were processed differently for both DNAm clocks fol-
lowing the original pipeline of each clock as suggested by the authors. 
For Horvath’s multitissue clock50, raw intensity values were trans-
formed into β-values, and quality control was performed with the 
minfi R package (v1.36.0)97,98. DNAm data were then normalized with 
stratified quantile normalization99 and subsequent β-mixture quantile 
normalization100.

For the cortical DNAm clock51, raw intensity values were preproc-
essed using the watermelon (v1.34.0) and bigmelon (v1.16.0) R packages 
as described in detail in Shireby et al. (DNAmClockCortical preprocess-
ing pipeline)51,101,102.

In both pipelines, no samples needed to be excluded due to quality 
control issues (mean detection P value of > 0.05, distribution artifacts 
in raw β-values or sex mismatches). In both pipelines, PC analysis was 
performed separately after transformation of β-values to M values 
to check for outlier samples (>3 s.d. on the two first PCs; none were 
excluded). We then corrected technical batch effects sequentially 
with ComBat within the sva R package (v3.38.0)103 for the strongest 
associations with the PCs (array and row). Batch-corrected M values 
were transformed into β-values. Further, brain tissue-related variables, 
which significantly correlated with the first five PCs (brain pH and stor-
age time), were included as a covariate in all analyses.

DNAm data were used to calculate epigenetic age and epigenetic 
age acceleration (that is, residuals from a regression of estimated 
epigenetic age on chronological age adjusting for brain pH and stor-
age time) for postmortem brain samples for the following estimators: 
Horvaths’ multitissue clock (with the methylclock R package50,104; 
v0.7.7) and cortical clock available code from Shireby et al.51 (https://
github.com/gemmashireby/CorticalClock). Proportions of neuronal 
cells were calculated from the epigenome-wide DNAm data as sug-
gested by Guintivano et al.105. Next, we used multiple linear regression 
to examine the association between disease status and epigenetic age 
acceleration, controlling for covariates (sex, smoking status and pro-
portions of neuronal cells). Because one individual could not be run on 
the EPIC due to low DNA yield, and seven individuals had an unknown 
smoking status, the final cohort for multiple linear regression analysis 
consisted of 79 individuals (neurotypical individuals, n = 27, individuals 
with psychiatric disease, n = 52).

Calculation of transcriptomic age
We generated a ‘full pseudobulk’ count matrix by summing the gene- 
wise counts over all cell types and filtered for genes with a minimum 
of ten counts in 60% of the individuals for the calculation of transcrip-
tomic brain age. Counts were normalized using the calcNormFac-
tors function (edgeR92), followed by voom transformation (limma, 
v3.58.1,84). Lin et al.4 had identified 76 genes predictive of age in the 
postmortem brain (BA11). Gene symbols were mapped to Ensembl IDs. 
Ensembl IDs not expressed in the full bulk dataset were removed. Of 
the 76 genes, 73 were expressed. The three missing genes were APLNR, 
KCNA6 and MIR29C. To obtain the transcriptomic age estimate, the gene 
expression value was multiplied by its provided coefficient (weight) and 
summed for all 73 genes. A linear regression was fit between chronologi-
cal age and transcriptomic age to rescale the unit of the transcriptomic 
age back to the unit of chronological age by year. To calculate age accel-
eration, we regressed transcriptomic age estimates on chronological 
age adjusting for the library preparation batch (lib_batch; the strong-
est batch effect). We then used multiple linear regression to examine 
disease status in association with transcriptomic age acceleration, 
controlling for covariates (sex, pH, RIN, PMI and PC1).

SNP genotyping
Genome-wide SNP genotyping was performed on Illumina GSA-24v3-0_
A1 arrays according to the manufacturer’s guidelines (Illumina). Geno-
typic quality control was performed using PLINK (v1.90b4.1)106. SNPs 
with a callrate of <98%, minor allele frequency of <1% or a P value for 
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deviation from Hardy–Weinberg equilibrium of <1 × 10−5 were removed. 
Furthermore, individuals with a callrate of <98% were excluded. If a 
pair of individuals presented with a relatedness (pihat) of >0.125, the 
individual with the higher callrate was kept in the analysis. Individuals 
who were genetic outliers (more than 4 s.d. on the first three multidi-
mensional scaling components of the identity-by-state (IBS) matrix 
after linkage disequilibrium (LD) pruning) were also excluded. After 
quality control, genotypes were subjected to imputation. Imputation 
was performed using shapeit2 (v2.r837)107 and impute2 (v2.3.2)108 using 
the 1000 Genomes Phase III reference sample. After imputation, SNPs 
with an info score below 0.6, with a minor allele frequency below 1% 
or that deviated from Hardy–Weinberg equilibrium (P < 1 × 10−5) were 
excluded from further analysis, resulting in 9,652,209 SNPs.

