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Cassava (Manihot esculenta Crantz) is a vital carbohydrate source for over 800 million people 
globally, yet its production in East Africa is severely affected by cassava brown streak disease (CBSD). 
Genebanks, through ex-situ conservation, play a pivotal role in preserving crop diversity, providing 
crucial resources for breeding resilient and disease-resistant crops. This study genotyped 234 South 
American cassava accessions conserved at the CIAT genebank, previously phenotyped for CBSD 
resistance by an independent group, to perform a genome-wide association analysis (GWAS) to 
identify genetic variants associated with CBSD resistance. Our GWAS identified 35 single nucleotide 
polymorphism (SNP) markers distributed across various chromosomes, associated with disease 
severity or the presence/absence of viral infection. Markers were annotated within or near genes 
previously identified with functions related to pathogen recognition and immune response activation. 
Using the SNP candidates, we screened the world’s largest cassava collection for accessions with a 
higher frequency of favorable genotypes, proposing 35 accessions with potential resistance to CBSD. 
Our results provide insights into the genetics of CBSD resistance and highlight the importance of 
genetic resources to equip breeders with the raw materials needed to develop new crop varieties 
resistant to pests and diseases.
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Cassava (Manihot esculenta Crantz) is the world’s fourth most important staple crop after rice, wheat, and maize, 
and serves as a vital carbohydrate source for over 800 million people1. In 2021, according to the FAO, global 
production exceeded 300 million tons, with Africa alone contributing around 60% of its production2. Cassava 
is Africa’s most important tuberous crop due to its remarkable tolerance to dry environments and infertile soils, 
thereby serving as a crucial income and nutrition source for small-scale farmers1. However, despite Africa being 
the major cassava producer, its production is hindered by persistently low yields3. Producing an average 8.5 
tons per hectare, yields are low in Africa compared to averages of 22 tons/ha in Asia and 13.2 tons/ha in Latin 
America2. Low African yields can be attributed to different factors including lack of agronomic interventions, 
poor stem quality, and distinct pests and diseases, among others3–5.

Climate change has increased the spread of diseases affecting cassava production, threatening food security6,7. 
Among the diseases that have a significant impact on cassava production, Cassava brown streak disease (CBSD) 
is one of the major viral diseases causing significant yields losses in East Africa5,8,9. The disease is caused by 
distinct (+) ssRNA viruses belonging to genus Ipomovirus, family Potyviridae, Cassava brown streak virus 
(CBSV), and Ugandan cassava brown streak virus (UCBSV)10,11. Since cassava is vegetatively propagated, CBSD 
can be transmitted through stem cutting, and also by whitefly (Bemisia tabaci)12. The viral infection can cause 
leaf chlorisis, brown streaks on the stems and root necrosis, rendering the roots inedible5. It has been reported 
that the disease causes yield losses of up to 70%5 representing the greatest threat to millions of cassava farmers 
in Central and East Africa13,14.

CBSD-resistant genotypes offer a significant option for effective CBSD control. However, many countries 
lack CBSD-resistant or tolerant varieties. Cassava breeding is a long-term process (eight years or more), and 
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breeding programs face significant challenges in selecting promising CBSD-resistant materials, given the 
obstacles posed by virus transmission through whitefly populations and the slow virus infection processes15–17. 
Despite setbacks, ongoing efforts are identifying sources of resistance genes deploying genome-wide association 
studies (GWAS). Candidate germplasm is derived from several sources. These include: (i) open-pollinated 
Tanzanian landraces, wild relatives, and cassava families from Brazil; (ii) populations derived from biparental 
crosses having contrasting responses to CBSD, with genetically diverse clones derived from the International 
Institute for Tropical Agriculture (IITA) and the International Center for Tropical Agriculture (CIAT); and 
(iii) hybridized C1 populations, identifying genomic regions associated with CBSD and linked across different 
chromosomes9,18–21. Moreover, alternative sources of resistance have been identified in cassava landraces from 
Colombia, Ecuador and Peru that are conserved in the CIAT genebank22.

Much of the crop diversity of many essential food crops is safeguarded in 1,750 genebanks worldwide23,24. 
These play a crucial role in developing superior crop varieties that improve yields, climate adaptation, nutrition 
and resistance to pests and diseases22,25–27. The germplasm collections provide a valuable source of genetic 
variation that can be used to diversify resistance factors in modern genepools27. Genotyping by sequencing 
(GBS) has enabled the exploration and characterization of cassava genetic diversity28–30. DArTseq, a GBS 
platform, offers high-resolution genome-wide genotyping by combining restriction enzyme-based genome 
complexity reduction method with next-generation sequencing. Efforts to control cassava mosaic disease 
(CMD), caused by cassava mosaic begomoviruses31 has been achieved through introgression of genes from wild 
cassava Manihot glaziovii32. Similar cases of using diversity conserved in genebanks to improve resistance to crop 
pest and diseases have been reported in barley33, wheat34, and bean35.

