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Abstract
Faith’s Phylogenetic Diversity (PD) on rooted phylogenetic trees satisfies the so-called
strong exchange property that guarantees that, for every two sets of leaves of different
cardinalities, a leaf can always be moved from the larger set to the smaller set in such
a way that the sum of the PD values does not decrease. This strong exchange property
entails a simple polynomial-time greedy solution to the PD optimization problem
on rooted phylogenetic trees. In this paper we obtain an exchange property for the
rooted Phylogenetic Subnet Diversity (rPSD) on rooted phylogenetic networks, which
involves a more complicated exchange of leaves. We derive from it a polynomial-
time greedy solution to the rPSD optimization problem on rooted semibinary level-2
phylogenetic networks.

Keywords Phylogenetic network · Level-k network · Phylogenetic subnet diversity ·
Phylogenetic subnet diversity optimization problem

Mathematics Subject Classification 92B10

1 Introduction

Over the last few centuries, human activity has caused the destruction of natural habi-
tats at an unprecedented pace, resulting in a major episode of biodiversity extinction
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(Kolbert 2014). Urgent action is required to combat extinction and preserve biodi-
versity, but there are challenges, including a lack of funding and uncertainties about
conservation strategies. Consequently, there has been an increasing need to provide
criteria for defining priorities and proposing variables that allow quantification of
biodiversity.

The traditional approach to assessing biodiversity based on species counts, species
richness, and number of endemic species has limitations. For instance, this type of data
is so heterogeneous that it can be difficult to compare across different sites and times
(Gaston 1996). The approach based on lists of threatened species also has its draw-
backs: for example, changes in the composition of these lists may represent changes
in knowledge of species status rather than changes in the status itself (Possingham
et al. 2002). Finally, measures of biodiversity based solely on species have been crit-
icized for treating all species as equal, without regard to their functional roles in the
ecosystem or their evolutionary history (Faith 1992).

A feature of species that may influence their biodiversity value is their evolutionary
distinctness. A species with few close living evolutionary relatives is considered more
worthy of protection than a species with many close genetically and phenotypically
similar relatives (McNeely et al. 1990). At the beginning of the 1990s, the qualitative
value afforded to evolutionarily distinct species was replaced by quantitative measures
of phylogenetic distinctness. One of the first published measures of biodiversity based
on phylogenetic information was Faith’s phylogenetic diversity, PD (Faith 1992). The
PD value of a set of species placed in the leaves of a phylogenetic tree is defined as the
total weight (i.e., the sum of the branch lengths) of the spanning tree connecting the
root and these leaves. In its original formulation, the branch lengths represented the
number of changes in phenotypic characters, and PDmeasured the diversity of pheno-
typic characters in a set of species. In the current usual interpretation of phylogenetic
trees, branch lengths represent evolutionary time, which is assumed to be positively
correlated with character variation.

Since its introduction, PD has been widely studied and applied (Pellens and
Grandcolas 2016). One of its most useful properties, both from the formal and the
applicability point of view, is the possibility of efficiently finding and characterizing
all subsets of species in a phylogenetic tree of a given size with maximal PD value
by means of a very simple greedy algorithm (Pardi and Goldman 2005; Steel 2005);
for instance, for a recent application to the analysis of SARS-CoV-2 phylogeny, see
Zhukova et al. (2021). The basis of this result is the so-called strong exchange property
stating that for every pair of sets of leaves X , X ′ with |X | > |X ′|, we can always move
a leaf from X to X ′ without decreasing the sum of the PD values.

Faith’s PD is defined on evolutionary histories modelled by means of phylogenetic
trees. But phylogenetic trees can only cope with speciation events due to mutations,
where each species other than the universal common ancestor has only one parent in
the evolutionary history (its parent in the tree). It is clearly understood now that other
speciation events, which cannot be properly represented by means of single arcs in a
tree, play an important role in evolution (Doolittle 1999). These are reticulate events,
like genetic recombinations, hybridizations, or lateral gene transfers, where a species
is the result of the interaction between several parent species. This has lead to the
introduction of phylogenetic networks as models of phylogenetic histories that allow
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to include these reticulate events (Huson et al. 2010). Faith’s PD has been extended
to split networks1(Spillner et al. 2008) and to rooted phylogenetic networks (Wicke
and Fischer 2018; Bordewich et al. 2022); as a matter of fact, several generalizations
to rooted phylogenetic networks have been proposed, the most natural of which is the
rooted Phylogenetic Subnet Diversity, rPSD, introduced by Wicke and Fischer (2018)
and renamed AllPaths-PD by Bordewich et al. (2022).

It has been proved that the PD optimization problem can be solved efficiently on
circular split networks2 using integer programming (Chernomor et al. 2016; Spillner
et al. 2008), as well as (for rPSD) on the simplest class of non-tree rooted phylo-
genetic networks, the so-called galled trees, by reducing it to sets of linear size of
minimum-cost flow problems (Bordewich et al. 2009, 2022). It is also known that
these optimization problems are in general NP-hard on rooted phylogenetic networks
(Bordewich et al. 2022) and on split networks (Chernomor et al. 2016).

In this paper we focus on the extension of the greedy optimization algorithm for
PD on phylogenetic trees to rPSD on rooted phylogenetic networks. As we have
mentioned, the greedy algorithm on phylogenetic trees is a consequence of the strong
exchange property for PD that guarantees that, given two sets of leaves of different
cardinalities, we can always move some element from the larger set to the smaller
one without lowering the sum of the PD values. It is easy to check that this strong
exchange property for rPSD is no longer valid even on galled trees (Bordewich et al.
2022). So, our first main contribution is its generalization to rPSD through a more
involved exchange of leaves than simply moving one leaf from one set to another.

Our exchange property then allows us to strengthen the result of Bordewich et al.
on galled trees, by proving that every rPSD-optimal set of m leaves in a galled tree is
always obtained from an rPSD-optimal set ofm−1 leaves by either optimally adding a
leaf or optimally replacing a leaf by a pair of leaves. It also allows us to give polynomial
time greedy solutions for the rPSD problem on semibinary level-2 networks and semi-
3-ary level-1 networks, the next complexity level of rooted phylogenetic networks (see
§2.1 for the definitions). On the negative side, we have not been able to deduce from
it a greedy algorithm for semibinary level-3 or semi-4-ary level-1 networks and the
problem for these more general classes remains open.

This paper is organized as follows. In Sect. 2.1 we define the concepts necessary
to understand this work, including a generalization of the Phylogenetic Diversity due
to Wicke and Fischer (2018), together with its properties and an example. Section3
contains the main result of this manuscript, Theorem 1, and Sect. 4 exposes some of its
applications to galled trees and to semi-d-ary level-k networks, for particular instances
of d and k. We end in Sect. 5 with some concluding remarks. The proof of Theorem
1 together with two required lemmas can be found in the Appendix and proofs of
additional results can be found in the Supplementary Material.

1 A class of undirected graphs that generalize unrooted trees and do not describe evolutionary histories but
simply evolutionary relationships.
2 A subclass of split networks widely used because they are the output of popular programs like PhyloNet
(Yu et al. 2014) or Splitstree4 (Huson and Bryant 2006).
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2 Preliminaries

2.1 Phylogenetic networks

Let � be a finite set of labels. By a phylogenetic network on � we understand a
rooted directed acyclic simple graph where each node of in-degree� 2 has out-degree
exactly 1 and whose leaves (i.e., its nodes of out-degree 0) are bijectively labeled by
� (Huson et al. 2010). A phylogenetic tree is simply a phylogenetic network without
nodes of in-degree � 2. Let us point out here that, although the usual definition of
phylogenetic tree and network forbids, for reconstructibility reasons, the existence of
elementary nodes, that is, of nodes of in-degree � 1 and out-degree 1, we shall allow
their existence in order to simplify some statements and proofs.

Let N be a phylogenetic network. We shall denote its root (i.e., its only node of
in-degree 0) by r and its sets of nodes and arcs by V (N ) and E(N ), respectively,
and we shall always identify its leaves with their corresponding labels. Given two
nodes u, v in N , we say that v is a child of u, and also that u is a parent of v, when
(u, v) ∈ E(N ). A node in N is of tree type, or a tree node, when its in-degree is � 1,
and a reticulation when its in-degree is � 2 (and hence, its out-degree is 1). We shall
say that N is semi-d-ary when all its reticulations have in-degree � d, and that N is
binary when it is semibinary and all its internal tree nodes have out-degree 2.

We shall denote a (directed) path in N from a node u to a node v by u � v. The
intermediate nodes of a path u�v are the nodes involved in it other than u and v. For
every u, v ∈ V (N ), we say that v is a descendant of u, and also that u is an ancestor
of v, when there exists a path u�v, and that v is a descendant of an arc e = (u′, u)

when it is a descendant of its end u. In particular, every node is an ancestor, and a
descendant, of itself. If v is a descendant of u and u �= v, we shall say that it is a
proper descendant of u. A set of nodes V0 ⊆ V (N ) is independent when no node in
it is a proper descendant of any other node in it.

For every v ∈ V (N ), its cluster CN (v) ⊆ � (or simply C(v) when N is clear from
the context), is the set of (labels of) the descendant leaves of v, and the subnetwork of
N rooted at v is the subgraph Nv of N induced by the set of all descendants of v. Nv

is a phylogenetic network on C(v) with root v.
For every X ⊆ V (N ), we shall denote the set of all nodes in N that are ancestors

of nodes in X by ↑X . Given an arc e = (u, u′) ∈ E(N ), we shall make the abuse
of notation of writing e ∈ ↑X to mean that e has some descendant in X , that is, that
u′ ∈ ↑X .

A subgraph of a phylogenetic network N is biconnected when it is connected (as an
undirected graph) and it remains connected after removing any node from it together
with all arcs incident to this node. Every node and every arc in N are biconnected
subgraphs. A biconnected component of N is a maximal biconnected subgraph, and
we shall call a biconnected component with more than 2 nodes a blob. Every blob
B has one, and only one, node that is an ancestor of all its nodes; we call it its split
node. Every node in a blob B with no child inside B is a reticulation (should it be of
tree type, removing its parent would disconnect B); we call such reticulations the exit
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Fig. 1 A weighted phylogenetic
network. The tree nodes are
represented by circles, the
reticulation by a square, and the
arcs’ labels represent their
weights

reticulations of B, and the rest of its reticulations, internal. Every node in B has some
descendant exit reticulation.