Calculation of PRSs
PRSs were calculated based on GWASs for a cross-disorder pheno-
type58 and SCZ57.The PRS-CS (v1.0.0) package109 was applied in Python 
(v3.6.8) for the inference of posterior effect sizes of SNPs in the GWAS 
summary statistics. The linkage disequilibrium reference panel was set 
to the one constructed using the 1000 Genomes Project phase 3 Euro-
pean samples, which is also linked on the PRS-CS GitHub page (https://
github.com/getian107/PRScs). Phi, the global shrinkage parameter of 
PRS-CS, was set to 1 × 10–2 for SCZ, the recommended setting for highly 
polygenic traits. For cross-disorder, no phi parameter was specified, 
as the sample size of the GWASs is sufficient to learn phi from the data. 
PLINK110 (v2.00a2.3LM, https://www.cog-genomics.org/plink/1.9/) was 
applied with the score parameter to calculate the PRS per sample based 
on the posterior effect sizes previously inferred.

GWAS enrichment analysis
A GWAS enrichment analysis was conducted with H-MAGMA (v1.10)59.  
Significant GWAS hits were mapped to genes based on GWAS sum-
mary statistics for AD111, SCZ57, bipolar disorder112, MDD113 and 
hypertension (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of- 
thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank) 
and the European 1,000 genomes reference panel (available at https://
github.com/thewonlab/H-MAGMA). A gene-level analysis in the form 
of a gene property analysis was performed on the mapped results 
with the ‘–gene-covar’ argument in MAGMA. With this approach, the 
gene-level regression framework was used to examine if differential 
expression related to age is associated with GWAS results. Here, dif-
ferential expression results were entered as a continuous variable, 
represented as –log10(P value) × log2FC.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
DNAm data (EPIC arrays) have been deposited into the Gene Expres-
sion Omnibus (GEO) database under accession number GSE254293. 
snRNA-seq data (raw data and anndata object) have been deposited 
into the GEO database under the accession number GSE254569. For 
cell-type assignments of the snRNA-seq data, cell-type labels from 
the Allen Brain Atlas (Human Multiple Cortical Areas SMART-seq, 
available at https://portal.brain-map.org/atlases-and-data/rnaseq/
human-multiple-cortical-areas-smart-seq) were taken as a reference 
for our dataset. The snRNA-seq replication dataset from Chatzinakos 
et al.39 is available at https://www.synapse.org/Synapse:syn33235943 
(raw data) and https://www.synapse.org/Synapse:syn39718968 (meta-
data). For PRS calculation, GWAS summary statistics for SCZ57 (available 
at https://figshare.com/articles/dataset/scz2022/19426775) and a psy-
chiatric cross-disorder phenotype58 (available at https://figshare.com/
articles/dataset/cdg2019/14672034) were used. For the GWAS enrich-
ment analysis using H-MAGMA, significant GWAS hits were mapped to 

genes based on GWAS summary statistics for AD111 (available at https://
vu.data.surfsara.nl/index.php/s/l7aiRr1UEgdoJfZ), SCZ57 (available at 
https://figshare.com/articles/dataset/scz2022/19426775), bipolar dis-
order112 (available at https://figshare.com/articles/dataset/PGC3_bipo-
lar_disorder_GWAS_summary_statistics/14102594), MDD113 (available 
at https://datashare.ed.ac.uk/handle/10283/3203) and hyperten-
sion (http://www.nealelab.is/uk-biobank, ‘GWAS round 2 results can 
be found here’; available at https://broad-ukb-sumstats-us-east-1.
s3.amazonaws.com/round2/additive-tsvs/I9_HYPERTENSION.gwas.
imputed_v3.both_sexes.tsv.bgz) and the European 1,000 genomes ref-
erence panel (available at https://github.com/thewonlab/H-MAGMA).

Code availability
All analysis scripts are accessible in the following GitHub repository: 
https://github.com/AnnaSophieFroehlich/single_cell_aging.

References
75. Velmeshev, D. et al. Single-cell genomics identifies cell 

type-specific molecular changes in autism. Science 364, 
685–689 (2019).

76. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal 
cortex in major depressive disorder implicates oligodendrocyte 
precursor cells and excitatory neurons. Nat. Neurosci. 23,  
771–781 (2020).