Colombia, through the International Center for Tropical Agriculture (CIAT), conserves the world’s largest in-
vitro collection of cassava and its wild relatives, ensuring the preservation of biodiversity for future generations 
and supporting global breeding programs by providing access to these genetic resources. This collection consists 
of 5,577 accessions of the cultivated species and 386 wild relatives belonging to 23 Manihot species. CBSD 
resistance was found in sixteen accessions from a subset of the cassava core collection after artificial inoculation 
with CBSV-Mo83 isolates22, highlighting the valuable contribution of germplasm collections as a resource for 
crop improvement programs.

In the present study, we leveraged the reported phenotypic information by Sheat et al. (2019)22 to perform a 
genome-wide association with the following objectives: (1) to identify chromosomal regions and genes potentially 
involved in CBSD resistance within a diverse panel of genebank accessions, (2) to select a set of genebank 
accessions with potential resistance to CBSD for validation, and (3) to provide an example of how genomics, data 
integration and statistics can support and facilitate informed access to genetic resources conserved in national or 
international genebanks, and while also providing insights into the molecular mechanisms underlying disease 
resistance.

Results
Cassava accessions used in this study and source of phenotypic data
With the aim of conducting a trait association analysis, we utilized 234 germplasm accessions conserved at 
CIAT in Palmira, Colombia. These accessions had previously been evaluated for CBSD resistance by Sheat et 
al. in 2019, who artificially inoculated cassava plantlets with the most pathogenic virus isolate (CBSV-Mo83), 
through auxiliary bud grafting22. CBSD symptoms severity was assessed by Sheat et al. (2019) using a five-point 
scale36, where 0 indicates no symptoms on leaves and stems, and 5 indicates severe symptoms, including wilting, 
followed by plant death. Additionally, virus presence in each sample was determined using quantitative reverse 
transcription PCR (qRT-PCR) by the same independent research team22.

These 234 CBSD phenotyped accessions were collected or donated to the CIAT genebank from 20 countries, 
primarily from South America, with the majority coming from Colombia, followed by Brazil, Peru and Venezuela. 
All accessions are landraces, except for six that are improved lines from Brazil, Nigeria, and Thailand. Sheat et 
al. (2019) reported 16 accessions with no symptoms on leaves and stems, 27 accessions on scale 2, 56 accessions 
on scale 3, 98 on scale 4 and 37 on scale 522. Among the 16 on scale 1, only seven accessions demonstrated 
high resistance against CBSV-Mo83 isolate, showing an absence of viral infection when confirmed by qRT-PCR 
(COL40, COL2182, COL144, ECU41, PER221, PER556, and PER333)22. All these accessions were genotyped for 
SNP markers, and the phenotypic data were extracted from Sheat et al. (2019) (Supplementary Table S1).

High density genome‑wide DArTseq markers and selection of SNP markers
Genotyping generated 121,405 SNP markers distributed over the cassava genome. Approximately 87% (105,826) 
of the SNP markers were aligned to the eighteen cassava chromosomes, and about 1.7% (2,078) were mapped 
to different scaffolds of the cassava reference genome v6.137. A total of 11% (13,501 SNPs) were not mapped 
to the reference genome. The highest number of markers mapped onto chromosome 1 (Chr1) (1,594), while 
the lowest number mapped onto Chr14 (984 SNPs) (Fig. 1A). The proportion of marker missing values across 
loci and individuals ranged from 0.92 to 0 and from 0.31 to 0.01, respectively. Minor allele frequency (MAF) 
values ranged from 0.002 to 0.500, with an average value of 0.162. Average marker count (AvgMarkerCount) and 
marker reproducibility (two marker-quality parameters) ranged from 2.2 to 184 and from 0.90 to 1, respectively 
(Supplementary Table S2). To assess the population structure, a subset of 17,989 high-quality markers was 
selected based on four criteria described in the Methods section. For the association analysis, we further refined 
this subset by selecting only the markers that mapped onto the eighteen chromosomes of the cassava reference 
genome v6.137, resulting in a total of 16,452 SNP markers (Fig. 1B).

