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Abstract
Purpose  Alpelisib plus fulvestrant demonstrated a significant progression-free survival benefit versus fulvestrant in patients 
with PIK3CA-mutated HR+ /HER2− advanced breast cancer (ABC) (SOLAR-1). Hyperglycemia, an on-target adverse effect 
of PI3Kα inhibition, can lead to dose modifications, potentially impacting alpelisib efficacy. We report data from preclini-
cal models and two clinical trials (SOLAR-1 and BYLieve) on Sodium glucose cotransporter 2 inhibitor (SGLT2i) use to 
improve PI3Kα inhibitor–associated hyperglycemia.
Methods  Healthy Brown Norway (BN), mild diabetic Zucker diabetic fatty (ZDF), and Rat1-myr-p110α/HBRX3077 tumor–
bearing nude rats treated with alpelisib were analyzed for glucose and insulin control with metformin and dapagliflozin 
(SGLT2i) and alpelisib efficacy. Hyperglycemia adverse events (AEs) were compared between patients receiving SGLT2i 
with alpelisib (n = 19) and a propensity score–matched cohort not receiving SGLT2i (n = 74) in both trials.
Results  Dapagliflozin and metformin in BN and ZDF rats treated with alpelisib normalized blood glucose and reduced insulin 
levels. No signs of ketosis or drug-drug interaction were observed when metformin and dapagliflozin was administered with 
alpelisib. Alpelisib antitumor efficacy was maintained when used with dapagliflozin in tumor-bearing rats. Compared with 
a matched set of patients without SGLT2i, patients receiving SGLT2i had 4.9 and 6.4 times lower rates of grade ≥ 3 hyper-
glycemia AEs and hyperglycemia AEs resulting in alpelisib dose adjustments, interruptions, or withdrawals, respectively, 
and a relative reduction in risk of experiencing these AEs (70.6% and 35.7%).
Conclusion  These data suggest adding an SGLT2i can effectively manage hyperglycemia, resulting in fewer alpelisib dose 
modifications and discontinuations in patients with PIK3CA-mutated HR+ /HER2− ABC (SOLAR-1: NCT02437318; 
BYLieve: NCT03056755).
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Introduction

Breast cancer is the most commonly diagnosed cancer 
(24.5%) among women worldwide [1]. Patients with the 
hormone receptor–positive (HR+), human epidermal 
growth factor receptor 2–negative (HER2−) molecular 
subtype are known to be the largest subpopulation of 
breast cancer patients (> 70%) [2]. Currently, endocrine 
therapy (ET) combined with a cyclin-dependent kinase 4/6 
inhibitor (CDK4/6i) is the standard of care in the first-line 
setting for patients with HR + /HER2 − advanced breast 
cancer (ABC) [3]. However, ≃ 40% of patients with HR + /
HER2 − breast cancer have mutations in the PIK3CA gene, 
which can lead to resistance to endocrine-based therapy 
and eventual disease progression or relapse over time 
[4–8].

Alpelisib, an α-selective PI3K inhibitor and degrader, 
in combination with fulvestrant has demonstrated a sig-
nificant progression-free survival (PFS) benefit over ful-
vestrant alone (hazard ratio, 0.65; 95% CI, 0.50–0.85; 
P < 0.001) in patients with PIK3CA-mutated HR+ /
HER2− ABC that progressed on or after a previous aro-
matase inhibitor (AI) in the phase III SOLAR-1 trial 
(NCT02437318) [9]. Based on these results, alpelisib plus 
fulvestrant was approved for the treatment of this patient 
population following progression on or after ET [10–12]. 
Additionally, the phase II BYLieve trial (NCT03056755) 
reported that alpelisib plus fulvestrant showed activity 
in patients with PIK3CA-mutated HR+ /HER2− ABC 
immediately after disease progression on a CDK4/6i 
plus an AI (cohort A: median PFS, 7.3 months; 95% CI, 
5.6–8.3 months), the most common scenario for alpelisib 
exposure in a real-world clinical setting [13].