77. Matevossian, A. & Akbarian, S. Neuronal nuclei isolation  
from human postmortem brain tissue. J. Vis. Exp. 2008,  
914 (2008).

78. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale 
single-cell gene expression data analysis. Genome Biol. 19,  
15 (2018).

79. Hafemeister, C. & Satija, R. Normalization and variance 
stabilization of single-cell RNA-seq data using regularized 
negative binomial regression. Genome Biol. 20, 296 (2019).

80. Lotfollahi, M. et al. Mapping single-cell data to reference atlases 
by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

81. Bakken, T. E. et al. Comparative cellular analysis of motor  
cortex in human, marmoset and mouse. Nature 598, 111–119 
(2021).

82. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. Genome 
Biol. 15, 550 (2014).

83. Blighe, K. & Lun, A. PCAtools: PCAtools: everything principal 
components analysis. R package version 2.14.0; https://doi.org/ 
10.18129/B9.bioc.PCAtools (2023).

84. Ritchie, M. E. et al. limma powers differential expression analyses 
for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43, e47 (2015).

85. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting 
drivers of variation in complex gene expression studies.  
BMC Bioinformatics 17, 483 (2016).

86. Hoffman, G. E. et al. Efficient differential expression analysis 
of large-scale single cell transcriptomics data using dreamlet. 
Preprint at bioRxiv https://doi.org/10.1101/2023.03.17.533005 
(2023).

87. Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & 
Borsboom, D. qgraph: network visualizations of relationships in 
psychometric data. J. Stat. Softw. 48, 1–18 (2012).

88. Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank–
rank hypergeometric overlap: identification of statistically 
significant overlap between gene-expression signatures.  
Nucleic Acids Res. 38, e169 (2010).

89. Cahill, K. M., Huo, Z., Tseng, G. C., Logan, R. W. & Seney, M. 
L. Improved identification of concordant and discordant 
gene expression signatures using an updated rank–rank 
hypergeometric overlap approach. Sci. Rep. 8, 9588 (2018).

http://www.nature.com/natureneuroscience
https://github.com/getian107/PRScs
https://github.com/getian107/PRScs
https://www.cog-genomics.org/plink/1.9/
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
https://github.com/thewonlab/H-MAGMA
https://github.com/thewonlab/H-MAGMA
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE254293
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE254569
https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq
https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq
https://www.synapse.org/Synapse:syn33235943
https://www.synapse.org/Synapse:syn39718968
https://figshare.com/articles/dataset/scz2022/19426775
https://figshare.com/articles/dataset/cdg2019/14672034
https://figshare.com/articles/dataset/cdg2019/14672034
https://vu.data.surfsara.nl/index.php/s/l7aiRr1UEgdoJfZ
https://vu.data.surfsara.nl/index.php/s/l7aiRr1UEgdoJfZ
https://figshare.com/articles/dataset/scz2022/19426775
https://figshare.com/articles/dataset/PGC3_bipolar_disorder_GWAS_summary_statistics/14102594
https://figshare.com/articles/dataset/PGC3_bipolar_disorder_GWAS_summary_statistics/14102594
https://datashare.ed.ac.uk/handle/10283/3203
http://www.nealelab.is/uk-biobank
https://broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/I9_HYPERTENSION.gwas.imputed_v3.both_sexes.tsv.bgz
https://broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/I9_HYPERTENSION.gwas.imputed_v3.both_sexes.tsv.bgz
https://broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/I9_HYPERTENSION.gwas.imputed_v3.both_sexes.tsv.bgz
https://github.com/thewonlab/H-MAGMA
https://github.com/AnnaSophieFroehlich/single_cell_aging
https://doi.org/10.18129/B9.bioc.PCAtools
https://doi.org/10.18129/B9.bioc.PCAtools
https://doi.org/10.1101/2023.03.17.533005


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01742-z

90. Wickham, H. ggplot2: Elegant Graphics for Data Analysis 
(Springer-Verlag New York, 2016).

91. Kassambara, A. ggpubr: 'ggplot2' based publication ready plots. 
R package version 0.6.0; https://rpkgs.datanovia.com/ggpubr/ 
(2023).

92. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR:  
a Bioconductor package for differential expression analysis of 
digital gene expression data. Bioinformatics 26, 139–140 (2010).

93. Shen, L. & Icahn School of Medicine at Mount Sinai. GeneOverlap: 
test and visualize gene overlaps. R package version 1.38.0. GitHub 
https://github.com/shenlab-sinai/GeneOverlap (2021).

94. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for 
interpreting omics data. Innovation 2, 100141 (2021).

95. Yu, G., Wang, L. G., Yan, G. R. & He, Q. Y. DOSE: an R/Bioconductor 
package for disease ontology semantic and enrichment analysis. 
Bioinformatics 31, 608–609 (2015).

96. Reijnders, M. & Waterhouse, R. M. Summary visualizations  
of Gene Ontology terms with GO-Figure! Front. Bioinform. 1, 
638255 (2021).

97. Aryee, M. J. et al. Minfi: a flexible and comprehensive 
Bioconductor package for the analysis of Infinium DNA 
methylation microarrays. Bioinformatics 30, 1363–1369 (2014).

98. Touleimat, N. & Tost, J. Complete pipeline for Infinium Human 
Methylation 450K BeadChip data processing using subset 
quantile normalization for accurate DNA methylation estimation. 
Epigenomics 4, 325–341 (2012).

99. Maksimovic, J., Phipson, B. & Oshlack, A. A cross-package 
Bioconductor workflow for analysing methylation array data. 
F1000Res 5, 1281 (2016).

100. Teschendorff, A. E. et al. A β-mixture quantile normalization 
method for correcting probe design bias in Illumina Infinium 
450K DNA methylation data. Bioinformatics 29, 189–196 (2013).

101. Pidsley, R. et al. A data-driven approach to preprocessing Illumina 
450K methylation array data. BMC Genomics 14, 293 (2013).

102. Gorrie-Stone, T. J. et al. Bigmelon: tools for analysing large DNA 
methylation datasets. Bioinformatics 35, 981–986 (2019).

103. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. 
The sva package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinformatics 28, 
882–883 (2012).

104. Pelegi-Siso, D., de Prado, P., Ronkainen, J., Bustamante, M. & 
Gonzalez, J. R. methylclock: a Bioconductor package to estimate 
DNA methylation age. Bioinformatics 37, 1759–1760 (2021).

105. Guintivano, J., Aryee, M. J. & Kaminsky, Z. A. A cell epigenotype 
specific model for the correction of brain cellular heterogeneity 
bias and its application to age, brain region and major depression. 
Epigenetics 8, 290–302 (2013).

106. Purcell, S. et al. PLINK: a tool set for whole-genome association 
and population-based linkage analyses. Am. J. Hum. Genet. 81, 
559–575 (2007).

107. Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity 
phasing method for thousands of genomes. Nat. Methods 9, 
179–181 (2011).

108. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A 
new multipoint method for genome-wide association studies by 
imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

109. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic 
prediction via Bayesian regression and continuous shrinkage 
priors. Nat. Commun. 10, 1776 (2019).

110. Chang, C. C. et al. Second-generation PLINK: rising to the 
challenge of larger and richer datasets. Gigascience 4,  
7 (2015).

111. Jansen, I. E. et al. Genome-wide meta-analysis identifies new  
loci and functional pathways influencing Alzheimer’s disease risk. 
Nat. Genet. 51, 404–413 (2019).

112. Mullins, N. et al. Genome-wide association study of more than 
40,000 bipolar disorder cases provides new insights into the 
underlying biology. Nat. Genet. 53, 817–829 (2021).

113. Howard, D. M. et al. Genome-wide meta-analysis of depression 
identifies 102 independent variants and highlights the 
importance of the prefrontal brain regions. Nat. Neurosci. 22, 
343–352 (2019).

Acknowledgements
This work was supported by the Hope for Depression Research 
Foundation (to E.B.B.) and the BMBF eMED program grant DINGS 
(01ZX1504) to M.J.Z. Human brain tissue acquisition was funded by 
the Alexander von Humboldt Foundation research support package 
awarded to N.M. N.G. is supported by the Joachim Herz Foundation. 
The work of N.Y. is funded by the Else-Kroener-Fresenius Foundation. 
C.C. and N.P.D. were supported by 2015 and 2018 NARSAD Young 
Investigator grants from the Brain & Behavior Research Foundation 
to N.P.D. and R01MH133268 from the National Institute of Mental 
Health to N.P.D. The funders had no role in study design, data 
collection and analysis, decision to publish or preparation of the 
manuscript. We would like to thank J. Martins for help with genotype 
imputation and M. Rex-Haffner for support with project organization 
and logistics. We would also like to thank the donors and their 
families for the donations of brain tissue and the staff at the  
New South Wales Brain Tissue Resource Centre for tissue collection 
and processing. Tissues received from the New South Wales Brain 
Tissue Resource Centre at the University of Sydney were supported 
by the University of Sydney. Research reported in this publication 
was supported by the National Institute of Alcohol Abuse and 
Alcoholism of the National Institutes of Health under award number 
NIAAA012725-15. The content is solely the responsibility of the 
authors and does not represent the official views of the National 
Institutes of Health.