Scientific Reports |        (2024) 14:23141 2| https://doi.org/10.1038/s41598-024-74161-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Genome-wide association study
The population structure of the GWAS panel was estimated using three different approaches: (i) principal 
component analysis (PCA); (ii) admixture analysis, using sparse non-negative matrix factorization (snmf), and 
(iii) agglomerative hierarchical clustering. In the PCA, the first eight principal components (PCs) accounted 
for 22.6% of the genetic variation observed in the data (Fig. 2A). Specifically, the first PC accounted for 5.2%, 
the second for 3.4%, the third for 3.3%, and the remaining five PCs accounted for 10.7% collectively. When 
examining the population structure based on the country of origin, three major groups of accessions were 
observed (Fig. 2B). One group primarily consisted of accessions from Colombia, Peru, and Venezuela (G1), 
while a second group was predominantly composed of accessions from Brazil and Paraguay (G2). Additionally, a 
third group comprised accessions from Brazil, along with some from Colombia and Venezuela (G3). In terms of 
population structure based on CBSD symptom severity phenotype, most accessions showed no clear separation 
for scales 2 to 5. However, all 16 accessions were categorized within scale 1 (showing no symptoms on leaves 
and stems) and corresponded to group 1 (G1 in Fig. 2C). Consequently, when considering the presence (1) or 
absence (0) of the virus detected by qRT-PCR, the seven accessions that remained uninfected by the virus and 
were considered resistant by Sheat et al. (2019)22 were all clustered in G1 (Fig. 2D). In the admixture analysis 
with snmf, the entropy criterion suggested a higher number of genetic clusters in comparison to the PCA, with 
tentative 8 genetic clusters in the data (Supplementary Fig. S1). Moreover, the hierarchical clustering analysis 
detected the major three clusters of the PCA, as well as the eight clusters detected by the admixture analysis 
(Fig.  3A,B). However, the accessions’ assignment in each cluster were mostly consistent with the clusters 
detected by the admixture analysis (K = 3 and K = 8). The linkage disequilibrium (LD) decay pattern across 
the 18 chromosomes was consistent, showing a rapid decay as the distance between markers increased, with an 
average genome-wide LD of 0.021 (Supplementary Fig. S2). A total of three principal components were utilized 
for the association analyses, that accounted for 11,9% of the genetic variation observed to correct for population 
stratification effects and minimize false positives.

Three statistical models were used for the GWAS: the Mixed Linear Model (MLM), Bayesian-information and 
Linkage-disequilibrium Iteratively Nested Keyway (BLINK), and Fixed and random model Circulating Probability 

Fig. 2.  Plots of the two principal components (PCs) showing the distribution of accessions in PC1 and PC2. 
(A) depicts the variance explained by the first ten principal components and their respective percentages. In 
(B), colors represent the country of origin of each accession, with three major groups shown within circles (G1, 
G2, and G3). (C) indicates colors corresponding to the five-point scale of CBSD symptom severity phenotype 
as determined by Sheat et al. (2019)22. Similarly, colors in (D) represent the presence or absence of the CBSV-
Mo83 virus isolate as reported by the same authors.

 

Fig. 1.  Genome-wide distribution of SNP markers showing the density of SNPs within a 1 Mb window size. 
The distribution of the markers across the eighteen chromosomes of the cassava reference genome v6.1 is 
shown in (A) before filtering, and (B) after filtering.
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Unification (FarmCPU)38–41. These models identified 35 significant associations across multiple chromosomes 
(Table 1), including five linked to CBSD severity on chromosomes 3, 7, 11 and 15, and thirty associated with CBSV 
infection on multiple chromosomes (Table 1; Fig. 4A,B). The Quantile-Quantile (QQ) plot confirmed statistical 
significance, with most observed -log10(p-values) following the expected distribution, except for significant 
associations (Fig. 4C,D). Among the five markers linked to CBSD severity, FarmCPU identified all five, one was 
identified by all three models, and two by both BLINK and FarmCPU (Supplementary Fig. S3). These SNPs explained 
0 to 8.4% of phenotypic variation (PVE), with AlleleIDs 7118148:40-G/T on chromosomes 7 and 13856723:54-G/C 
on chromosomes 11 accounting for 8.4% and 8%, respectively (Table 1). The functional annotation analysis using 
the cassava reference genome v6.1 revealed that the five SNPs were located within or near to encoding genes. The 
AlleleID 7118148:40-G/T on Chr7 was a variant within a non-coding region upstream of the Manes.07G118400 
gene, which encodes glycerol-3-phosphate acyltransferase 5 (GPAT). The AlleleID 13856723:54-G/C on Chr11, 
was annotated as a synonymous variant within a coding region in the Manes.11G122600 gene, which encodes to a 
RHOMBOID-like protein 13 (Table 1 and Supplementary Table S3).

Among the 30 significant associations with presence/absence of CBSV infection phenotype (Supplementary 
Table S1), 12 were identified by FarmCPU, 13 by MLM, and 19 by BLINK on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 
11, 12, 13, 14, 15, 16, 17, and 18 (Table 1; Fig. 4B). The QQ plot revealed that BLINK’s observed -log10(p-values) 
exhibited a more pronounced deviation from the expected distribution in contrast to MLM and FarmCPU 
(Fig. 4D). Comparing the significant associations across the three models, 12 markers were identified by more 
than one model, including two markers identified by all three: 7116322:33-A/G on Chr1 and 7118726:36-A/G 
on Chr2 (Table 1 and Supplementary Fig. S3). Phenotypic variation across the 30 significant markers ranged 
from 0 to 33% with an average of 4.6%, varying by model (Table  1). Five markers showed percentages of 
PVE above 6%: 7116322-33-A/G on Chr1, 20486307-57-T/G on Chr2, 20504508-6-T/C on Chr7, 7148270-
42-A/C on Chr9 and 7125725-8-A/C on Chr11. Four of these were annotated within or near the genes 
Manes.01G156200, Manes.02G021400, Manes.09G143200 and Manes.11G138500. These genes are known to 
encode Protein phosphatase 2 C family protein, RING/U-box superfamily protein; NB-ARC domain-containing 
disease resistance protein and hydrolase family protein / HAD-superfamily protein, respectively (Table 1 and 
Supplementary Table S3). The markers, 20486307-57-T/G on Chr2 and 7148270-42-A/C on Chr9 showed the 
highest phenotypic variation, averaging 26.5 and 26.7%, respectively, across the MLM and BLINK models.