The on-target effects of inhibition of the PI3Kα path-
way include adverse events (AEs) such as hyperglycemia, 
diarrhea, and rash [9, 14]. Specifically, α-selective PI3K 
inhibition can lead to hyperglycemia through blocking of 
glucose uptake by skeletal muscle and adipose tissue and 
by activation of hepatic glyconeogenesis [9, 14]. Further-
more, unchecked hyperglycemia can lead to life-threat-
ening complications, including diabetic ketoacidosis and 
hyperglycemic hyperosmolar syndrome [15]. In SOLAR-
1, 63.7% of patients in the alpelisib arm had hypergly-
cemia (all grades), and 6.3% discontinued treatment due 
to hyperglycemia. Additionally, high rates of alpelisib-
associated hyperglycemia (80.3%) have been observed in 
a real-world setting [9, 16]. Thus, hyperglycemia manage-
ment is crucial in these patients to enable them to continue 
on alpelisib.

To manage hyperglycemia in SOLAR-1, antihypergly-
cemic medication, most commonly metformin in 87.1% 
of patients with hyperglycemia, was used and the protocol 

amended to include additional AE management guidelines 
[9, 14]. Using this information, hyperglycemia was super-
vised and managed more successfully in BYLieve, result-
ing in a lower incidence of all-grade hyperglycemia (58%) 
and fewer treatment discontinuations due to hyperglycemia 
(2%) [13]. However, an unmet need remains for manage-
ment strategies for patients treated with alpelisib that offer 
earlier and more lasting improvement of hyperglycemia 
than what is currently achieved.

Sodium glucose cotransporter 2 inhibitors (SGLT2is) are 
a relatively new class of antihyperglycemic medications used 
for managing hyperglycemia in patients with type 2 diabetes. 
These drugs reduce glucose renal reabsorption and facili-
tate its excretion, thus reducing blood glucose levels [17]. 
Interestingly, a study in mice found that SGLT2 inhibition 
reduces PI3K inhibition–induced increase in blood glucose 
and plasma C-peptide levels [18]. Thus, in this analysis, we 
used data from preclinical experiments and two clinical trials 
to investigate the benefit of using an SGLT2i for the manage-
ment of alpelisib-induced hyperglycemia.

Methods

Preclinical experiments were performed on three rat strains 
to ascertain the extent of glucose and insulin control achiev-
able with administration of alpelisib plus an SGLT2i (dapa-
gliflozin) with or without metformin as well as the effects 
on alpelisib tolerability and antitumor efficacy. Clinical data 
from a subset of patients from the SOLAR-1 and BYLieve 
trials were analyzed. Specifically, this exploratory analysis 
examined grade ≥ 3 hyperglycemia AEs and hyperglycemia 
AEs resulting in dose reductions, drug interruptions, or drug 
withdrawals in patients who received or did not receive an 
SGLT2i plus alpelisib in SOLAR-1 and BYLieve. The Com-
mon Terminology Criteria for Adverse Events (CTCAE) 
version 4.03 was used to assess hyperglycemia in both trials.

Animal studies

Three rat strains (Charles River Laboratories, Germany) 
were used: 10- to 12-week-old healthy female Brown Nor-
way (BN) rats, 8- to 11-week-old mild diabetic male Zucker 
diabetic fatty (ZDF) rats mild diabetic male Zucker diabetic 
fatty (ZDF) rats, and Rat1-myr-p110α and HBRX3077 
patient-derived estrogen receptor (ER)–positive/PIK3CA-
mutated tumor-bearing nude rats. Rat1-myr-HA-p110α 
tumors were established by subcutaneous injection of 3 × 106 
cells in 200.0 μL of HBSS (Sigma H8264) in Matrigel 
(50%:50%) into the right flank of the nude rats. HBRX3077 
patient-derived ER-positive/PIK3CA-mutated xenograft 
tumors were passaged by serial transplant into the right flank 
of the nude rats. All animals had access to food and water 
ad libitum over the course of the experiments.
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Blood glucose levels in BN and ZDF rats were continu-
ously measured for 14 days via a 1.4-cc telemetry device 
surgically implanted into their intraperitoneal cavity, with 
glucose sensors in the abdominal aorta and data collected 
on the Dataquest A.R.T. acquisition system (Data Sciences 
International). For some experiments, plasma insulin and 
glucose levels were measured using a commercially avail-
able ELISA kit (Mercodia) and a glucometer (OneTouch® 
Ultra®, LifeScan), respectively.