Author contributions
E.B.B., A.S.F, J.K.-A., N.G. and M.J.Z. conceptualized the single-cell 
study design. E.B.B. and M.J.Z. funded the snRNA-seq studies. 
N.M. curated the cohort and acquired, managed and funded the 
human brain tissue acquisition. E.B.B. and A.S.F. conceptualized the 
research. A.S.F., M.G. and M.K. performed single-nucleus extraction 
and library preparation. N.G. and V.M. performed read alignment 
using Cell Ranger. N.G. and A.S.F. performed quality control of  
the single-nucleus data supported by S.R. N.G. performed label 
transfer for cell-type assignment, and A.S.F. performed manual 
curation. A.S.F. performed all other analyses. A.S.F. performed  
DNA extraction. M.K. and S.S. prepared samples for genotyping  
and DNAm measurement. N.Y. processed the DNAm data and 
calculated epigenetic clocks and neuronal cell-type proportions. 
D.C. processed genotype data and performed SNP imputation.  
N.G. calculated PRSs. N.P.D. provided snRNA-seq data for replication, 
and N.P.D. and C.C. performed DE replication analyses. A.S.F. and 
E.B.B. wrote the manuscript. All authors reviewed and revised  
the manuscript.

Funding
Open access funding provided by Max Planck Society.

Competing interests
N.P.D. has served on the scientific advisory boards for BioVie Pharma, 
Circular Genomics and Sentio Solutions for unrelated work. All other 
authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41593-024-01742-z.

http://www.nature.com/natureneuroscience
https://rpkgs.datanovia.com/ggpubr/
https://github.com/shenlab-sinai/GeneOverlap
https://doi.org/10.1038/s41593-024-01742-z
https://doi.org/10.1038/s41593-024-01742-z


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01742-z

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41593-024-01742-z.

Correspondence and requests for materials should be addressed to 
Anna S. Fröhlich or Elisabeth B. Binder.

Peer review information Nature Neuroscience thanks Noah 
Snyder-Mackler and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01742-z
https://doi.org/10.1038/s41593-024-01742-z
http://www.nature.com/reprints


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01742-z

Extended Data Fig. 1 | Cohort Parameters. a, Age distribution of cohort colored 
by controls and cases (neurotypical individuals and individuals with a pyschiatric 
disease) (left), colored by disease classification (middle), and colored by females 
(F) and males (M) (right) used for the single-nucleus RNA sequencing. b, Boxplots 
showing (from left to right) age, post-mortem interval (PMI), RNA integrity 
number (RIN), median number of genes and median number of counts between 
individuals with a pyschiatric disease (N = 54) and neurotypical individuals 

(N = 33). The type of test (as indicated in the plots) used was dependent on 
whether the data was normally distributed (t-test) or not (Mann-Whitney U test); 
tests were two-sided. Boxplots show the median (center), IQR (bounds of box), 
and whiskers extending to either the maxima/minima or to the median ± 1.5× IQR,  
whichever is nearest. Triangles indicate outliers. c, Spearman correlation  
(two-sided) of age and (from left to right) PMI, RIN, median number of genes and 
median number of counts.
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Extended Data Fig. 2 | Clustering and experimental variables. a, Uniform 
Manifold Approximation and Projection (UMAP) showing ~800 000 nuclei 
from 87 donors from the orbitofrontal cortex colored by (from left to right) 
experimental batch, disease status, and sex indicating that clusters were not 
driven by these parameters. b, Stacked barplots showing the percentage 