Another twenty-five associations were located within or close to genes known to encode for: guanosine 
triphosphate (GTP) binding protein beta 1 (3.3% phenotypic variation explained); photosystem I subunit D-2 
(3.2%); DDOST_48_kDa_subunit (3%); Rab5-interacting family protein (2.9%); Galactose oxidase/kelch repeat 
superfamily protein (1.5%); P-loop containing nucleoside triphosphate hydrolase (1.4%); proline extensin-
like receptor kinase 1 (PERK) (1.2%); peroxidase superfamily protein (0.6%); and O-methyltransferase family 
protein (0.6%), among others listed in Table 1. Along all 35 significant variants the most common were intron 

Fig. 3.  Population structure and clustering analyses of the studied samples. (A) Bar plots showing the ancestry 
coefficients from K = 3 and K = 8 based on the admixture analysis. (B) Clusters detected by hierarchical 
clustering analysis using an Identity-by-State distance matrix and the ‘Ward.2D’ clustering method. Three and 
eight clusters are displayed with dashed lines or colors, respectively.
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Phenotype Chr AlleleID Ref/Alt Chr_pos Gene related Variant annotation Model PVE(%) p-value
Bonferroni 
correction

CBSD 
severity

3
7112046-16-A/C A/C 26,416,990 Manes.03G173800 splice_acceptor_variant FarmCPU 0.0 2.90E–06 4.76E–02

7122503-44-G/T G/T 27,997,604 Manes.03G197900 5_prime_UTR_variant FarmCPU 0.0 6.15E–08 1.01E–03

7 7118148-40-G/T G/T 24,643,336 Manes.07G118400 upstream_transcript_variant
BLINK 8.4 1.33E–07 2.19E–03

FarmCPU 0.0 1.52E–06 2.49E–02

11 13856723-54-G/C G/C 23,187,439 Manes.11G122600 synonymous_variant
BLINK 8.0 2.26E–08 3.72E–04

FarmCPU 0.0 2.54E–06 4.19E–02

15 7119826-59-T/C T/C 22,387,295 Manes.15G185900 5_prime_UTR_variant FarmCPU 5.9 1.81E–08 2.98E–04

Presence/ 
absence 
virus

1
7116322-33-A/G A/G 26,393,776 Manes.01G156200 intron_variant

MLM 1.2 2.46E–06 4.04E–02

BLINK 11.2 2.12E–08 3.48E–04

FarmCPU 2.9 1.53E–08 2.52E–04

13855347-8-A/T A/T 32,704,262 Manes.01G250600 3_prime_UTR_variant BLINK 1.5 6.21E–20 1.02E–15

2

20486307-57-T/G T/G 1,707,248 Manes.02G021400 3_prime_UTR_variant
MLM 28.2 5.27E–08 8.67E–04

BLINK 24.9 2.52E–35 4.15E–31

7118726-36-A/G A/G 1,906,690 Manes.02G023900 downstream_transcript_variant

MLM 0.6 2.81E–06 4.62E–02

BLINK 0.0 8.79E–07 1.45E–02

FarmCPU 4.1 1.42E–06 2.33E–02

7113688-40-G/A G/A 9,304,881 Manes.02G127300 upstream_transcript_variant BLINK 0.0 2.79E–06 4.59E–02

20485616-18-G/A G/A 9,617,457 Manes.02G131400 5_prime_UTR_variant BLINK 2.9 1.45E–13 2.38E–09

20500103-66-C/T C/T 16,005,821 Manes.02G194400 intron_variant MLM 0.0 1.13E–08 1.87E–04

20490170-25-A/T A/T 17,064,412 Manes.02G200000 splice_acceptor_variant
BLINK 1.4 1.53E–06 2.52E–02

FarmCPU 1.4 1.02E–09 1.68E–05

4 13861704-29-C/A C/A 17,592,579 Manes.04G064300 intron_variant FarmCPU 0.0 3.33E–15 5.47E–11

5
20496717-36-A/G A/G 11,465,069 Manes.05G116000 intron_variant BLINK 0.2 3.49E–07 5.74E–03

20497481-41-C/T C/T 19,957,250 Manes.05G140500 upstream_transcript_variant FarmCPU 0.0 5.81E–07 9.56E–03

6 7132461-6-C/A C/A 26,120,228 Manes.06G159700 synonymous_variant MLM 0.1 2.22E–06 3.65E–02

7 20504508-6-T/C T/C 23,142,139 unknown intergenic_variant
BLINK 8.1 4.79E–09 7.88E–05

FarmCPU 7.1 1.59E–07 2.62E–03

8 7112869-8-C/G C/G 32,642,954 Manes.08G165800 missense_variant FarmCPU 6.7 2.18E–06 3.58E–02