Aphylogenetic network is level-k (Jansson andSung 2006)when every biconnected
component contains at most k reticulations. Thus, a level-0 network is a phylogenetic
tree. A semibinary level-1 network is also called a galled tree (Gusfield et al. 2004);
the phylogenetic network in Fig. 1 is a galled tree.

A phylogenetic network N is weighted when it is endowed with a weight mapping
w : E(N ) → R�0. The total weight of a subgraph of aweighted phylogenetic network
is the sum of the weights of all arcs in the subgraph. In particular, the weight of a path
is the sum of the weights of its arcs. All phylogenetic networks (and trees) appearing
from now on in this paper are assumed to be weighted, usually without any further
notice.

2.2 The rooted phylogenetic diversity on phylogenetic trees

Given a finite set �, we shall denote henceforth its set of subsets by P(�) and, for
every k � 0, the set of all its subsets of cardinality k by Pk(�).

Given a weighted phylogenetic tree T on �, Faith’s rooted Phylogenetic Diversity
(Faith 1992) is the set function PDT : P(�) → R�0 sending each X ⊆ � to the total
weight of the subtree induced by the ancestors of nodes in X :

PDT (X) =
∑

e∈↑X
w(e).

This function PDT on phylogenetic trees satisfies the following strong exchange
property, introduced by Steel (2005) for unrooted phylogenetic trees: for every phylo-
genetic tree T on � and for every X , X ′ ⊆ � such that |X ′| < |X |, there exists some
x ∈ X\X ′ such that

PDT (X) + PDT (X ′) � PDT (X ′ ∪ {x}) + PDT (X \ {x}).

For a proof of this fact in the rooted case, see (Steel 2016, §6.4.1).
This strong exchange property for PDT is the key ingredient in the proof that the

simple Algorithm 1 given below produces, for every k � 1, the familyMk of all PDT -
optimal subsets of � of cardinality k, that is, of all sets of k leaves with maximum

123



48 Page 6 of 31 T. M. Coronado et al.

PDT value. For this proof in the unrooted case, see Steel (2005); the proof in the
rooted case is similar: cf. §6.4.1 in Steel (2016). In particular, given a phylogenetic
tree T on �, this algorithm provides a polynomial solution to the problem of finding
the maximum PDT value among all members of Pk(�), and a member of Pk(�)

reaching this maximum.

Algorithm 1: Greedy for phylogenetic trees
1 LetM1 = {{x} : PDT (x) is maximum

}
;

2 for k � 2 do

3

Mk ={
Xk−1 ∪ {x} : Xk−1 ∈ Mk−1, x ∈ � \ Xk−1,

PDT (Xk−1 ∪ {x}) maximal among all sets
ofkleaves containingXk−1

}

4 end

2.3 The rooted phylogenetic subnet diversity

Wicke and Fischer (2018) proposed several generalizations of Faith’s rooted Phylo-
genetic Diversity function to phylogenetic networks. One of them, and possibly the
most straightforward, is the rooted Phylogenetic Subnet Diversity: the set function
rPSDN : P(�) → R�0 sending each X ⊆ � to the total weight of the subgraph
induced by the ancestors of nodes in X :

rPSDN (X) =
∑

e∈↑X
w(e).

It is clear that if N is a phylogenetic tree, then rPSDN = PDN . When N is clear from
the context, we shall omit the subscript N and simply write rPSD.

Example 1 On the phylogenetic network N depicted in Fig. 1,

rPSD(x1) = 5, rPSD(x2) = 6, rPSD(x3) = 5, rPSD(x4) = 4,
rPSD({x1, x2}) = 8, rPSD({x1, x3}) = 9, rPSD({x1, x4}) = 9,
rPSD({x2, x3}) = 8, rPSD({x2, x4}) = 10, rPSD({x3, x4}) = 9,
rPSD({x1, x2, x3}) = 10, rPSD({x1, x2, x4}) = 12, rPSD({x1, x3, x4}) = 13,
rPSD({x2, x3, x4}) = 12, rPSD({x1, x2, x3, x4}) = 14.

For every phylogenetic network N on �, rPSD is:

(i) Monotone nondecreasing: For every X ⊆ Y ⊆ �, rPSD(X) � rPSD(Y ).
(ii) Subadditive: For every X ,Y ⊆ �,

rPSD(X ∪ Y ) � rPSD(X) + rPSD(Y ).
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(iii) Submodular: For every X ⊆ Y ⊆ � and for every a ∈ � \ Y ,

rPSD(Y ∪ {a}) − rPSD(Y ) � rPSD(X ∪ {a}) − rPSD(X).

(i) and (ii) are clear. As to (iii), it is proved by Bordewich et al. (2022).
On the negative side, rPSD need not satisfy the strong exchange property, even for

the simplest non-tree networks N . Indeed, consider again the binary galled tree N
depicted in Fig. 1. Take X = {x1, x3, x4} and X ′ = {x2, x4}. Then

rPSD({x1, x3, x4}) + rPSD({x2, x4}) = 23,
rPSD({x3, x4}) + rPSD({x1, x2, x4}) = rPSD({x1, x4}) + rPSD({x2, x3, x4}) = 21.

Therefore, there is no x ∈ X \ X ′ such that

rPSD(X) + rPSD(X ′) � rPSD(X \ {x}) + rPSD(X ′ ∪ {x}).

As a consequence, an rPSD-optimal set of cardinality k of a phylogenetic network
N need not contain any rPSD-optimal set of cardinality k − 1. Consider again the
galled tree depicted in Fig. 1. Its only set of two labels with largest rPSD value is
{x2, x4} and its only set of three labels with largest rPSD value is {x1, x3, x4}.

So, Algorithm 1 cannot be used to produce rPSD-optimal sets of a given cardinality
as it stands. Actually, Bordewich et al. (2022) prove that, given a phylogenetic network
N on� and an integer k, the problemoffinding themaximumrPSDN value onPk(�) is
NP-hard. On the positive side, these authors also prove that this problem can be solved
in polynomial time on binary galled trees.

3 A general exchange property

Let � be a finite set and W : P(�) → R�0 a function. Given X , X ′ ⊆ � such that
|X ′| < |X |, a W -improving pair for X , X ′ is a pair of sets (A, B), with A ⊆ X \ X ′,
B ⊆ X ′\X , and |B| < |A|, such that

W (X) + W (X ′) � W ((X \ A) ∪ B) + W ((X ′ \ B) ∪ A).

To simplify the notation, given X ⊆ �, S ⊆ X and T ⊆ � \ X , we shall denote
henceforth (X \ S) ∪ T by τS,T (X).

Given a set

S ⊆ {
(A, B) ∈ P(�)2 : A ∩ B = ∅, |B| < |A|},

we shall say that W : P(�) → R�0 satisfies the exchange property with respect to
S when every pair of sets X , X ′ ⊆ � with |X ′| < |X | has aW -improving pair inS .
So, Steel’s strong exchange property for phylogenetic trees mentioned in §2.2 says
that, for every phylogenetic tree T on �, PDT : P(�) → R�0 satisfies the exchange
property with respect to
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S0(�) = {
({x},∅) : x ∈ �

}
.

As we have seen, this is no longer true for rPSD on galled trees. The main result in this
paper, Theorem 1, says that rPSD satisfies, on every semi-d-ary level-k phylogenetic
network on�, the exchange property with respect to a larger family of pairs of subsets
Sk,d(�)whose description only depends on k and d. These families are, when k = 1,

S1,d(�) = S0(�) ∪ {
(A, B) ∈ P(�)2 : A ∩ B = ∅, 1 � |B| < |A| � d

}

and, when k � 2,

Sk,d(�) = S0(�)

∪ {
(A, B) ∈ P(�)2 : A ∩ B = ∅, 1 � |B| < |A| < dk,

|A| − |B| � (d − 1)k
}
.

From now on, when it is unnecessary to explicit the set of labels �, we shall omit it
from the notation of these families.

Given k and d, the cardinalities of these families of sets are polynomial in |�| = n:
|S0| = n and

|S1,d | = n +
d∑

j=2

j−1∑

i=1

(
n

j

)(
n − j

i

)
,

|Sk,d | = n +
dk−1∑

j=2

j−1∑

i= j−(d−1)k

(
n

j

)(
n − j

i

)
when k � 2.

As we announced above, the main result in this section is the following theorem.
Since its proof is quite long and technical, in order not to lose the thread of the
manuscript we postpone it until Appendix A at the end of the paper.

Theorem 1 If N is a semi-d-ary level-k phylogenetic network, rPSDN satisfies the
exchange property with respect toSk,d .

The family Sk,d cannot be improved, because there are semi-d-ary level-k phy-
logenetic networks N and pairs of sets of leaves X , X ′ with |X ′| < |X | having no
rPSDN -improving pair (A, B)with |A|−|B| < (d−1)k. The next example describes
one such network for d = 2; it is straightforward to generalize it to the semi-d-ary
setting for any d � 2

Example 2 Consider the binary level-k phylogenetic network N on � ={
y, x1, . . . , xk

}
depicted in Fig. 2. Assume that all its arcs e have weight w(e) > 0.

Let X = {x1, . . . , xk} and X ′ = {y}. Let us check that, for every (A, B) such that
A ⊆ X , B ⊆ X ′, and |B| < |A|,

rPSD(X) + rPSD(X ′) � rPSD(τA,B(X)) + rPSD(τB,A(X ′))
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Fig. 2 The network N in
Example 2. The grey arcs form
the set E0

and that the equality holds only when (A, B) = (X , X ′). This will imply that the only
rPSD-improving pair for X , X ′ inSk,2 is (X , X ′) itself.

Let:

• E0 be the arcs in ↑{v1, . . . , vk}; that is, (r , a1) and those beginning in
{a1, . . . , ak−1}.