contribution to the respective cell type cluster (from left to right) from 
experimental batch, disease status and sex. c, UMAP showing ~800 000 nuclei 
from 87 donors from the orbitofrontal cortex colored by donor. d, Stacked 
barplot showing the percentage contribution to the respective cell type cluster 
from each donor.
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Extended Data Fig. 3 | Cell type makers. a-c, Dotplot showing the expression of representative marker genes of cell subtypes for astrocyte subtypes (a), inhibitory 
neuron subtypes (b) and excitatory neuron subtypes (c). The size of the dot represents the fraction (%) of nuclei expressing the gene and the color indicates the mean 
expression level.
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Extended Data Fig. 4 | Cellular composition changes along aging, effect 
size distribution of differentially expressed genes, and comparison of 
variance in gene expression explained by age across cell types. a, Stacked 
area chart depicting cellular composition changes across age bins of 10 years. 
Raw proportions (uncorrected for covariates) are shown. b,Violin plots showing 
distribution of the FC per 10 years of differentially expressed genes (at FDR-
adjusted p-value < 0.05) for up- (left) and downregulated (right) genes for  
each of the 21 cell types respectively. The number of DE genes (at FDR-adj. 
p-value < 0.05; N) per cell type is shown in Supplementary Table 5. Boxplot shows 
the median (center), IQR (bounds of box), and whiskers extending to either the 

maxima/minima or to the median ± 1.5× IQR, whichever is nearest. c, Boxplot of 
variance in gene expression explained by age across 21 cell types. P values were 
calculated by comparing variance explained by age across genes between cell 
types (two-sided Mann-Whitney U test) followed by multiple testing correction 
(fdr). For clarity only p-value for comparison between In_LAMP5_2 and all other 
cell types is shown and only outliers (triangles) are depicted as individual 
data points. Exact p-values and N (that is genes) per cell type are shown in 
Supplementary Table 8. Boxplot shows the median (center), IQR (bounds of box), 
and whiskers extending to either the maxima/minima or to the median ± 1.5× IQR, 
whichever is nearest.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Rank-rank hypergeometric overlap of age-related gene 
expression pattern in controls and cases. RRHO2 plots for correspondence 
between differential expression results for age in neurotypical individuals 
(x-axis) and individuals with a pyschiatric disease (y-axis) for the respective cell 
type. The bottom left and top right quadrants indicate concordant overlap in 
genes with increased or decreased expression, respectively. In contrast, the top 

left and bottom right quadrants signify overlaps in genes with opposing effects 
between neurotypical individuals and individuals with a psychiatric disease. 
Genes were ranked based on the logarithm of the fold change multiplied by the 
negative base 10 logarithm of the uncorrected p-value from the differential 
expression analysis. RRHO2 employs one-sided hypergeometric tests; the color 
scale represents unadjusted p-values.
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Extended Data Fig. 6 | Cell-type specific and shared transcriptomic age-related genes. a, b Upset plot comparing differentially expressed genes (at FDR-adjusted 
p-value < 0.05) for upregulated (a) and downregulated (b) genes across 21 cell types.
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Extended Data Fig. 7 | Biological pathway enrichment of age-regulated 
genes. a-b, Biological pathway enrichment results for up- (a) and downregulated 
DE genes (b) for each cell type. Significance was determined using the  
one-sided Fisher’s exact test followed by multiple testing correction (fdr). 

Semantic similarity analysis was employed to group related GO terms. The size 
of each circle corresponds to the number of GO terms within the group, and the 
color represents the lowest p-value among the summarized GO terms.
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Extended Data Fig. 8 | Disease enrichment of age-regulated genes.  
a-b, Heatmap depicting disease enrichment of age-regulated DE genes (at FDR-
adjusted p-value < 0.05) across cell types for downregulated (a) and upregulated 
(b) DE genes respectively. Only cell types with minimum one disease ontology 

(DO) term were included. Colors represent the number of genes (count) 
contributing to the DO term. Significance was determined using the one-sided 
Fisher’s exact test followed by multiple testing correction (fdr). * asterisk 
indicates FDR-adjusted p-value < 0.05. Grey values indicate NA.
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Extended Data Fig. 9 | Epigenetic age, genes with interactive effects and 
overlap of age-regulated and disease-associated genes. a-b, Scatterplots 
showing the Pearson’s correlation (R, two-sided) between chronological age 
(x-axis) and DNA methylation age (DNAmAge; y-axis) as estimated using the 
CorticalClock (a) and Horvath’s multi-tissue clock (b). c, Scatterplots showing 
log normalized gene expression, corrected for covariates, across aging for genes 
showing an interactive effect between aging and disease status; SLC25A37 in 