9 7148270-42-A/C A/C 26,108,329 Manes.09G143200 missense_variant
MLM 33.3 9.06E–08 1.49E–03

BLINK 20.1 2.36E–14 3.89E–10

11

20473300-48-A/C A/C 17,561,191 Manes.11G100900 synonymous_variant BLINK 0.6 1.59E–21 2.62E–17

7125725-8-A/C A/C 25,090,966 Manes.11G138500 intron_variant
MLM 8.8 1.25E–06 2.05E–02

BLINK 6.7 2.81E–06 4.63E–02

7116418-22-C/A C/A 26,470,720 Manes.11G154300 intron_variant FarmCPU 2.7 1.97E–09 3.24E–05

12 20488092-21-C/G C/G 9,548,450 Manes.12G081300 3_prime_UTR_variant MLM 0.0 3.04E–06 5.00E–02

13 7147375-42-A/C A/C 24,876,235 Manes.13G121100 intron_variant
BLINK 2.4 6.52E–19 1.07E–14

FarmCPU 0.0 2.46E–08 4.05E–04

14 20497806-14-T/G T/G 8,260,281 Manes.14G102400 upstream_transcript_variant MLM 0.0 2.06E–07 3.39E–03

15

20473618-24-G/C G/C 2,128,122 Manes.15G027800 intron_variant
BLINK 3.2 4.07E–11 6.69E–07

FarmCPU 0.0 2.24E–12 3.69E–08

7126319-64-T/C T/C 9,954,369 Manes.15G130900 missense_variant MLM 0.2 2.45E–06 4.03E–02

20491807-17-C/A C/A 11,631,786 Manes.15G148600 splice_acceptor_variant BLINK 3.0 4.01E–12 6.59E–08

16

7107809-32-T/C T/C 24,021,740 Manes.16G083000 exonic_splice_region_variant
MLM 0.2 3.43E–08 5.64E–04

FarmCPU 0.0 2.09E–07 3.44E–03

20481832-32-G/C G/C 27,000,390 Manes.16G115300 splice_acceptor_variant BLINK 1.2 7.98E–17 1.31E–12

7112183-41-G/A G/A 28,218,989 Manes.16G132500 intron_variant
MLM 5.7 5.71E–07 9.40E–03

BLINK 1.5 1.01E–07 1.66E–03

17

13856211-29-G/A G/A 18,683,421 Manes.17G049300 exonic_splice_region_variant MLM 0.0 1.93E–07 3.17E–03

7124234-46-A/T A/T 24,150,948 Manes.17G100500 intron_variant
BLINK 3.3 2.64E–08 4.35E–04

FarmCPU 0.0 9.98E–10 1.64E–05

18 13857824-33-C/G C/G 23,405,196 Manes.18G144800 synonymous_variant BLINK 0.6 1.79E–09 2.94E–05

Table 1.  List of significant markers identified from the GWAS analyses using the CBSD symptom severity and 
presence/absence of CBSV phenotype, as determined by Sheat et al. (2019)22.
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variants (10); 3’ or 5’ untranslated region (UTR) variants (6); upstream or downstream transcript variants (5); 
synonymous variants (4); splice acceptor variants (4), missense variants (3); exonic splice region variants (2), 
and one intergenic variant (Table 1 and Supplementary Table S3). The missense variant found on Chr9 (which 
explains the highest phenotypic variation (33%) in a NB-ARC domain-containing disease resistance protein) 
causes an amino acid change at the N-terminal of the protein (Table 1). Specifically, it changes the amino acid at 
position 24 from glutamic acid to alanine.

Identification of cassava accessions within the genebank exhibiting potential resistance
Four markers were selected to help identify potential unexplored CBSD resistance among cassava accessions 
within the largest cassava genebank collection. Among these markers, the two associations for CBSD severity 
phenotype (7118148-40-G/T on Chr7 and 13856723-54-G/C on Chr11), and two associations for the 
presence/absence of the virus phenotype (20486307-57-T/G on Chr2 and 7148270-42-A/C on Chr9), were 
selected. The selection of these markers was based on two criteria (i) their ability to explain a high percentage 
of the phenotypic variation and, (ii) their potential to define the favorable genotype based on the phenotype 
distribution. The favorable genotype conferring resistance to CBSD symptoms severity and absence of viral 
infection was determined using the phenotypic distribution for each genotype (Supplementary Fig. S4). The 
genotype frequency for markers associated with low disease severity was 0.201 and 0.056 for 7118148-40-G/T 
and 13856723-54-G/C, respectively. Moreover, the genotype frequency for markers associated with absence 
of viral infection was even lower, at 0.009 and 0.004, for 20486307-57-T/G and 7148270-42-A/C, respectively 
(Supplementary Table S4). We assessed the presence of favorable genotypes for these four markers within a panel 
of 5,302 cassava accessions conserved at the genebank in Palmira, Colombia, at CIAT. None of the accessions 
displayed all four favorable genotypes simultaneously, and a total of 4,008 accessions did not display any of the 
four favorable genotypes. Among those accessions that harbor favorable genotypes, two accessions (COL40 and 
COL40A) harbored three of the favorable genotypes, while 61 accessions harbored two, and 1,230 accessions 
harbored at least one. From those accessions that harbored at least one genotype, a total of 1,199 accessions 
harbored favorable genotypes for either of the two associations for CBSD severity phenotype (7118148-40-G/
T on Chr7 and 13856723-54-G/C on Chr11), while the other 31 accessions harbored favorable genotypes for 
either of the two associations for the presence/absence of the virus phenotype (20486307-57-T/G on Chr2 and 
7148270-42-A/C on Chr9).