• E1 = E(N ) \ (E0 ∪ {ei }i=1,...,k); that is, the arcs ending in {H1, H2, . . . , Hk, y}.
Then,

rPSD(X) =
k∑

i=1

w(ei ) +
∑

e∈E0

w(e), rPSD(X ′) =
∑

e∈E0∪E1

w(e).

Now, on the one hand, if B = ∅ and A �= ∅

rPSD(τA,∅(X)) = rPSD(X \ A) =
∑

xi /∈A

w(ei ) +
∑

e∈E0∩↑(X\A)

w(e)

rPSD(τ∅,A(X ′)) = rPSD(X ′ ∪ A) = rPSD(X ′) +
∑

xi∈A

w(ei )

and then

rPSD(X) + rPSD(X ′) − (rPSD(τA,∅(X)) + rPSD(τ∅,A(X ′)))

=
∑

e∈E0

w(e) −
∑

e∈E0∩↑(X\A)

w(e) > 0

because for every xi ∈ A the arc (ai , vi ) (or (ak−1, vk) if i = k) does not belong to
↑(X \ A) and therefore E0 ∩ ↑(X \ A) � E0.

On the other hand, if B = X ′ = {y},

rPSD(τA,{y}(X)) = rPSD((X \ A) ∪ {y}) =
∑

xi /∈A

w(ei ) + rPSD(X ′),
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rPSD(τ{y},A(X ′)) = rPSD(A) =
∑

xi∈A

w(ei ) +
∑

e∈E0∩↑A

w(e)

and then

rPSD(X) + rPSD(X ′) − (rPSD(τA,{y}(X)) + rPSD(τ{y},A(X ′)))

=
∑

e∈E0

w(e) −
∑

e∈E0∩↑A

w(e) � 0,

where, arguing as above, the inequality is an equality exactly when A = X .

We close this section with a refinement of Theorem 1 for level-1 networks. The
proof is similar, and we provide it in Section 2 of the Supplementary file.

Corollary 1 If N is a semi-d-ary level-1 phylogenetic network on �, rPSDN satisfies
the exchange property with respect to

Sd = S0 ∪ {
(A, {b}) ∈ P(�)2 : b /∈ A, 1 < |A| � d

}

Moreover, if X , X ′ have an improving pair (A, {b}) ∈ Sd , then there exists a blob in
N with exit reticulation H and split node v such that X ∩C(H) = ∅, b ∈ C(H), and
A ⊆ C(v).

4 Applications

In this section we apply Theorem 1 to the study of rPSDN -optimal subsets for low
values of the level of N and the in-degree of its reticulations. Throughout this section,
let N be a phylogenetic network on a set � of cardinality n and rPSD = rPSDN . We
shall use the following notation:

• For every m, let Optm be the family of rPSD-optimal subsets of � of cardinality
m:

Optm = {
Z ∈ Pm(�) : rPSD(Z) = max

(
rPSD(Pm(�))

)}
.

• An optimal sequence of N is a sequence Y = (Ym)0�m�n with each Ym ∈ Optm .
• For every k � 1 and d � 2, for every 1 � j � (d −1)k, and for every X ∈ P(�),

– τk,d, j (X) is the family of subsets of � of cardinality |X | + j of the form
τB,A(X) (this is, (X \ B) ∪ A) with (A, B) ∈ Sk,d , B ⊆ X , A ⊆ � \ X , and
|A| − |B| = j .

– Opt-τk,d, j (X) are the members of τk,d, j (X) with largest rPSD value.

and, analogously,

– τ−1
k,d, j (X) is the family of subsets of � of cardinality |X | − j of the form

τA,B(X) (this is, (X \ A) ∪ B) with (A, B) ∈ Sk,d , A ⊆ X , B ⊆ � \ X , and
|A| − |B| = j .
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– Opt-τ−1
k,d, j (X) are the members of τ−1

k,d, j (X) with largest rPSD value.

Notice that X ′ ∈ τk,d, j (X) if, and only if, X ∈ τ−1
k,d, j (X

′).
• Finally, for every k � 1 and d � 2, for every 1 � j � (d − 1)k, we describe the
family of subsets of� of cardinalitym+ j (resp.m− j) of the form τB,A(Y ) (resp.
τA,B(Y )) with (A, B) ∈ Sk,d , |A| − |B| = j , with largest rPSD value obtained
from each Y ∈ Optm :

– Opt-τk,d, j (Optm) = ⋃
Y∈Optm Opt-τk,d, j (Y ).

– Opt-τ−1
k,d, j (Optm) = ⋃

Y∈Optm Opt-τ−1
k,d, j (Y ).

The aim of this section will be to relate each Opt-τk,d, j (Optm) with Optm+ j

and Opt-τ−1
k,d, j (Optm) with Optm− j , providing the key ingredient of the greedy

algorithm.

We begin with galled trees. As we have already mentioned, it was proved in Bor-
dewich et al. (2022, Cor 4.6) that the optimization problem for rPSD can be solved
in polynomial time on galled trees. The next proposition strengthens this result by
providing a recursive construction of the rPSD-optimal sets for these networks.

Proposition 1 Let N be a galled tree. Then, for every m = 1, . . . , n,

Optm = Opt-τ1,2,1(Optm−1).

Proof LetYm ∈ Optm andYm−1 ∈ Optm−1. ByTheorem1, there exists some (A, B) ∈
S1,2, with A ⊆ Ym\Ym−1 and B ⊆ Ym−1\Ym , such that

rPSD(Ym) + rPSD(Ym−1) � rPSD(τA,B(Ym)) + rPSD(τB,A(Ym−1)). (1)

Since |A| − |B| = 1, we have that τA,B(Ym) ∈ Pm−1(�) and τB,A(Ym−1) ∈ Pm(�),
and then, being Ym−1 and Ym optimal in Pm−1(�) and Pm(�), respectively,

rPSD(τA,B(Ym)) � rPSD(Ym−1), rPSD(τB,A(Ym−1)) � rPSD(Ym). (2)

Combining these inequalities with (1) we obtain

rPSD(Ym) + rPSD(Ym−1) � rPSD(τA,B(Ym)) + rPSD(τB,A(Ym−1))

� rPSD(Ym−1) + rPSD(Ym).

Then, the inequalities (2) must be equalities, from which we deduce that:

• τA,B(Ym) ∈ Optm−1, and thus Ym = τB,A
(
τA,B(Ym)

) ∈ Opt-τ1,2,1(Optm−1).
• τB,A(Ym−1) ∈ Optm , and thus Opt-τ1,2,1(Ym−1) ⊆ Optm .

Since the choice of the optimal sets Ym,Ym−1 was arbitrary, we conclude that

Optm ⊆ Opt-τ1,2,1(Optm−1) and Opt-τ1,2,1(Optm−1) ⊆ Optm

as stated. ��
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Remark 1 Notice that along the proof of the previous proposition we have proved
that, in a galled tree, for every Ym ∈ Optm and Ym−1 ∈ Optm−1, there exists some
pair (A, B) ∈ S1,2, with A ⊆ Ym\Ym−1 and B ⊆ Ym−1\Ym , such that τA,B(Ym) ∈
Optm−1 and τB,A(Ym−1) ∈ Optm .

Proposition 1 implies that, on a galled tree, the members of Optm are those obtained
from members of Optm−1 by either optimally adding a leaf or optimally replacing a
leaf by two leaves. This result yields the simple greedy polynomial time Algorithm 2
computing the family of optimal sets Optm in increasing order of m that extends the
greedy Algorithm 1 for phylogenetic trees.

Algorithm 2: Greedy for galled trees
1 Let Opt1 = {{x} : rPSD(x) maximum

}
;

2 for 1 � m � n − 1 do

3

M(1)
m+1 ={

Xm ∪ {x} : Xm ∈ Optm , x ∈ � \ Xm ,

rPSD(Xm ∪ {x}) maximum among all sets obtained in this way
}

M(2)
m+1 ={(

Xm \ {z}) ∪ {x, y} : Xm ∈ Optm , z ∈ Xm , x, y ∈ � \ Xm ,

rPSD((Xm \ {z}) ∪ {x, y}) max. among all sets obtained in this way
}

Optm+1 = {X ∈ M(1)
m+1 ∪ M(2)

m+1 : rPSD(X) maximum in this family}
4 end

Remark 2 Proposition 1 also implies that, on a galled tree, the members of each Optm
are obtained frommembers of Optm+1 by removing a leaf or replacing a pair of leaves
by a leaf in such a way that the value of rPSD decreases the least.

To move up in the complexity ladder of phylogenetic networks, it is convenient
to introduce a notation that allows a more compact description of the arguments of
the type used in the previous proposition. Given a semi-d-ary level-k phylogenetic
network N and an optimal sequence Y = (Yp)0�p�n of it, we shall write, for every
0 � q < p � n and for every j � 1,

(p, q) ≺·Y (p − j, q + j)

tomean that there exists an rPSD-improvingpair (A, B) ∈ Sk,d forYp andYq such that
|A| − |B| = j . When we need to emphasize an improving pair (A, B), we shall write
“(p, q) ≺·Y (p − j, q + j) by an improving pair (A, B)”. In addition, we shall write
(p, q) ≺·Yj {p′, q ′} tomean that (p, q) ≺·Y (p− j, q+ j) and {p− j, q+ j} = {p′, q ′}.
Remark 3 By Theorem 1, given any optimal sequence Y of a semi-d-ary level-k phy-
logenetic network and 0 � q < p, there always exists some 1 � j � (d − 1)k such
that (p, q) ≺·Y (p − j, q + j).

The proof of the next lemma, which we leave to the reader, is similar to that of
Proposition 1; actually, that proposition is a direct consequence of this lemma for
j = 1.
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Lemma 1 Let N be a phylogenetic network and Y an optimal sequence of N . If
(p, q) ≺·Y (p− j, q + j) and rPSD(Yp− j ) + rPSD(Yq+ j ) � rPSD(Yp) + rPSD(Yq),
then Yp ∈ Opt-τk,d, j (Opt p− j ) and Yq ∈ Opt-τ−1

k,d, j (Optq+ j ).