Astro_FB (left), OXCT1 in Exc_L4-6_2 (middle), and AC007402.1 in OPC (right). 
Error bands represent the 95% confidence interval. d, Plot depicting the number 
of genes associated with both age and psychiatric disease. Size of the circle 
is proportional to the number of overlapping genes and color indicates the 
percentage of genes regulated in the same (common) direction across respective 
cell types.
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Extended Data Fig. 10 | Polygenic risk for cross-disorder psychiatric 
phenotype and schizophrenia and variance partitioning of covariates. 
a-b, Boxplots showing polygenic risk score (PRS) for CrossDisorder (a) and 
Schizophrenia (b) between individuals with a pyschiatric disease (N = 54) and 
neurotypical individuals (N = 33). P-value of one-sided t-test is shown. Boxplot 
shows the median (center), IQR (bounds of box), and whiskers extending to either 
the maxima/minima or to the median ± 1.5× IQR, whichever is nearest. Triangles 

represent outliers. c, Violin plot of variance fractions of ‘full pseudobulk’ dataset 
(N = 87 biologically independent samples) for different experimental variables 
and covariates adjusted for in the differential expression analysis. Library 
preparation batch (lib_batch) explained the biggest proportion of variance in 
gene expression, followed by brain pH and PC1 (hidden noise). Boxplot shows 
the median (center), IQR (bounds of box), and whiskers extending to either the 
maxima/minima or to the median ± 1.5× IQR, whichever is nearest.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Next-generation sequencing data were all generated on Illumina platforms, and demultiplexed at the sequencing facility.

Data analysis Sequencing alignment of snRNA-seq data was performed using CellRanger v6.0.1. 

Pre-processing, filtering, normalization was performed in python v3.6.8 using scanpy v1.7.1, DoubletDetection v3.0, normalization using 

sctransform v0.3.2, label transfer algorithm using scarches v0.4.0. 

After cell type assignment, summed pseudobulk count per cell type were calculated and all further analyses were conducted in R v4.3.1, 

DESeq2 (v1.42.0), PCAtools (v2.14.0), variancePartition (v1.33.0), dreamlet (v1.1.1), mashR (v.0.2.79), qgraph (v1.9.8), RRHO2 (v1.0) , edgeR 

(v4.0.1) , limma (v3.58.1), ggplot2 (v3.4.4), ggpubr (v0.6.0), GeneOverlap (v1.38.0), clusterProfiler (v4.10.0), DOSE (v3.28.0) 

GO-Figure! (v1.0.1)  

Preprocessing and normalization of DNA methylation data: minfi v1.36.0, watermelon v1.34.0, bigmelon (v1.16.0),  sva v3.38.0, methylclock 

v0.7.7 

For genotyping analysis: Plink(v1.90b4.1, shapeit2 (v2.r837), IMPUTE2 (v2.3.2) 

For PRS calculation: PLINK v2.00a2.3LM, PRS-CS v1.0.0 

For GWAS enrichment analysis: H-MAGMA v1.10 

All analysis scripts are accessible in the following github repository: https://github.com/AnnaSophieFroehlich/single_cell_aging 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

DNA methylation data (EPIC arrays) have been deposited into the Gene Expression Omnibus (GEO) database under accession number GSE254293; snRNA-seq data 

(raw data as well as anndata object) have been deposited into the GEO database under the accession number GSE254569. For cell type assignment of snRNA-seq 

data cell type labels from the Allen Brain Atlas (Human Multiple Cortical Areas SMART-seq, available at: https://portal.brain-map.org/atlases-and-data/rnaseq/

human-multiple-cortical-areas-smart-seq) were taken as a reference for our dataset. The snRNA-seq replication dataset from Chatzinakos, C., et al. Am J Psychiatry 

2023 (https://doi.org/10.1176/appi.ajp.20220478) is available at https://www.synapse.org/Synapse:syn33235943 (raw data) and at https://www.synapse.org/

Synapse:syn39718968 (meta data). For PRS calculation, GWAS summary statistics for schizophrenia (10.1038/s41586-022-04434-5; available at https://

figshare.com/articles/dataset/scz2022/19426775) and a psychiatric cross-disorder phenotype (10.1016/j.cell.2019.11.020; available at https://figshare.com/

articles/dataset/cdg2019/14672034) were used. For the GWAS enrichment analysis using H-MAGMA, significant GWAS hits were mapped to genes based on GWAS 

summary statistics for Alzheimer’s disease (10.1038/s41588-018-0311-9; available at https://vu.data.surfsara.nl/index.php/s/l7aiRr1UEgdoJfZ), schizophrenia 