We selected 63 accessions harboring 3 or 2 favorable genotypes, along with the 31 accessions with a favorable 
genotype for 20486307-57-T/G on Chr2 and 7148270-42-A/C on Chr9, resulting in a total of 94 accessions. 
After, assessing the genetic redundancy within these accessions, a total of 41 groups were identified, with 26 
consisting of a single accession and 15 consisting of groups of accessions ranging from 2 to 24 (Supplementary 
Table S5). Among the group of 94 accessions, the following six COL2182, COL40, ECU41, PER315, PER353, and 
PER556 were previously classified at scale 1 for CBSD severity, indicating no symptoms on leaves and stems22. 
Additionally, four of these six were reported to be free of virus infection following virus inoculation by Sheat et 
al. (2019)22 (Supplementary Table S1). After selecting one accession per MLG/group and removing those groups 
of accessions clustering with the six accessions already evaluated by Sheat et al. (2019)22, were proposed a set of 
35 genetically distant accessions with potential resistance to CBSD (Table 2). From these sets, most accessions 
are landraces (33) from: Colombia (16), followed by Peru (6), Ecuador (5), Venezuela (3), Brazil (3), Guatemala 
(1) and Puerto Rico (1) (Table 2; Fig. 5).

Fig. 4.  Genome-wide association studies and statistical model results. (A) Manhattan plots for the CBSD 
severity phenotype using MLM, BLINK and FarmCPU models and, (B) for the presence/absence of CBSV 
infection phenotype. QQ plots for (C) the CBSD severity phenotype and, (D) for the presence/absence of 
CBSV infection phenotype with the three statistical models used. In Manhattan plots dashed lines represent 
False discovery rate thresholds and continuous lines Bonferroni threshold, respectively.

 

Scientific Reports |        (2024) 14:23141 6| https://doi.org/10.1038/s41598-024-74161-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Discussion
Despite continuous efforts over recent decades to identify sources of resistance to CBSD, the disease continues 
to cause significant losses for cassava farmers in Africa. To identify chromosomal regions and genes potentially 
involved in CBSD resistance, we used a set of 234 accessions from the world’s largest cassava collection and 
conducted a GWAS using available phenotypic data reported by an independent research team in 201922. 
Sheat et al. (2019) assessed these accessions for CBSD severity symptoms and virus presence by qRT-PCR after 
artificially inoculating the plants with a severe isolate of CBSV from Mozambique (CBSV-Mo83)22. A total of 
fifteen accessions remained free of symptoms on leaves and stems, and seven of these either exhibited necrosis 
symptoms on roots and tested negative for virus infection. Moreover, two accessions (COL40 and COL2182) 
remained uninfected when inoculated with other viral isolates from Kenya and Tanzania (UCBSV-Ke125 and 
CBSV-Tan70)22. We genotyped these 234 accessions using DArTseq technology41, which provides a cost-effective 
method for high-density genome coverage across the eighteen chromosomes of the cassava genome. This 
technology has been previously used for cassava diversity studies, characterization, and trait selection28–30,42,43. 
More than 80% of the SNPs markers were able to be mapped to the reference genome37. We applied a series 
of marker-parameter filters to select a subset of high-quality markers for assessing population structure and 
performing association analysis.

Our population structure analysis detected three major clusters and eight sub-clusters, which could be 
differentiated based on PCA, admixture and hierarchical clustering analysis. The three clusters correspond to 
the origin of the accessions: one group (G1) mostly composed of countries from the western part of South 
America (including Colombia, Peru, and Venezuela); a second group (G2) from the eastern part (mainly Brazil 
and Paraguay), and a third cluster (G3) including Brazil, Colombia, Venezuela, and other countries. A study 

Accession name Country of Origin Biological status Doi

BRA1170 BRA Landrace https://doi.org/10.18730/PCP0Y

BRA1A BRA Landrace https://doi.org/10.18730/P9697

BRA947 BRA Landrace https://doi.org/10.18730/P90A1

CG1118-118 COL Breeding line https://doi.org/10.18730/PDBVT

COL1033 COL Landrace https://doi.org/10.18730/PCZTB

COL1035B COL Landrace https://doi.org/10.18730/PC654

COL1134 COL Landrace https://doi.org/10.18730/PBN8J

COL1313 COL Landrace https://doi.org/10.18730/PDV6U

COL2010 COL Landrace https://doi.org/10.18730/P8WP~

COL2017 COL Landrace https://doi.org/10.18730/PCH5Q

COL2074 COL Landrace https://doi.org/10.18730/P9Q1S

COL2524 COL Landrace https://doi.org/10.18730/PCW11

COL493 COL Landrace https://doi.org/10.18730/P9T6F

COL636 COL Landrace https://doi.org/10.18730/PAN4T

COL690 COL Landrace https://doi.org/10.18730/PDW3W

COL776 COL Landrace https://doi.org/10.18730/P8G30

COL785 COL Landrace https://doi.org/10.18730/P8YRS

COL985 COL Landrace https://doi.org/10.18730/PA54*

ECU137 ECU Landrace https://doi.org/10.18730/P8S9=
ECU150 ECU Landrace https://doi.org/10.18730/P8S4Y