In particular, if p − q = j and (p, q) ≺·Y (q, p), then Yp ∈ Opt-τk,d, j (Optq) and

Yq ∈ Opt-τ−1
k,d, j (Opt p).

Corollary 2 Let N be a phylogenetic network and Y an optimal sequence of N . If there
exists a closed ≺·Y -chain of length m � 1

(p1, q1) ≺·Yj1 {p2, q2} by an improving pair(A1, B1)

(p2, q2) ≺·Yj2 {p3, q3} by an improving pair(A2, B2)

...

(pm, qm) ≺·Yjm {p1, q1} by an improving pair(Am, Bm)

then, for each i = 1, . . .m,

Ypi ∈ Opt-τk,d, ji (Opt pi− ji ) and Yqi ∈ Opt-τ−1
k,d, ji

(Optqi+ ji ).

Proof The closed chain ensures that all the inequalities in

rPSD(Yp1) + rPSD(Yq1) � rPSD(τA1,B1(Yp1)) + rPSD(τB1,A1(Yq1))

� rPSD(Yp2) + rPSD(Yq2) � rPSD(τA2,B2(Yp2)) + rPSD(τB2,A2(Yq2))

� rPSD(Yp3) + rPSD(Yq3) � rPSD(τA3,B3(Yp3)) + rPSD(τB3,A3(Yq3))

...

� rPSD(Ypm ) + rPSD(Yqm ) � rPSD(τAm ,Bm (Ypm )) + rPSD(τBm ,Am (Yqm ))

� rPSD(Yp1) + rPSD(Yq1),

are equalities, and the result follows from applying the Lemma 1 to each (pi , qi ) ≺·Y
(pi − ji , qi + ji ). ��

It is time to move one step up in the complexity ladder of phylogenetic networks.
Recall that

S2,2 = S1,3 = S0 ∪ {(A, B) ∈ P(�)2 : A ∩ B = ∅, 1 � |B| < |A| � 3)}

and in particular, for every j = 1, 2, Opt-τ1,3, j = Opt-τ2,2, j .

Proposition 2 If N is a semibinary level-2 or a semi-3-ary level-1 network, then:

(a) Optm ⊆ Opt-τ2,2,1(Optm−1) ∪ Opt-τ2,2,2(Optm−2) for every m = 1, . . . , n.
(b) Optm ⊆ Opt-τ−1

2,2,1(Optm+1)∪Opt-τ−1
2,2,2(Optm+2) for every m = 1, . . . , n− 1.
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Proof Let Y be an optimal sequence of N and fix 1 � m � n. Then, by Theorem 1,

(m,m − 1) ≺·Y (m − j1,m − 1 + j1) (3)

for some j1 = 1 or j1 = 2.

(1) If j1 = 1,Eqn. (3) says that (m,m−1) ≺·Y (m−1,m), andhence, byCorollary 2,

Ym ∈ Opt-τ2,2,1(Optm−1) and Ym−1 ∈ Opt-τ−1
2,2,1(Optm).

(2) If j1 = 2, Eqn. (3) says that (m,m−1) ≺·Y (m−2,m+1). Applying Theorem 1
again,

(m + 1,m − 2) ≺·Y (m + 1 − j2,m − 2 + j2),

for some j2 = 1 or j2 = 2. In both cases, {m+1− j2,m−2+ j2} = {m−1,m},
thus closing the ≺·-chain initiated with (3). Then, by Corollary 2,

Ym ∈ Opt-τ2,2,2(Optm−2) and Ym−1 ∈ Opt-τ−1
2,2,2(Optm+1).

Thus, in both cases we have that

Ym ∈ Opt-τ2,2,1(Optm−1) ∪ Opt-τ2,2,2(Optm−2),

Ym−1 ∈ Opt-τ−1
2,2,1(Optm) ∪ Opt-τ−1

2,2,2(Optm+1),

which, by the arbitrary choice of Y and m, concludes the proof. ��
Point (a) in the last proposition tells us that if N is semibinary level-2 or semi-3-ary

level-1, all members of each Optm are obtained either from members of Optm−1 by
optimally adding a leaf, optimally replacing a leaf by a pair of leaves, or optimally
replacing a pair of leaves by a triple of leaves (this possibility need not be considered in
the semi-3-ary level-1 case by Corollary 1), or frommembers of Optm−2 by optimally
replacing a leaf by a triple of leaves. This proves the correctness of the polynomial time
greedy Algorithm 3 to compute the family of optimal sets Optm for such a network
N in increasing order of m (as we have mentioned, if N is semi-3-ary level-1, the sets
M(4) in the loop need not be computed).

Example 3 Consider the phylogenetic networks in Fig. 3. On the left, a semi-3-ary
level-1 network and on the right a semibinary level-2 network obtained by blowing
up the reticulations in the left-hand side network into a pair of in-degree 2 connected
reticulations. In both networks, we have the following optimal sets of leaves:

Opt1 : {z0} Opt5 : {x00, x01, x02, x11, x12}
Opt2 : {z0, z1} Opt6 : {x00, x01, x02, x10, x11, x12}
Opt3 : {x11, x12, z0} Opt7 : {x00, x01, x02, x10, x11, x12, z1}
Opt4 : {x00, x01, x02, z1}
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Algorithm 3: Greedy for semibinary level-2 or semi-3-ary level-1 networks
1 Let Opt1 = {{x} : rPSD(x) maximum

}
;

2 Let Opt2 = {{x, y} : rPSD({x, y}) maximum
}
;

3 for 2 � m � n − 1 do

4

M(1)
m+1 ={

Xm ∪ {x1} : Xm ∈ Optm , x1 ∈ � \ Xm ,

rPSD(Xm ∪ {x}) maximum among all sets obtained in this way
}

M(2)
m+1 ={(

Xm \ {x1}
) ∪ {x2, x3} : Xm ∈ Optm ,

x1 ∈ Xm , x2, x3 ∈ � \ Xm ,

rPSD((Xm \ {x1}) ∪ {x2, x3}) max. among all sets obtained in this way
}

M(3)
m+1 ={(

Xm−1 \ {x1}
) ∪ {x2, x3, x4} : Xm−1 ∈ Optm−1,

x1 ∈ Xm−1, x2, x3, x4 ∈ � \ Xm−1,

rPSD((Xm−1 \ {x1}) ∪ {x2, x3, x4}) max. among all sets obtained in this way
}

M(4)
m+1 ={(

Xm \ {x1, x2}
) ∪ {x3, x4, x5} : Xm ∈ Optm ,

x1, x2 ∈ Xm , x3, x4, x5 ∈ � \ Xm ,

rPSD(Xm \ {x1, x2}) ∪ {x3, x4, x5}) max. among all sets obtained in this way
}

Optm+1 = {X ∈ ⋃4
i=1M(i)

m+1 : rPSD(X) maximum in this family}
5 end

Fig. 3 The networks in Example 3

Then, in both networks,

{x00, x01, x02, z1}∈Opt4\Opt-τ2,2,1(Opt3), {x11, x12, z0}∈Opt3\Opt-τ−1
2,2,1(Opt4).

Now, if we move one more step further in the complexity ladder, the structure of
the optimal sets is no longer so simple.

Proposition 3 If N is a semibinary level-3 or a semi-4-ary level-1 network, then, for
every m = 1, . . . , n, at least one of the following assertions is true:

(a) Optm ⊆ ⋃3
j=1 Opt-τk,d, j (Optm− j ) and Optm−1 ⊆ ⋃3

j=1 Opt-τ
−1
k,d, j

(Optm−1+ j ).
(b) Optm+1 = Opt-τk,d,3(Optm−2),

where (k, d) is (3, 2) or (1, 4), depending on the type of network.
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Fig. 4 Sketch of the proof of Proposition 3

Proof To begin with, notice that

S3,2 = S0 ∪ {(A, B) ∈ P(�)2 : A ∩ B = ∅, 1 � |B| < |A| < 6, |A| − |B| � 3}
S1,4 = S0 ∪ {(A, B) ∈ P(�)2 : A ∩ B = ∅, 1 � |B| < |A| � 4}

and therefore S1,4 ⊆ S3,2. To simplify the notation, we shall abbreviate Opt-τk,d, j

by simply Opt-τ j . Observe that j can only go from 1 to 3.
Let Y be an optimal sequence of N and fix 1 < m � n. To ease the task of the

reader, we sketch the flow of the proof in Fig. 4; all implications leading to (a) or (b)
are due to Cor. 2.

By Theorem 1,

(m,m − 1) ≺·Y (m − j1, m − 1 + j1) (4)

for some j1 ∈ {1, 2, 3}.
(1) If j1 = 1, then (m,m − 1) ≺·Y (m − 1, m) and we conclude as in (1) in the

proof of Proposition 2 that Ym ∈ Opt-τ1(Optm−1) and Ym−1 ∈ Opt-τ−1
1 (Optm).

(2) If j1 = 2, then (m,m − 1) ≺·Y (m − 2,m + 1). Applying Theorem 1 again,

(m + 1,m − 2) ≺·Y (m + 1 − j2,m − 2 + j2),

for some j2 ∈ {1, 2, 3}.
(2.a) If j2 = 1 or j2 = 2, (m + 1,m − 2) ≺·Yj2 {m,m − 1} and we conclude as

in (2) in the proof of Proposition 2 that Ym ∈ Opt-τ2(Optm−2) and Ym−1 ∈
Opt-τ−1

2 (Optm+1).
(2.b) When j2 = 3, we have (m + 1,m − 2) ≺·Y (m − 2,m + 1) and we can only

deduce that Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1
3 (Optm+1).