Tumor volume and body weight of tumor-bearing nude 
rats were measured two to three times per week. Tumor size 
was measured with calipers, and tumor volume was esti-
mated using the formula (width × height × length) × π/6, with 
these measurements being the three largest diameters. Treat-
ments were initiated when the mean tumor volume in each 
group reached 1000–1500 mm3.

Alpelisib, dapagliflozin, and metformin were formulated 
in 1% carboxymethylcellulose plus 0.5% Tween 80 and 
dosed at 5.0 mL/kg via oral gavage. Alpelisib as a single 
agent, alpelisib/metformin and alpelisib/dapagliflozin as 
double combinations, and alpelisib/metformin/dapagliflozin 
as a triple combination were compared for changes in plasma 
glucose levels, insulin levels, ketone body levels, blood lac-
tate levels, body weight, and drug-drug interactions.

Clinical trials data

Study designs

For the SOLAR-1 trial, postmenopausal women or men 
with HR+ /HER2− ABC that progressed on or after treat-
ment with an AI were enrolled into the PIK3CA-mutated 
or PIK3CA-nonmutated cohort [9]. For the BYLieve trial, 
women and men aged ≥ 18 years with HR+ /HER2− ABC 
not amenable to curative therapy and with a confirmed 
PIK3CA mutation were enrolled into cohorts A, B, and C 
based on immediate prior line of therapy: CDK4/6i plus 
an AI, CDK4/6i plus fulvestrant, or chemotherapy or ET, 
respectively. Details of the trial designs have been published 
previously [9, 13]. AEs were assessed at protocol-defined 
periods (Supplementary Methods).

Inclusion criteria for SOLAR‑1 and BYLieve based 
on baseline plasma glucose levels

SOLAR-1 included patients with hemoglobin A1c 
(HbA1c) < 8% at the start of the trial; however, based on 
recommendations by an advisory board of experts in AE 
management, this was later modified to < 6.5% to exclude 
patients with uncontrolled diabetes. Instruction on life-
style modifications at screening and consultation with a 
healthcare specialist were recommended for patients with 
baseline fasting plasma glucose (FPG) ≥ 5.6 mmol/L and/

or HbA1c ≥ 5.7% [9, 14]. For BYLieve, patients needed to 
have an FPG ≤ 7.7 mmol/L and HbA1c ≤ 6.4%. For both tri-
als, baseline glycemic status was defined according to the 
American Diabetes Association: normal (FPG < 5.6 mmol/L 
and HbA1c < 5.7%), prediabetic (FPG ≥ 5.6 to < 7.0 mmol/L 
and/or HbA1c ≥ 5.7% to < 6.5%), and diabetic 
(FPG ≥ 7.0 mmol/L and/or HbA1c ≥ 6.5%) [13, 14].

Analysis in patients who received an SGLT2i (SGLT2i 
cohort) vs those who did not (control cohort)

Propensity score matching

Patients in the SGLT2i cohort included in this analysis were 
classified based on World Health Organization drug coding 
of A10BK (ATC code level 4). Any patient from SOLAR-1 
who received alpelisib and an SGLT2i was included, irre-
spective of PIK3CA mutation status. Any patient from 
BYLieve who received alpelisib and an SGLT2i from all 
three cohorts was included.

Patients in the SGLT2i cohort were compared with a 
matched control cohort (control cohort) selected from the 
set of patients in the two trials who received alpelisib but 
not an SGLT2i (non-SGLT2i patient set). Specifically, each 
patient’s propensity score was obtained from a logistic 
regression model with SGLT2i treatment status regressed on 
the following four risk factors: age, body mass index (BMI), 
HbA1c, and FPG. Next, each SGLT2i patient was matched 
with patients from the non-SGLT2i set whose propensity 
scores were closest to the former’s propensity score via near-
est neighbor matching. Non-SGLT2i patients with missing 
data in the four risk factors were excluded from the set.

Several measures were used to ensure quality of match-
ing, including distribution of propensity scores among 
matched and unmatched patients, mean differences in the 
four risk factors, propensity scores for the SGLT2i cohort 
versus all patients and control patients, and median values 
and interquartile ranges for these risk factors between the 
SGLT2i and control cohorts (Supplementary Methods).