ECU166 ECU Landrace https://doi.org/10.18730/PB962

ECU181 ECU Landrace https://doi.org/10.18730/PCTGT

ECU4 ECU Landrace https://doi.org/10.18730/PB9PJ

GUA8 GTM Landrace https://doi.org/10.18730/PB0BF

PER337 PER Landrace https://doi.org/10.18730/PACTK

PER382 PER Landrace https://doi.org/10.18730/PACNE

PER412 PER Landrace https://doi.org/10.18730/P9HR4

PER467 PER Landrace https://doi.org/10.18730/PACE7

PER471 PER Landrace https://doi.org/10.18730/P9HF*

PER480 PER Landrace https://doi.org/10.18730/PBNS=
PTR37 PRI Landrace https://doi.org/10.18730/P8NT=
SG702-13 COL Breeding line https://doi.org/10.18730/PBS3Y

VEN168 VEN Landrace https://doi.org/10.18730/PCPD6

VEN277 VEN Landrace https://doi.org/10.18730/PBW9N

VEN47 VEN Landrace https://doi.org/10.18730/PABEC

Table 2.  List of accession with potential resistance to CBSD.
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by Perez et al. (2023) reports similar clustering, but with less groups44. Perez et al. (2023) studied the genetic 
diversity of a subset of 481 accessions from the genebank collection, identifying two major genepools and seven 
genetic subgroups that co-localize with different eco-geographic regions44. The two major genepools were 
defined as ‘North’ & ‘Northwest’ of Amazon River basin (ARB) and ‘South’ & ‘Southeast’ of ARB. The former 
genepool included four genetic subgroups, while the latter included two. Interestingly, of the 481 accessions used 
in the Perez et al. (2023) study, 114 are included in our study. Moreover, three major clusters were observed in a 
previous study when assessing the genetic redundancy of 5,302 accessions of the cultivated cassava collection45. 
Assessing the population structure using the phenotypic data revealed that all sixteen resistant accessions 
reported by Sheat et al. (2019)22 clustered in G1, suggesting that the resistance arises in varieties from the 
western part of South America. Furthermore, the population structure of the three clusters found within the 234 
accessions resembled that of the three major clusters obtained in a pervious study with 5,302 accessions, and the 
major clusters obtained45. We therefore opted to use three principal components to account for the population 
structure in the GWAS. This approach helps to avoid false positives or spurious associations39.

Our GWAS identified 35 SNP associations for the two phenotypes evaluated. Among the five associations 
for CBSD symptom severity, two located on chromosomes 7 and 11, at positions 24,643,336 and 23,187,439, 
respectively, explaining 8.4% and 8.0% of the phenotypic variation. The associated SNP on chromosome 7 
was annotated as an upstream transcript variant in the gene encoding glycerol-3-phosphate acyltransferase 5 
(GPAT5). In other plant species, the acyltransferase GPAT5 is required for the synthesis of suberin in the seed 
coat and root46. Although widespread across various tissues at specific locations during plant growth, suberin 
is also synthesized in response to stress and wounds, providing a barrier to pathogens47,48. The associated SNP 
on chromosome 11 was annotated as a synonymous variant in the gene encoding the Rhomboid-like protein 
13 (RBL13). Rhomboid-like proteins (RBLs) are intramembrane proteases with a variety of regulatory roles in 
cells49. While the precise role of RBL13 remains unclear, it has been observed that a Rhomboid-like protease 
gene originating from an interspecies translocation, including from sugar beet provides resistance to cyst 
nematodes50.

Among the 30 associations identified with the phenotype of presence/absence of CBSV infection, two were 
commonly identified by all models used (MLM, BLINK and FarmCPU) on Chr 1 and 2, and 10 were commonly 
associated by at least two models. Of these, two SNPs: 20486307-57-T/G on Chr 2 and 7148270-42-A/C on 
Chr 9, showed the highest phenotypic variation, averaging 26.5% and 26.7%, respectively, across the models. 
The SNP 20486307-57-T/G was annotated as a 3’ untranslated region (UTR) variant at the gene encoding a 
RING/U-box superfamily protein. Really Interesting New Gene (RING) finger proteins are characterized by 
containing 40–60 residues and are believed to function as E3 ubiquitin ligase51. Numerous RING-finger proteins 
have been found in plants, playing important roles in plant growth, stress resistance, and signal transduction51,52. 
The RING-finger domain serves as a protein–protein interaction domain, essential for catalyzing the E3 ligase 
activity of these proteins51,53. Recent studies have demonstrated that RING-finger proteins play a role in biotic 
stress responses across numerous species54,55. The SNP 7148270-42-A/C on Chr 9 was annotated as a missense 
variant in a gene encoding an NB-ARC domain-containing disease-resistance protein. This domain is present in 
many resistance proteins involved in pathogen recognition and the subsequent activation of the innate immune 
response56. The associated SNP causes an amino acid change at the N-terminal part of the protein, at position 
24, from glutamic acid to alanine. Glutamic acid has a longer side chain with a carboxyl group (-COOH) at the 
end, making it a negatively charged, polar amino acid, often involved in active or binding sites of enzymes due 