(3) If j1 = 3, then (m,m − 1) ≺·Y (m − 3,m + 2). Applying Theorem 1 again,

(m + 2,m − 3) ≺·Y (m + 2 − j2,m − 3 + j2),
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for some j2 ∈ {1, 2, 3}.
(3.a) If j2 = 1, then (m + 2,m − 3) ≺·Y (m + 1,m − 2). Applying Theorem 1,

we have

(m + 1,m − 2) ≺·Y (m + 1 − j3,m − 2 + j3)

for some j3 ∈ {1, 2, 3}.
(3.a.i) If j3 = 1 or j3 = 2, then (m + 1,m − 2) ≺·Y {m,m − 1}, closing the

≺·-chain initiated with (4). Then, by Corollary 2, Ym ∈ Opt-τ3(Optm−3)

and Ym−1 ∈ Opt-τ−1
3 (Optm+2).

(3.a.ii) If j3 = 3, then (m+1,m−2) ≺·Y (m−2,m+1) as in (2.b) and we only
have that Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1

3 (Optm+1).
(3.b) If j2 = 2 or j2 = 3, then (m + 2,m − 3) ≺·Y {m,m − 1}, closing the

≺·-chain initiated with (4). Then, by Corollary 2, Ym ∈ Opt-τ3(Optm−3) and
Ym−1 ∈ Opt-τ−1

3 (Optm+2).

Summarizing, we only have two possibilities:

• On the one hand, in the cases (1), (2.a), (3.a.i), and (3.b),

Ym ∈
3⋃

j=1

Opt-τ j (Optm− j ) and Ym−1 ∈
3⋃

j=1

Opt-τ−1
j (Optm−1+ j ).

• On the other hand, in the cases (2.b) and (3.a.ii),

Ym+1 ∈ Opt-τ3(Optm−2) and Opt-τ3(Ym−2) ⊆ Optm+1.

By the arbitrary choice of Y and m, this concludes the proof. ��
A similar result holds for (k, d) such that (d−1)k = 4.We give its proof in Section

3 of the Supplementary file.

Proposition 4 If N is a semi-5-ary level-1 or a semi-3-ary level-2 network, then, for
every m = 1, . . . , n, at least one of the following assertions is true:

(a) Optm ⊆ ⋃4
j=1 Opt-τk,d, j (Optm− j ) and Optm−1 ⊆ ⋃4

j=1 Opt-τ
−1
k,d, j

(Optm−1+ j ).
(b) Optm+1 = Opt-τk,d,3(Optm−2),

where (k, d) = (2, 3) or (1, 5), depending on the type of network.

So, while we could give a greedy optimization algorithm for semibinary level-
2 networks or semi-3-ary level-1 networks, an analogous argument fails for more
complex networks. The reason why Propositions 3 and 4 are not sufficient to provide
such a greedy algorithm is that we would require their assertion (a) —or a similar
expression— to be true for all m. In the occurrence of any m where only assertion (b)
holds, we do not have enough information about Optm to be able to ensure that it can
be obtained from previous optimal sets.
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Remark 4 A close analysis of the proof of Proposition 3, using Corollary 2 in its full
strength, shows that we actually have amore general result: for every optimal sequence
Y of N and for every 1 < m � n, at least one of the following conditions holds (the
labels correspond to the cases in the proof):

(1) Ym ∈ Opt-τ1(Optm−1) and Ym−1 ∈ Opt-τ−1
1 (Optm).

(2.a) Ym ∈ Opt-τ2(Optm−2), Ym−1 ∈ Opt-τ−1
2 (Optm+1), and

• Ym+1 ∈ Opt-τ1(Optm) and Ym−2 ∈ Opt-τ−1
1 Optm−1, or

• Ym+1 ∈ Opt-τ2(Optm−1) and Ym−2 ∈ Opt-τ−1
2 Optm .

(2.b) Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1
3 (Optm+1).

(3.a.i) Ym ∈ Opt-τ3(Optm−3), Ym−1 ∈ Opt-τ−1
3 (Optm+2), Ym+2 ∈ Opt-τ1(Optm+1),

Ym−3 ∈ Opt-τ−1
1 Optm−2, and

• Ym+1 ∈ Opt-τ1(Optm) and Ym−2 ∈ Opt-τ−1
1 Optm−1, or

• Ym+1 ∈ Opt-τ2(Optm−1) and Ym−2 ∈ Opt-τ−1
2 Optm .

(3.a.ii) Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1
3 (Optm+1).

(3.b) Ym ∈ Opt-τ3(Optm−3), Ym−1 ∈ Opt-τ−1
3 (Optm+2), and

• Ym+2 ∈ Opt-τ2(Optm) and Ym−3 ∈ Opt-τ−1
2 Optm−1, or

• Ym+2 ∈ Opt-τ3(Optm−1) and Ym−3 ∈ Opt-τ−1
3 Optm .

Unfortunately, the extra information obtained in this way is still not enough to prove
the correctness of a greedy rPSD-optimization algorithm for the networks considered
in that proposition. A similar situation appears in the context of Proposition 4.

But we must point out that we have not been able to find any semibinary level-3
or any semi-4-ary level-1 network for which Optm �

⋃3
j=1 Opt-τk,d, j (Optm− j ) for

some m. Similarly, we have not been able to find any semi-5-ary level-1 or any semi-
3-ary level-2 network for which Optm �

⋃4
j=1 Opt-τk,d, j (Optm− j ) for some m. So,

it might be possible that the greedy algorithm also works in these cases, since we
have not discovered a counterexample that disproves its correctness for these types
of networks. In Section 4 of the Supplementary file we provide several examples that
illustrate our search for a counterexample. More examples can be found in the second
author’s PhD Thesis (Riera 2023).

5 Conclusions

PD on phylogenetic trees satisfies the strong exchange property that guarantees that,
for every two sets of leaves of different cardinalities, a leaf can always be moved
from the larger set to the smaller one without decreasing the sum of the PD values.
But rPSD does not longer satisfy this exchange property even for galled trees. In this
paper we have generalized this exchange property to rPSD on phylogenetic networks
of bounded level and reticulations’ in-degree, showing that a similar results holds if
we allow more involved exchanges of leaves’ subsets. Our final goal was to use this

123



An interchange property for the rooted... Page 19 of 31 48

generalized exchange property to find a polynomial time greedy algorithm for the
optimization of rPSD on phylogenetic networks of bounded level and in-degree of
reticulations. We have ultimately failed in this goal. We have indeed shown that the
generalized exchange property entails such a greedy algorithm for semibinary level-2
networks and semi-3-ary level-1 networks (and sheds new light on the structure of the
families of rPSD-optimal sets Optm on galled trees) but it cannot be used, as it stands,
to obtain such an algorithm on more complex networks. However, we have not been
able to find examples of semibinary level-3 networks or semi-4-ary level-1 networks
where the greedy algorithm fails: it is simply that the generalized exchange property
alone seems not to be enough to prove its correctness.

Finally, it is important to point out that just like the rPSD optimization problem
itself, testing counterexamples is computationally expensive, too. While the greedy
algorithm runs in polynomial time, finding whether Optm can be obtained from some
Optm− j or not still requires calculating Optm by brute force, and testing whether the
exchange property holds for a certain subset ofSk,d where |A|−|B| < j also requires
testing all subsets X , X ′ ⊆ �. All these operations are exponential, hence trying even
slightly larger examples can dramatically increase the runtime of the test.

Appendix A: Proof of Theorem 1

We begin by stating two auxiliary lemmas. From now on, we shall call a semi-d-ary
k-blob any blob with k reticulations, all of them of in-degree � d. Given such a semi-
d-ary k-blob B and a non-empty subset E1 of its exit reticulations, the first lemma
provides a sharp upper bound for the cardinality of any independent set of nodes V
of B whose members have no descendant exit reticulation outside E1. This bound will
entail the bound for the cardinality of A in the definition of Sk,d . We give the proof
of this lemma in Section 1 of the Supplementary file.

Lemma 2 Let B be a semi-d-ary k-blob with l exit reticulations and E1 a non-empty
subset of its exit reticulations of cardinality l1 � 1. Then, for every independent set
of nodes V of B without descendant exit reticulations outside E1, |V | � dl1 + (d −
1)(k − l).

The constructions explained in the proof of this lemma easily show that the bound
it provides is sharp, in the sense that, for every d, k, l, l1 with d � 2 and k � l �
l1 � 1, there are semi-d-ary k-blobs with l exit reticulations and subsets E1 of l1
exit reticulations containing an independent set of nodes V without descendant exit
reticulations outside E1 of cardinality dl1 + (d − 1)(k − l): cf. Fig. 5.

Remark 5 By Lemma 2, if B is a semi-d-ary blob without internal reticulations, if E1
is a subset of its exit reticulations of cardinality l1, and if V is an independent set of
nodes in B without descendant exit reticulations outside E1, then |V | � l1d. A close
analysis of the proof of that lemma easily shows that the upper bound |V | = dl1 is
achieved when all the reticulations in E1 have in-degree d and the set V contains, for
every H ∈ E1, exactly d nodes whose only reticulate descendant is H . Of course, such
sets do not always exist: for instance, when B contains a node that is a parent of two
different exit reticulations.
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Fig. 5 A semibinary k-blob with
l exit reticulations, a subset E1
of l1 > 0 exit reticulations, and
an independent set of nodes
(represented by filled circles)
without descendant exit
reticulations outside E1 reaching
the upper bound in Lemma 2 for
d = 2

The second auxiliary lemma extracts a key technical step in the proof of Theorem 1.
This lemma provides an analog of the exchange property for sets of ancestors of
multisets of nodes of a blob. More precisely, we prove that if X , X ′ are multisets of
nodes of a semi-d-ary k-blob with |X | > |X ′| and satisfying some extra conditions
(those under which we shall apply the lemma in the proof of the main theorem) then
there exist a subset A of X disjoint with X ′ and a submultiset B of X ′ disjoint with
X whose cardinalities satisfy the restrictions defining the family Sk,d and such that
if we replace X and X ′ by (X\A) ∪ B and (X ′\B) ∪ A, the set of nodes that are
simultaneously ancestors of nodes in both sets does not decrease.