(10.1038/s41586-022-04434-5; available at https://figshare.com/articles/dataset/scz2022/19426775), bipolar disorder (10.1038/s41588-021-00857-4; available at 

https://figshare.com/articles/dataset/PGC3_bipolar_disorder_GWAS_summary_statistics/14102594), MDD (10.1038/s41593-018-0326-7; available at https://

datashare.ed.ac.uk/handle/10283/3203) and hypertension ( http://www.nealelab.is/uk-biobank, “GWAS round 2 results can be found here”; available at https://

broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/I9_HYPERTENSION.gwas.imputed_v3.both_sexes.tsv.bgz) and the European 1,000 

genomes reference panel (available at https://github.com/thewonlab/H-MAGMA).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender While the information from the NSW brain bank likely also included information on reported gender, we used biological sex 

in our analyses, as assessed from genotype information. Out of the 87 post-mortem brain samples 32 were female and 55 

were male.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

The 87 post-mortem brain samples were derived from individuals with European ancestry confirmed by whole-genome 

genotyping analysis. The choice of a ‘homogenous sample’ of individuals from European ancestry is based on the fact that 

gene expression has been shown to be influenced by the genetic make-up (ethnic background) and this was the ethnic group 

in the brain bank with the most samples.

Population characteristics The 87 post-mortem brain samples were derived from a cohort of individuals between 26 and 84 years of age. 32 were 

female and 55 were male (biological sex). 33 were grouped as healthy controls based on the absence of a psychiatric 

diagnosis, whereas 54 formed part of the psychiatric cases (detailed diagnosis: N=5 with bipolar disorder, N=6 with major 

depression, N= 36 with schizophrenia, and N=7 with schizoaffective disorder). Supplementary Table 1 provides a summary of 

sample characteristics and Supplementary Table 2 provides detailed information on all donor characteristics.

Recruitment The total number of human post-mortem tissue samples obtained from NSW Brain Tissue Resource Centre was based on 

tissue availability maximizing for individuals with psychiatric disorders and matched controls.

Ethics oversight The study was approved by the Ethikkommission bei der LMU München (Ludwig Maximilians-Universität Munich Ethics 

Committee; 22-0523) and the Human Research Ethics Committees at the University of Wollongong (HE2018/351). Informed 

consent for brain autopsy was provided by the donors or their next of kin. No compensation was provided for donors or their 

next of kin. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was not pre-defined based on statistical power analysis but is comparable to (or even larger than) previous snRNA-seq studies in 

human postmortem brain and was based on tissue availability.

Data exclusions Originally, 92 post-mortem brain samples were used for this study, 4 samples were excluded however due to a clog during snRNAseq library 
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Data exclusions preparation and one sample was excluded due to bad data quality (too low RIN). 

 

Lowly expressed genes were excluded from the analysis: Within the dreamlet pipeline the function processAssays() was used for 

normalization and included the following filter settings: min.count=10, min.prop=0.8, min.cells=5.

Replication Using previously published data sets we replicated our findings: We used the results (age-associated genes) of 3 published gene expression 

datasets derived from bulk human brain tissue (Gonzalez-Velasco et al. 10.1016/j.bbagrm.2020.194491, Kumar et al. 10.1016/

j.neurobiolaging.2012.10.021, and Lu et al. 10.1038/nature02661) to show significant overlap of age-associated genes with the results (age-

associated genes) derived from our ‘full pseudobulk’ dataset. To validate our cell-type specific findings, we compared our identified age-

associated DE genes in microglia and astrocytes (major cell type cluster) with data sets having identified gene expression changes over the 

course of aging in purified microglia from the parietal cortex (Galatro et al. 10.1038/nn.4597) and astrocytes derived from the cerebral cortex 

obtained during brain surgery (Krawczyk et al. https://doi.org/10.1523/JNEUROSCI.0407-21.2021) respectively and showed significant overlap 

in age-associated genes. Moreover, we used inhibitory and excitatory neuron clusters from a snRNA-seq data set from the dorsolateral 

prefrontal cortex (Chatzinakos et al. 10.1176/appi.ajp.20220478) to identify age-associated genes and showed significant overlap with age-

associated genes in excitatory and inhibtory clusters identified in our snRNA-seq dataset.

Randomization For a balanced experimental design not confounded by our variables of interest, batches for snRNA seq library prep and Illumina Infinium 

MethylationEPIC BeadChips were assigned using the r package OSAT (Yan et al. 2012, https://doi.org/10.1186/1471-2164-13-689).

Blinding Investigators were not fully blinded to group allocation during data collection and analysis. Yet, samples had been assigned into balanced 

batches using the r package OSAT. During experimental procedures, samples were labeled only with 3-digit subject identifier, which did not 

reflect any information on age, sex or group allocation that could bias results.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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