SGLT2i/placebo start dates

For each patient in the SGLT2i cohort, the date on which 
the patient was first administered an SGLT2i was noted as 
the SGLT2i treatment start date. For each of their matched 
controls in the control cohort, the start date for an artifi-
cial placebo (henceforth referred to as “placebo”) was 
constructed as described in the Supplementary Methods. 
Matched control patients who had a last exposure date that 
occurred before their placebo start date were excluded from 
the analysis; SGLT2i patients were rematched if necessary 
(Supplementary Methods).
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Hyperglycemia AEs: incidence rates and risk analysis

Placebo start dates for the SGLT2i and matched control 
cohorts were used to compare incidence rates and time to 
the first grade ≥ 3 hyperglycemia AE and hyperglycemia AE 
that resulted in an alpelisib adjustment, interruption, or with-
drawal following the start of SGLT2i treatment.

The incidence rate for the SGLT2i cohort k ∈ {0,1} 
(SGLT2i cohort, k = 0; control cohort, k = 1 ) was calculated 
as IR

k
=

∑

i∈Ik
Number of hyperglycemia AEs experienced by patient i

∑

i∈Ik
Exposure duration for patient i

where Ik is the set of patients in cohort k . Exposure dura-
tion was defined as the length of the patient’s exposure 
period, i.e., the duration between their SGLT2i/placebo start 
date and last exposure date (up to 30 days following their 
last dose of study treatment). Therefore, the incidence rate 
for treatment cohort k was calculated as the total number of 
hyperglycemia AEs (either grade ≥ 3 or leading to alpelisib 
dose modifications/discontinuations) experienced by the 
patients in cohort k during their exposure periods, divided 
by the sum of exposure durations for patients in cohort k.

Time to the first grade ≥ 3 hyperglycemia AE and 
first hyperglycemia AE leading to alpelisib adjustment, 

interruption, or discontinuation was estimated using the 
Kaplan–Meier method. The hazard ratios for these outputs 
were estimated using a Cox proportional hazards model with 
SGLT2i treatment as a covariate.

Results

Results from rat models

BN rats

In BN rats, alpelisib administered as a single agent induced 
hyperglycemia and hyperinsulinemia. Addition of dapagli-
flozin to alpelisib suppressed alpelisib-induced hyperglyce-
mia and slightly reduced insulin levels (Fig. 1a). The triple 
combination of alpelisib plus metformin and dapagliflozin 
was the most effective in normalizing blood glucose and 
insulin levels compared with the double combinations.

Furthermore, the triple combination of alpelisib with met-
formin and dapagliflozin did not impact alpelisib-induced 
body weight loss in BN rats, and they showed no signs 
of ketosis (Fig. 1b). Interestingly, the combinations that 
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Fig. 1   BN rats treated with DAPA, MET, or ALP, double combi-
nation of ALP + MET or ALP + DAPA, or triple combination of 
ALP + DAPA + MET. a Blood glucose and plasma insulin levels. b 
Change in body weight and fed plasma β-hydroxybutyrate. c Study 
drug levels. d Blood glucose levels in BN rats treated sequentially 

with ALP combined with increasing dose of MET (n = 5) or ALP 
combined with MET and increasing doses of DAPA (n = 4). ALP 
alpelisib, ANOVA analysis of variance, BN Brown Norway, combo 
combination, DAPA dapagliflozin, MET metformin, po orally, qd 
once daily, SA single agent
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included metformin led to slightly greater alpelisib-induced 
body weight loss in these rats. Finally, no signs of drug-drug 
interactions were observed with any of the combinations 
compared with a single agent (Fig. 1c).

Experiments that continuously measured changes in 
blood glucose levels over 14 days in the same BN rats were 
also conducted. These experiments showed that alpelisib 
50 mg/kg orally (po) once daily (qd) induced hyperglyce-
mia by the third day of administration (Fig. 1d). Combining 
increasing doses of dapagliflozin (5 and 10 mg/kg po qd) 
with alpelisib significantly reduced blood glucose levels over 
24-h dosing periods. In a different set of BN rats, blood glu-
cose levels showed a rapid onset and sustained normalization 
when metformin (350 mg/kg po qd) and dapagliflozin (5 and 
10 mg/kg po qd) were combined with alpelisib following 
alpelisib-induced hyperglycemia.