We use in this lemma some standard notation for multisets X : mX (v) denotes the
multiplicity of an element v in X ; Supp X denotes the support of X , that is, the set
of elements v such that mX (v) > 0; we say that X is a set when all its multiplicities
are � 1, and then we identify it with its support; a submultiset Y of X is full when
mY (y) = mX (y) for every y ∈ Supp Y ⊆ Supp X ; and the cardinality of X is
|X | = ∑

v∈Supp X mX (v). We shall also use the notation τS,T (X) = (X\S) ∪ T when
X , S, T are multisets with S ⊆ X and Supp T ⊆ �\ Supp X .

This lemma also uses some basic properties of ↑-notation. Some simple results in
this regard are that, for any two sets A, B, ↑(A ∪ B) = ↑A ∪ ↑B and ↑A\↑B ⊆
↑(A\B), and that if A ⊆ B, then ↑A ⊆ ↑B. Moreover, given a multiset A, we define
↑A as ↑ Supp A, without taking into account the multiplicities of the elements of A.

Lemma 3 Let B be a semi-d-ary k-blob and X , X ′ two multisets of nodes of B with
|X ′| < |X | and satisfying the following two further conditions:

(i) For each v ∈ V (B), if mX ′(v) < mX (v), then mX (v) = 1 and mX ′(v) = 0.
(ii) Each exit reticulation of B belongs to X or X ′.

Then

↑X ∩ ↑X ′ ⊆ ↑τA,B(X) ∩ ↑τB,A(X ′) (5)

for some set A ⊆ Supp X \Supp X ′ and some full submultiset B of X ′ with Supp B ⊆
Supp X ′\ Supp X such that B = ∅ and |A| = 1, or 0 < |B| < |A| = d, or 0 < |B| <

|A| < dk and |A| − |B| � (d − 1)k.
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Proof First, we introduce some notation.

• Let E be the set of exit reticulations of B, and let

EX = E ∩ (Supp X \ Supp X ′), EX ′ = E ∩ (Supp X ′ \ Supp X),

EX ,X ′ = E ∩ (Supp X ∩ Supp X ′).

Let lX = |EX |, lX ′ = |EX ′ | and lX ,X ′ = |EX ,X ′ |. By (ii), lX + lX ′ + lX ,X ′ = |E |.
• For each H ∈ E , let ↑ only H be the set ↑H\↑(E \{H}) of nodes whose only
descendant exit reticulation is H . Since every node in V (B) has some descen-
dant exit reticulation, ↑ only H = V (B)\↑(E \{H}). Observe that ↑ only H∩ ↑
only H ′ = ∅ if H �= H ′.

• Let X̂ be the set Supp X \ Supp X ′. By (i), X̂ = {v ∈ V (B) : mX ′(v) < mX (v)}.
• Let X̂ ′ be the full submultiset of X ′ supported on Supp X ′ \ Supp X .

The inequality |X | > |X ′| implies that |X̂ | > |X̂ ′|, too. Indeed:

0 < |X | − |X ′| =
∑

v∈V (B)

(mX (v) − mX ′(v))

=
∑

v∈V (B)
mX (v)>mX ′ (v)

(mX (v) − mX ′(v)) −
∑

v∈V (B)
mX ′ (v)>mX (v)

(mX ′(v) − mX (v))

= |X̂ | −
∑

v∈V (B)
mX ′ (v)>mX (v)

(mX ′(v) − mX (v)) � |X̂ | −
∑

v∈X̂ ′
(mX ′(v) − mX (v))

= |X̂ | −
∑

v∈X̂ ′
mX ′(v) = |X̂ | − |X̂ ′|. (6)

We shall consider three cases; in all of them we shall choose a subset A ⊆ X̂ and
a full submultiset B ⊆ X̂ ′ satisfying the requirements in the statement and we shall
prove that they satisfy Eqn. (5).

(a) If there exists some x ∈ X̂ with a proper descendant in X , then x ∈ ↑(X \ {x})
and hence ↑X = ↑(X \ {x}). In this case, taking A = {x} and B = ∅ we have that

↑X ∩ ↑X ′ = ↑(X \ {x}) ∩ ↑X ′ ⊆ ↑(X \ {x}) ∩ ↑(X ′ ∪ {x}).

(b) Assume that no x ∈ X̂ has any proper descendant in X and that EX ′ = ∅. This
implies that E = EX ∪ EX ,X ′ ⊆ X and that X̂ = EX , as any x ∈ X̂\EX would have
some proper descendant in E ⊆ X .

In this case, there exists an H0 ∈ EX such that X̂ ′ ⊆ ↑(E \{H0}). Indeed, assume
that for every H ∈ EX there existed some node x ′

H ∈ X̂ ′ without any descendant in
E \ {H}. Then, each x ′

H would belong to ↑ only H . Since the sets ↑ only H are pairwise
disjoint, the nodes x ′

H would be pairwise different, forming a subset of Supp X̂ ′ of
cardinality |EX | = |X̂ |, which cannot exist because |X̂ ′| < |X̂ |.
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Take then A = {H0} and B = ∅. If can prove that ↑X ′ ⊆ ↑(X \ {H0}), then we
will have

↑X ∩ ↑X ′ ⊆ ↑X ′ = ↑(X \ {H0}) ∩ ↑X ′ ⊆ ↑(X \ {H0}) ∩ ↑(X ′ ∪ {H0}).

So, let v ∈ ↑X ′. There are two possibilities:

• If v has some descendant in X̂ ′, then the latter will have a descendant in E \{H0} ⊆
X\{H0}, which will also be a descendant of v.

• If v has no descendant in X̂ ′, then

v ∈ ↑X ′ \ ↑X̂ ′ ⊆ ↑(X ′ \ X̂ ′) = ↑(X ∩ X ′) = ↑(X \ X̂)

= ↑(X \ EX ) ⊆ ↑(X \ {H0}).

(c) Assume finally that EX ′ �= ∅ and that no x ∈ X̂ has any proper descendant in
X . This last condition implies that the set of nodes X̂ \EX is independent and all their
descendant exit reticulations belong to EX ′ . Then, by Lemma 2 we have that

|X̂ | = |X̂ \ EX | + |EX | � (d − 1)(k − lX − lX ′ − lX ,X ′) + dlX ′ + lX
= (d − 1)k − (d − 2)lX + lX ′ − (d − 1)lX ,X ′

� (d − 1)k + lX ′ (becaused � 2)

� (d − 1)k + min{k, |X̂ ′|} (becauselX ′ � kandlX ′ � |Supp X̂ ′| � |X̂ ′|). (7)

In particular,

|X̂ | � dk and |X̂ | − |X̂ ′| � (d − 1)k. (8)

Now, on the one hand, if |X̂ | < dk, take A = X̂ and B = X̂ ′. By Eqns. (6) and (8),
they satisfy the required conditions in the statement, and

Supp τB,A(X ′) = Supp
(
(X ′ \ X̂ ′) ∪ X̂

) = Supp X ,

Supp τA,B(X) = Supp
(
(X \ X̂) ∪ X̂ ′) = Supp X ′,

which implies ↑X ′ ∩ ↑X = ↑τA,B(X) ∩ ↑τB,A(X ′).
On the other hand, if |X̂ | = dk, then all inequalities in the sequence (7) as well

as the inequality lX ′ � k are equalities. The equality lX ′ = k implies that the blob
B has no reticulation other than those in EX ′ . Moreover, since the first inequality in
(7) is an equality, X̂ reaches the maximum number of possible independent nodes
in ↑EX ′ = ↑E . Then, as noted in Remark 5, it must happen for each H ∈ E that
degin(H) = d and |X̂ ∩ ↑H | = |X̂∩ ↑ only H | = d.

Now, since k = |EX ′ | � |X̂ ′| < |X̂ | = dk, there must exist some H0 ∈ EX ′
with mX ′(H0) < d. Take A = X̂∩ ↑ only H0 = X̂ ∩ ↑H0 and B the multiset with
Supp B = {H0} andmB(H0) = mX ′(H0). We have that 0 < |B| < |A| = d and hence
the pair (A, B) satisfies the requirements in the statement. As to Eqn. (5), notice that
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↑X ′ ⊆↑(X ′ \ {H0}) ∪ ↑A ∪ {H0}
∪ {x ′ ∈ X ′ | x ′ intermediate in some path A�H0}.

Now, H0 /∈ ↑X and, by assumption, the elements of A have no proper descendant in
X , which implies

({H0} ∪ {x ′ ∈ X ′ | x ′ intermediate in some path A�H0}) ∩ ↑X = ∅.

Moreover, since A ⊆ ↑H0, we have that ↑X ⊆ ↑((X\A) ∪ {H0}). Therefore

↑X ′ ∩ ↑X ⊆ (↑(X ′ \ {H0}) ∪ ↑A) ∩ ↑X ⊆ ↑((X ′ \ {H0}) ∪ A) ∩ ↑((X \ A) ∪ {H0})

as we wanted to prove. ��
Theorem 1 If N is a semi-d-ary level-k phylogenetic network, rPSDN satisfies the
exchange property with respect toSk,d .

Proof The case k = 0 is Steel’s strong exchange property for phylogenetic trees (Steel
2016,§6.4.1). So, we shall focus on the case k � 1.

Without any loss of generality, we can assume that every tree node in N is at most
bifurcating, in the sense that the out-degree of each tree node is at most 2 (recall that
we do not forbid out-degree 1 tree nodes in our networks). Indeed, let first N ′ be the
phylogenetic network obtained from N as follows: for every node v that is the split
node of more than one blob and for each such blob rooted at v, add a new split node vi
to the blob and a new arc (v, vi ) with weight 0. N ′ is still semi-d-ary and level-k, no
node in it is the split node of more than one blob, and rPSDN (Z) = rPSDN ′(Z) for
every Z ⊆ �. Now, let N ′′ be the phylogenetic network obtained from N ′ as follows:
for every tree node v with k � 3 children v1, . . . , vk , replace in N the subgraph
supported on {v, v1, . . . , vk} by a bifurcating tree with root v and leaves v1, . . . , vk
and all its arcs except those ending in v1, . . . , vk of weight 0: the arc ending in each vi
inherits the original weight of (v, vi ); if any node vi had any entering arcs other than
(v, vi ), we keep them with their weights. Since v was the split node of at most one
blob, no blob increases its level from N ′ to N ′′, and therefore N ′′ is still semi-d-ary
and level-k, and rPSDN ′′(Z) = rPSDN ′(Z) = rPSDN (Z) for every Z ⊆ �.

So, in the rest of this proof we shall suppose that N is at-most-bifurcating and in
particular that no node in N is the split node of more than one blob.

We shall proceed by induction on the number α of arcs of the network. A phyloge-
netic network with α = 0 is a phylogenetic tree consisting of a single leaf, where the
stated exchange property trivially holds. Now, let N be an at-most-bifurcating semi-
d-ary level-k phylogenetic network with α � 1 arcs, and let us suppose that the thesis
in the statement is true for all at-most-bifurcating semi-d-ary level-k phylogenetic
networks with less than α arcs.

Let X , X ′ ⊆ � with |X ′| < |X |. If |X | = 1 the exchange property is trivially
satisfied taking A = X and B = X ′ = ∅, so we assume from now on that |X | � 2.
Now consider the tree of blobs T of N (Gusfield et al. 2007), obtained by collapsing

123



48 Page 24 of 31 T. M. Coronado et al.

Fig. 6 The network N in case (a)

each blob in N into its split node. Then, T is a phylogenetic tree with the same root r
as N , V (T ) ⊆ V (N ), and, for every v ∈ V (T ), its cluster in T and in N are the same;
let us denote it by C(v). Since |X ′| < |X | and |X | � 2, the set of nodes v in T such
that |X ′ ∩ C(v)| < |X ∩ C(v)| and 1 < |X ∩ C(v)| is nonempty: it contains the root
r .

We shall consider four cases.
(a)Assume that T contains some node v0 �= r such that |X∩C(v0)| > |X ′ ∩C(v0)|

and |X ∩ C(v0)| > 1. Since v0 ∈ V (T ), v0 is in N a tree node such that the arc
e0 = (v1, v0) ending in it does not belong to any blob, which implies that it is a cut
arc. Let N0 = Nv0 and let N1 be the network obtained from N by removing Nv0 and
the arc e0 and, if v1 is a reticulation node, appending to it a dummy leaf child (not
labelled in �) through an arc of weight 0; cf. Figure6. By the induction hypothesis,
N0 satisfies the thesis in the statement.

Now, for every Z ⊆ �, if Z ∩ C(v0) = ∅, then rPSDN (Z) = rPSDN1(Z), and if
Z ∩ C(v0) �= ∅, then

rPSDN (Z) = rPSDN0(Z) + rPSDN1(Z) + w(e0) +
∑

e∈↑v1\↑(Z\C(v0))

w(e).

(Throughout this proof, given a network N ′ with set of leaves �′ and a set Z , we
write rPSDN ′(Z) to denote actually rPSDN ′(Z ∩ �′). So, for instance, rPSDN0(Z)

and rPSDN1(Z) in the expressions above actually mean rPSDN0(Z ∩ C(v0)) and
rPSDN1(Z\C(v0)), respectively.)

Since |X ∩ C(v0)| > |X ′ ∩ C(v0)|, by the induction hypothesis there exist A ⊆
(X \ X ′) ∩C(v0) and B ⊆ (X ′\X) ∩C(v0) such that (A, B) ∈ Sk,d(C(v0)) ⊆ Sk,d

and

rPSDN0(X) − rPSDN0(τA,B(X)) � rPSDN0(τB,A(X ′)) − rPSDN0(X
′). (9)

Since A, B ⊆ C(v0), τA,B(X)\C(v0) = X\C(v0) and τB,A(X ′)\C(v0) = X ′\C(v0),
and thus, in particular,

rPSDN1(X) = rPSDN1(τA,B(X)), rPSDN1(X
′) = rPSDN1(τB,A(X ′)).

Notice also that τB,A(X ′) ∩ C(v0) �= ∅ because A �= ∅.
Assume first that B �= ∅, so that X ′ ∩C(v0) �= ∅ and τA,B(X) ∩C(v0) �= ∅. Then,
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rPSDN (X) − rPSDN (τA,B(X))

= rPSDN0(X) + rPSDN1(X) + w(e0) +
∑

e∈↑v1\↑(X\C(v0))

w(e)

− rPSDN0(τA,B(X)) − rPSDN1(τA,B(X)) − w(e0) −
∑

e∈↑v1\↑(τA,B (X)\C(v0))

w(e)

= rPSDN0(X) − rPSDN0(τA,B(X)).

By the same argument, using that X ′ ∩ C(v0) �= ∅ and τB,A(X ′) ∩ C(v0) �= ∅, we
also have that

rPSDN (τB,A(X ′)) − rPSDN (X ′) = rPSDN0(τB,A(X ′)) − rPSDN0(X
′).

Therefore, by Eqn. (9),

rPSDN (X) − rPSDN (τA,B(X)) = rPSDN0(X) − rPSDN0(τA,B(X))

� rPSDN0(τB,A(X ′)) − rPSDN0(X
′) = rPSDN (τB,A(X ′)) − rPSDN (X ′).

Assume now that B = ∅. Then, by the definition of Sk,d , the set A must be a
singleton and then τA,B(X)∩C(v0) = (X\A)∩C(v0) �= ∅, because, by assumption,
|X ∩ C(v0)| > 1. Then, arguing as above, we have that

rPSDN (X) − rPSDN (τA,B(X)) = rPSDN0(X) − rPSDN0(τA,B(X)).

Similarly, if X ′ ∩ C(v0) �= ∅,

rPSDN (τB,A(X ′)) − rPSDN (X ′) = rPSDN0(τB,A(X ′)) − rPSDN0(X
′),

while if X ′ ∩ C(v0) = ∅ (and using that τB,A(X ′) \ C(v0) = X ′ \ C(v0)),

rPSDN (τB,A(X ′)) − rPSDN (X ′)

= rPSDN0(τB,A(X ′)) + rPSDN1(τB,A(X ′)) + w(e0) +
∑

e∈↑v1\↑(X ′\C(v0))

w(e) − rPSDN1(X
′)

= rPSDN0(τB,A(X ′)) + w(e0) +
∑

e∈↑v0\↑(X ′\C(v0))

w(e)

� rPSDN0(τB,A(X ′)) = rPSDN0(τB,A(X ′)) − rPSDN0(X
′).

In either case, by Eqn. (9) we have again

rPSDN (X) − rPSDN (τA,B(X)) = rPSDN0(X) − rPSDN0(τA,B(X))

� rPSDN0(τB,A(X ′)) − rPSDN0(X
′) � rPSDN (τB,A(X ′)) − rPSDN (X ′).

(b) Assume now that the only node v in T such that |X ∩C(v)| > |X ′ ∩C(v)| and
|X ∩ C(v)| > 1 is the root r , and that r is not the split node of any blob in N . Then,
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each child v of r in N is also its child in T and thus, if |X ∩ C(v)| > |X ′ ∩ C(v)|,
then |X ∩ C(v)| = 1. But since |X | > |X ′|, r must have some child v1 such that
|X ∩C(v1)| > |X ′ ∩C(v1)| and hence such that |X ∩C(v1)| = 1 and X ′ ∩C(v1) = ∅;
and then, since |X | � 2, r must have a second child v2 and X ∩ C(v2) �= ∅. For each
i = 1, 2, let ei = (r , vi ) and let Ni be the subnetwork of N rooted at vi . The sets of
leaves C(v1),C(v2) of N1, N2 are disjoint and therefore, for each Z ⊆ �,

rPSDN (Z) = rPSDN1(Z) + rPSDN2(Z) + χN1(Z)w(e1) + χN2(Z)w(e2)

where, for each i = 1, 2, χNi (Z) = 1 if Z ∩ C(vi ) �= ∅ and χNi (Z) = 0 otherwise.
Let X ∩ C(v1) = {x} and take A = {x} and B = ∅. Then, (A, B) ∈ S0 and

τA,B(X) ∩C(v1) = ∅, τB,A(X ′) ∩C(v1) = {x}, τA,B(X) ∩C(v2) = X ∩C(v2), and
τB,A(X ′) ∩ C(v2) = X ′ ∩ C(v2). Therefore,

rPSDN (X) − rPSDN (τA,B(X))

= rPSDN1(X) + rPSDN2 (X) + χN1(X)w(e1) + χN2 (X)w(e2) − rPSDN1(τA,B(X))

− rPSDN2 (τA,B(X)) − χN1(τA,B(X))w(e1) − χN2 (τA,B(X))w(e2)

= rPSDN1({x}) + rPSDN2 (X) + w(e1) + w(e2) − 0 − rPSDN2 (X) − 0 · w(e1) − w(e2)

= rPSDN1({x}) + w(e1)

and, similarly,

rPSDN (τB,A(X ′)) − rPSDN (X ′)
= rPSDN1({x}) + rPSDN2(X

′) + w(e1) + χN2(X
′)w(e2)

−0 − rPSDN2(X
′) − 0 · w(e1) − χN2(X

′)w(e2)
= rPSDN1({x}) + w(e1).

Hence, in this case,

rPSDN (X) − rPSDN (τA,B(X)) = rPSDN (τB,A(X ′)) − rPSDN (X ′).

(c) Assume finally that the only node v in T such that |X ∩ C(v)| > |X ′ ∩ C(v)|
and |X ∩ C(v)| > 1 is the root r , and that r is the split node of a (single) blob B. we
distinguish two subcases.