ZDF rats

The diabetic status of ZDF rats was confirmed using a glu-
cose tolerance test (Supplementary Fig. 1). Repeated daily 
doses of dapagliflozin (1 and 2 mg/kg) plus metformin 

(350  mg/kg) with alpelisib (12.5  mg/kg) normalized  
alpelisib-induced increases in blood glucose levels over 24-h 
dosing periods (Fig. 2a). Hyperinsulinemia was observed 
at 4  h post treatment, but no increase in ketone body 
β-hydroxybutyrate (BHB) was observed. When alpelisib was 
administered at 40 mg/kg as a single agent, it induced severe 
hyperglycemia in the ZDF rats (Fig. 2b). Dapagliflozin and 
metformin were efficacious at reducing blood glucose levels 
even with higher doses of alpelisib (30 and 40 mg/kg).

Plasma insulin levels increased in ZDF rats follow-
ing alpelisib (40 mg/kg) administration as a single agent 
(Fig. 3a). When alpelisib (30 and 40 mg/kg) was adminis-
tered with dapagliflozin and metformin, levels of plasma 
insulin were significantly reduced. Alpelisib administered 
alone at 40 mg/kg induced a mild increase in ketone body 
BHB levels at 4 h post treatment (Fig. 3b). When alpelisib 
was combined with dapagliflozin and metformin, a smaller 
increase in BHB levels was observed. Furthermore, blood 
lactate levels did not change when alpelisib was adminis-
tered alone or with metformin and dapagliflozin (Fig. 3c). 
Finally, when alpelisib was combined with dapagliflozin 
and metformin, alpelisib blood levels at 4 h post treatment 
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DAPA + MET. ALP alpelisib, BHB β-hydroxybutyrate, DAPA dapagliflozin, MET metformin, po orally, ZDF Zucker diabetic fatty
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remained similar to those of alpelisib alone in ZDF rats 
(Fig. 3d).

Tumor‑bearing rats

The antitumor efficacy (measured by reduction in tumor 
size) of alpelisib was maintained when alpelisib was com-
bined with dapagliflozin in Rat1-myr-p110α rats (Fig. 4). 
The efficacy of alpelisib in reducing tumor volume was 
slightly improved (not statistically significant) when alpe-
lisib was combined with metformin and dapagliflozin in 
ER+/PIK3CA mutant HBRX3077 PDX tumor-bearing nude 
rats. Improvements in alpelisib-induced hyperglycemia and 
hyperinsulinemia similar to those seen in BN rats were 
observed when dapagliflozin (with or without metformin) 
was added to alpelisib in tumor-bearing nude rats.

Patient data from the SOLAR‑1 and BYLieve trials

Demographics and baseline characteristics in the SGLT2i 
and control cohorts

For this analysis, the data cutoffs were 23 April 2020 
(SOLAR-1), 14 June 2021 (BYLieve cohort A), 14 August 
2020 (BYLieve cohort B), and 14 June 2021 (BYLieve 
cohort C). All patients in the SGLT2i cohort (N = 19) 

were female; two were premenopausal and seventeen 
were postmenopausal. Overall, 16 of 19 patients (84.2%) 
had a PIK3CA mutation (10 from BYLieve and six from 
SOLAR-1). Median age of the patients was 62.0  years 
(quartile [Q] 1-Q3, 55.5–67.0 years); one patient (5.3%) 
was ≥ 75 years of age. Nine patients were Asian, eight were 
White; one was categorized as other race, and one was miss-
ing race data. Mean BMI (n = 18) was 27.9 kg/m2 (Q1-Q3, 
24.4–29.0 kg/m2); eight patients (42.1%) were classified as 
overweight (BMI, 25–29.9 kg/m2) and four (21.1%) were 
classified as obese (BMI, ≥ 30 kg/m2). BMI data were miss-
ing for one patient. Three patients (15.8%) were diabetic 
(HbA1c ≥ 6.5% or FPG ≥ 126 mg/dL), 14 (73.7%) were pre-
diabetic (HbA1c ≥ 5.7% to < 6.5% or FPG ≥ 100 to < 126 mg/
dL), and two (10.5%) were in the normoglycemic range 
(HbA1c < 5.7% or FPG < 100 mg/dL). Baseline charac-
teristics of patients in the control cohort were comparable 
to those of patients in the SGLT2i cohort (Supplementary 
Table 1).

Patient disposition

In the SGLT2i cohort, five of 19 patients (26.3%) were 
still receiving study treatment. Most patients (n = 13 
[68.4%]) had discontinued treatment due to progressive 
disease at the time of data cutoff. None of these patients 
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entered post-treatment follow-up. One patient died during 
the study. No patients in this cohort discontinued alpelisib 
due to a hyperglycemia event.

In the control cohort, 12 of 74 patients (16.2%) were 
still receiving study treatment. Most patients (n = 50 
[67.5%]) had discontinued treatment due to progressive 
disease at the time of data cutoff. Three discontinued due 
to an AE, eight discontinued for other reasons, and one 
patient died during the study.

Antihyperglycemic medications received during the trial

All 19 patients (100%) in the SGLT2i cohort and 50 of 74 
patients (62.2%) in the control cohort received an anti-
diabetes medication, such as metformin, at some point 
during alpelisib treatment (Supplementary Table 2).

Duration of exposure to alpelisib and SGLT2i

The median duration of alpelisib treatment (N = 19) in the 
SGLT2i cohort was 10.2 months (Q1-Q3, 5.5–18.3 months). 
As SGLT2is were started late in the treatment plan, the 
median duration of SGLT2i treatment (derived from 
n = 16 patients; three had ongoing SGLT2i treatment 
and were excluded) was shorter (4.7  months [Q1-Q3, 
2.5–12.5 months]), with most patients (n = 10 [52.6%]) 
being exposed to an SGLT2i for ≤ 6 months during the study. 
The median duration of alpelisib treatment (N = 74) in the 
control cohort was 9.7 months (Q1-Q3, 4.5–18.5 months).

Grade ≥ 3 hyperglycemia AEs

For the SGLT2i cohort, the grade ≥ 3 hyperglycemia AE 
incidence rate was 0.00461 (one total grade ≥ 3 hypergly-
cemia AE and total exposure duration of 217 months). For 
the control cohort, the incidence rate was 0.02272 (18 total 
grade ≥ 3 hyperglycemia AEs and total exposure duration of 
792 months). Thus, patients in the SGLT2i cohort had a 4.9 
times lower incidence rate of grade ≥ 3 hyperglycemia AEs 
than patients in the control cohort. Analysis of time to the 
first grade ≥ 3 hyperglycemia AE demonstrated that addition 
of an SGLT2i to the treatment regimen resulted in a 70.6% 
relative reduction in the risk of experiencing a grade ≥ 3 
hyperglycemia AE compared with the control cohort (haz-
ard ratio, 0.294; Fig. 5a).

Hyperglycemia AEs that led to alpelisib adjustment, 
interruption, or withdrawal

For the SGLT2i cohort, the incidence rate of hyperglyce-
mia AEs that resulted in dose adjustment, drug interruption, 
or drug withdrawal was 0.00922 (two incidents and total 
exposure duration of 217 months). For the control cohort, 
the incidence rate was 0.05917 (50 incidents and total expo-
sure duration of 845 months). Thus, patients in the SGLT2i 
cohort had a 6.4 times lower incidence rate of hyperglycemia 
AEs that led to dose adjustment, drug interruption, or drug 
withdrawal than patients in the control cohort. Analysis of 
time to the first event (hyperglycemia AE leading to dose 
adjustment, drug interruption, or drug withdrawal) demon-
strated that addition of an SGLT2i to the treatment regimen 
resulted in a 35.7% relative reduction in risk (hazard ratio, 
0.643; Fig. 5b).