(c.1) If B contains some exit reticulation H with no descendant in X ∪ X ′, and
if v1, . . . , vd ′ are the parents of H , then let N̂ be the phylogenetic network obtained
from N by removing the subnetwork NH , adding new leaves h1, . . . , hd ′ with dummy
labels outside �, and replacing each arc (vi , H) by an arc (vi , hi ) with weight 0; cf.
Figure7. N̂ is still at-most-bifurcating, semi-d-ary, and level-k and it has less than
α arcs (we have removed the arcs in NH ). Therefore, by the induction hypothesis,
it satisfies the thesis in the statement. Let �̂ be its set of labels. Then, since, by
assumption, X , X ′ ⊆ �̂ ∩ �, there exist A ⊆ X\X ′ and B ⊆ X ′\X such that
(A, B) ∈ Sk,d(�̂ ∩ �) ⊆ Sk,d and

rPSDN̂ (X) − rPSDN̂ (τA,B(X)) � rPSDN̂ (τB,A(X ′)) − rPSDN̂ (X ′).
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Fig. 7 The networks N and N̂ in case (c.1)

Since rPSDN̂ (Z) = rPSDN (Z) for every Z ⊆ �̂ ∩ �, we conclude that

rPSDN (X) − rPSDN (τA,B(X)) � rPSDN (τB,A(X ′)) − rPSDN (X ′).

(c.2) Finally, assume that all the exit reticulations of the blob B rooted at r have
descendants in X or X ′. Let B∗ be the set of nodes of B that have a child outside of
B; if v ∈ B∗, we shall denote its child outside of B by v̄. Notice that:

• r /∈ B∗ (its two children must belong to the blob);
• the exit reticulations of B belong to B∗;
• since reticulations have out-degree 1, the internal reticulations of B do not belong
to B∗;

• v̄ ∈ V (T )\{r} for every v ∈ B∗, and thus, by the current assumption, if |X ∩
C(v̄)| > |X ′ ∩ C(v̄)| then |X ∩ C(v̄)| = 1.

For each v ∈ B∗ let N v be the subnetwork of N rooted at v consisting of Nv̄ , v and
the arc (v, v̄).

For each Z ⊆ �, we shall denote by B∗
Z the multiset of nodes of B∗ supported on

SuppB∗
Z = {v ∈ B∗ : Z ∩ C(v̄) �= ∅}

andwithmultiplicitiesmB∗
Z
(v) = |Z∩C(v̄)|. Since the subnetworks N v , with v ∈ B∗,

have pairwise disjoint sets of leaves and the union of their sets of leaves is �, we have
that |B∗

Z | = |Z | and

rPSDN (Z) =
∑

v∈SuppB∗
Z

rPSDN v
(Z) +

∑

e∈↑B∗
Z

w(e). (10)

So, |B∗
X ′ | = |X ′| < |X | = |B∗

X |; by the current assumption, every exit reticulation
belongs to B∗

X ∪ B∗
X ′ ; and if mB∗

X ′ (v) = |X ′ ∩ C(v̄)| < mB∗
X
(v) = |X ∩ C(v̄)|, then

mB∗
X
(v) = 1. Therefore, the multisets B∗

X , B∗
X ′ satisfy the hypotheses of Lemma 3,

which implies the existence of a set BA and a multiset BB of nodes of B such that:

(1) BA ⊆ SuppB∗
X\ SuppB∗

X ′ ; thus, if v ∈ BA, |X∩C(v̄)| = 1 and |X ′∩C(v̄)| = 0.
(2) SuppBB ⊆ SuppB∗

X ′ \ SuppB∗
X and, for every v ∈ SuppBB , mBB (v) =

mB∗
X ′ (v) = |X ′ ∩ C(v̄)|.
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(3) BB = ∅ and |BA| = 1, or 0 < |BB | < |BA| = d, or 0 < |BB | < |BA| < dk and
|BA| − |BB | � (d − 1)k.

(4) ↑B∗
X ∩ ↑B∗

X ′ ⊆ ↑τBA,BB (B∗
X ) ∩ ↑τBB ,BA (B∗

X ′).

Let

A =
⋃

v∈BA

(X ∩ C(v̄)), B =
⋃

v∈SuppBB

(X ′ ∩ C(v̄)).

Then, A ⊆ X \ X ′ and B ⊆ X ′ \ X with |A| = |BA| and |B| = |BB |. In particular, by
property (3), (A, B) ∈ Sk,d . We shall prove that

rPSDN (X) − rPSDN (τA,B(X)) � rPSDN (τB,A(X ′)) − rPSDN (X ′).

Before doing so, let us point out some facts thatwe shall use. First, notice thatBA = B∗
A

and BB = B∗
B , because for every v ∈ B∗

mB∗
A
(v) = |A ∩ C(v̄)| =

{
1 if v ∈ A
0 if v /∈ A

}
= mBA (v)

mB∗
B
(v) = |B ∩ C(v̄)| = |X ′ ∩ C(v̄)|
(because the clustersC(v̄)are pairwise disjoint)

= mB∗
X ′ (v) = mBB (v). (by definition)

Moreover

B∗
τA,B (X) = τBA,BB (B∗

X ) and SuppB∗
τA,B (X) = ((SuppB∗

X ) \ BA) ∪ SuppBB, (11)

B∗
τB,A(X ′) = τBB ,BA (B∗

X ′) and SuppB∗
τB,A(X ′) = (SuppB∗

X ′ \ SuppBB) ∪ BA. (12)

Indeed, as to Eqn. (11), for every v ∈ B∗

mB∗
τA,B (X)

(v) = |((X \ A) ∪ B) ∩ C(v̄)| = |X ∩ C(v̄)| − |A ∩ C(v̄)| + |B ∩ C(v̄)|
= mB∗

X
(v) − mBA(v) + mBB (v) = mB∗

X \BA (v) + mBB (v) = m(B∗
X\BA)∪BB (v)

and in particular

SuppB∗
τA,B (X) = Supp((B∗

X \ BA) ∪ BB) = ((SuppB∗
X ) \ BA) ∪ SuppB∗

B

because mBA(v) = mB∗
X
(v) for every v ∈ BA.

A similar argument, using that, for every v ∈ SuppBB , mBB (v) = mB∗
X ′ (v) =

|B ∩ C(v̄)| = |X ′ ∩ C(v̄)| and that BA ∩ SuppB∗
X ′ = ∅, proves Eqn. (12).

We can proceed now to prove the desired inequality

rPSDN (X) − rPSDN (τA,B(X)) � rPSDN (τB,A(X ′)) − rPSDN (X ′).
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By Eqn. (10),

rPSDN (X) − rPSDN (τA,B(X))

=
∑

v∈SuppB∗
X

rPSDN v
(X) −

∑

v∈SuppB∗
τA,B (X)

rPSDN v
(τA,B(X)) +

∑

e∈↑B∗
X

w(e) −
∑

e∈↑B∗
τA,B (X)

w(e) (13)

where

∑

v∈SuppB∗
X

rPSDN v
(X) =

∑

v∈(SuppB∗
X )\BA

rPSDNv
(X) +

∑

v∈BA

rPSDN v
(X)

=
∑

v∈(SuppB∗
X )\BA

rPSDNv
((X \ A)) +

∑

v∈BA

rPSDN v
(A) (14)

because if v ∈ (SuppB∗
X ) \ BA, then A ∩ C(v̄) = ∅ and if v ∈ BA, then X ∩ C(v̄) =

A ∩ C(v̄); and

∑

v∈SuppB∗
τA,B (X)

rPSDN v
(τA,B(X))

=
∑

v∈(SuppB∗
X )\BA

rPSDN v

(
((X \ A) ∪ B)

) +
∑

v∈SuppBB

rPSDN v

(
((X \ A) ∪ B)

)

(by11)

=
∑

v∈(SuppB∗
X )\BA

rPSDN v
((X \ A)) +

∑

v∈SuppBB

rPSDN v
(B) (15)

because if v ∈ SuppB∗
X , then B ∩C(v̄) = ∅, and if v ∈ SuppBB , then X ∩C(v̄) = ∅.

Therefore, combining Eqns. (13) to (15), we obtain

rPSDN (X) − rPSDN (τA,B(X)) =
=

∑

v∈BA

rPSDN v
(A) −

∑

v∈SuppBB

rPSDN v
(B) +

∑

e∈↑B∗
X

w(e) −
∑

e∈↑B∗
τA,B (X)

w(e).

A similar argument proves that

rPSDN (τB,A(X ′)) − rPSDN (X ′)

=
∑

v∈BA

rPSDN v
(A) −

∑

v∈SuppBB

rPSDN v
(B) +

∑

e∈↑B∗
τB,A(X ′)

w(e) −
∑

e∈↑B∗
X ′

w(e).

Thus,

rPSDN (X) − rPSDN (τA,B(X)) � rPSDN (τB,A(X ′)) − rPSDN (X ′)
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if, and only if,

∑

e∈↑B∗
X

w(e) +
∑

e∈↑B∗
X ′

w(e) �
∑

e∈↑B∗
τA,B (X)

w(e) +
∑

e∈↑B∗
τB,A(X ′)

w(e).

Finally, this last inequality holds because

∑

e∈↑B∗
X

w(e) +
∑

e∈↑B∗
X ′

w(e) =
∑

e∈↑B∗
X∪↑B∗

X ′

w(e) +
∑

e∈↑B∗
X∩↑B∗

X ′

w(e)

�
∑

e∈↑B∗
τA,B (X)

∪↑B∗
τB,A(X ′)

w(e) +
∑

e∈↑B∗
τA,B (X)

∩↑B∗
τB,A(X ′)

w(e) (∗)

=
∑

e∈↑B∗
τA,B (X)

w(e) +
∑

e∈↑B∗
τB,A(X ′)

w(e)

where step (∗) is due to

↑B∗
τA,B (X) ∪ ↑B∗

τB,A(X ′) = ↑(B∗
τA,B (X) ∪ B∗

τB,A(X ′))

= ↑(τBA,BB (B∗
X ) ∪ τBB ,BA (B∗

X ′)) (by(11)and(12))

= ↑(
(((B∗

X \ BA) ∪ BB) ∪ ((B∗
X ′ \ BB) ∪ BA))

)

= ↑(B∗
X ∪ B∗

X ′) = ↑B∗
X ∪ ↑B∗

X ′

and, by property (4) of BA and BB (and, again, (11) and (12)),

↑B∗
X ∩ ↑B∗

X ′ ⊆ ↑τBA,BB (B∗
X ) ∩ ↑τBB ,BA (B∗

X ′) = ↑B∗
τA,B (X) ∪ ↑B∗

τB,A(X ′).

This completes the proof of case (c.2). ��
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