Discussion

Overall, the preclinical and clinical data reported here sug-
gest that the use of an SGLT2i may decrease the incidence 
of subsequent hyperglycemia events. Data from healthy 
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BN rats and from mild diabetic ZDF rats, which model a 
patient population at risk for developing alpelisib-induced 
hyperglycemia, showed that the addition of metformin and 

dapagliflozin to alpelisib was the most effective treatment 
in preventing alpelisib-induced hyperglycemia and hyper-
insulinemia. These rat models showed no indications of 

Fig. 5   Time to first grade ≥ 3 
hyperglycemia AE (a) and time 
to first hyperglycemia AE that 
led to dose adjustments, drug 
interruptions, or drug withdraw-
als (b) in patients in the SGLT2i 
and control cohorts. AE adverse 
event, SGLT2i sodium glucose 
cotransporter 2 inhibitor
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drug-drug interactions and no signs of euglycemic diabetic 
ketoacidosis; however, there is a risk of euglycemic diabetic 
ketoacidosis with SGLT2i treatment and regular monitor-
ing is still required [19]. Importantly, the dose of alpelisib 
administered was similar to the clinically relevant dose for 
rats (12.5–25.0 mg/kg). Experiments on tumor-bearing nude 
rats showed that when alpelisib was combined with dapagli-
flozin and metformin, its antitumor efficacy was maintained. 
In the data analyzed from SOLAR-1 and BYLieve, patients 
receiving an SGLT2i had lower rates of alpelisib-induced 
grade ≥ 3 hyperglycemia AEs and hyperglycemia AEs that 
led to alpelisib dose adjustments, interruptions, or withdraw-
als; they also had a reduced risk of experiencing these AEs 
compared with patients with a similar hyperglycemia risk 
who did not receive an SGLT2i. This suggests that SGLT2i 
use may help reduce the frequency and severity of PI3Kα 
inhibitor–associated hyperglycemia AEs, and thus patients 
would require fewer dose modifications.

It has been shown that implementing a more detailed AE 
management plan improves hyperglycemia management dur-
ing alpelisib treatment. In SOLAR-1, hyperglycemia AEs 
associated with alpelisib occurred relatively early during 
treatment and were reversible and manageable with moni-
toring and intervention, which included early identification 
of grade ≥ 3 hyperglycemia and administration of metformin 
[14]. The SOLAR-1 protocol was also amended to include a 
more stringent HbA1c inclusion criterion (< 6.5%) and train-
ing for investigators on supportive treatments [14]. These 
strategies informed AE management in BYLieve, resulting 
in a lower frequency of hyperglycemia-related discontinua-
tions [13]. Also, patient risk factors that may predict a higher 
risk for grade ≥ 3 alpelisib-induced transient hyperglycemia 
have been identified, including baseline FPG, BMI, HbA1c, 
and age [20]. Addition of an SGLT2i to the treatment plan 
and identification of risk factors may lead to more effec-
tive hyperglycemia management during alpelisib treatment. 
Finally, clinical trials exploring diet and lifestyle changes 
along with administration of an SGLT2i for the management 
of alpelisib-associated hyperglycemia are also ongoing [21].

Many studies have shown the benefit of using SGLT2is 
for treating hyperglycemia in type 2 diabetes and its related 
complications, which has led to their approval by the US 
Food and Drug Administration for adults with type 2 diabe-
tes [22–25]. The preclinical experiments show that the most 
effective combination to limit alpelisib-induced hypergly-
cemia AEs is an SGLT2i with metformin. Corroborating 
these preclinical data, the METALLICA trial has shown 
that prophylactic metformin use is effective in lowering 
the incidence of alpelisib-induced grade ≥ 3 hyperglycemia 
in patients with normal blood glucose and those who are 
prediabetic [26]. The current analysis comparing patients 
treated or not treated with an SGLT2i also support the pre-
clinical data on SGLT2i use. While there is an imbalance 

in the proportion of patients who received an anti-diabetes 
medication between the SGLT2i and control cohort, it is 
important to note that each of the 19 SGLT2i patients was 
matched to at least one control patient who also received an 
anti-diabetes medication prior to (control) treatment. Based 
on these preclinical and clinical data, an investigation of the 
sequencing of antihyperglycemic agents is needed to fully 
understand the impact of SGLT2i use with other antihyper-
glycemic medications in managing patients treated with 
alpelisib.

Conclusion

This study shows the effectiveness of SGLT2i treatment and 
supports its use in combination with or without metformin 
to manage hyperglycemia events in patients with HR+ /
HER2− ABC treated with alpelisib, allowing patients to 
continue on treatment with fewer dose modifications.
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