Fig. 5.  A map displaying the thirty-five accessions out of the 41 accessions selected that have coordinates of 
collection sites, proposed with potential resistance to CBSD. Those reported in this study are shown in blue. 
Accessions reported as resistant by Sheat et al. 2019 are presented in red.
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to its ability to donate and accept protons57. Alanine has a shorter side chain consisting of a single methyl group 
(-CH3), making it a non-polar, hydrophobic amino acid, often involved in maintaining the hydrophobic core of 
proteins and typically found in regions that do not require specific reactivity58.

Despite the advances in genomics, few studies have investigated chromosomal regions and genes potentially 
involved in CBSD resistance compared to other crops. These studies have identified associations with root 
necrosis and foliar symptoms on chromosomes 1, 2, 4, 5, 6, 11, 12, 13, 15, 17 and 189,18,20,21. Most of these 
studies have used bi-parental crosses between African landraces, breeding lines, or materials such as Kiroba and 
Namikonga, closely related to the cassava wild relative Manihot glaziovii. These have introgressed regions across 
different chromosomes18,19. Nzuki et al. (2017) identified eleven significant QTLs using an F1 cross developed 
between the Tanzanian landrace, Kiroba, and a breeding line, AR37-8018. The research has found two QTLs 
associated with CBSD root necrosis only (Chr 5 and 12), seven associated with foliar symptoms only (Chr 4, 6, 17 
and 18), and others on Chr 11 and 15 associated with both CBSD foliar and root necrosis symptoms18. Moreover, 
they identified introgression segments of Manihot glaziovii on chromosomes 17 and 18 overlapping with the 
QTL associated with foliar symptoms18. Using a bi-parental cross of Namikonga and Albert (two Tanzanian 
farmer varieties), Masumba et al. (2017), identified three QTLs linked to CBSD resistance in Namikonga on 
Chr 2, 11 and 1819. A total of twenty-seven genes were identified on Chr 2, including two leucine-rich repeat 
(LRR) proteins and a signal recognition particle19. Later, Kayondo et al. (2018), using GWAS found two regions 
associated to CBSD, one on Chr 4 which co-localizes with a Manihot glaziovii introgression segment, and one 
on Chr 11, containing a cluster of NBS-LRR genes20. Another recent study identified QTLs on chromosomes 1, 
6, 13, and 18 in genomic selection population21. All these previous studies used disease severity symptoms to 
identify trait-marker associations for CBSD resistance.

In our study we used a panel of genetically diverse germplasm conserved in an international cassava 
genebank, originating from 20 countries, mostly landraces from South America. We also used disease severity 
symptoms found in other studies and a second binary “phenotype” of presence/absence of viral infection that to 
our knowledge has not been previously used for GWAS to identify association for CBSV resistance. Comparing 
our findings with previous studies, we found associations on previously reported chromosomes: one on each 
of chromosomes 4, 6, 12, 13, and 18; two on chromosomes 1, 5 and 17; four on chromosome 11 and 15; and 
six on chromosome 2. The locus on chromosome 18 has already been reported by Kayondo et al. (2018)20. We 
identified new associations on previously unreported chromosomes, including one SNP on chromosomes 8, 9 
and 14, two on chromosome 3 and 7, both separated within each other by 1.5 Mb. The two SNPs on chromosome 
7 were identified with different phenotypes and explain around 8.0% of the phenotypic variation, and 3 SNPs 
on chromosome 16. Among all these, seven new associations were related to the binary phenotype of presence/
absence of viral infection on chromosomes 7, 8, 9, 14 and 16. Interestingly, no associations were commonly 
identified between the two studied phenotypes, suggesting different mechanisms involved in virus replication 
and symptom expression. Binary traits are often used in human GWAS to assess disease presence or absence, and 
have been widely applied in plant GWAS, typically using the MLM model59,60. Assessing presence or absence of 
CBSV infection, as reported by Sheat et al. (2019)22, can help to identify resistance mechanisms.

Germplasm collections serve as a reservoir of genetic variation, which can be utilized to diversify resistance 
factors in modern crop varieties. Colombia, through CIAT, conserves the world’s largest in-vitro collection of 
cassava. By using four selected markers identified in this study, (20486307-57-T/G on Chr2, 7118148-40-G/T 
on Chr7, 7148270-42-A/C on Chr9 and 13856723-54-G/C on Chr11) and the genotypic data of 5,302 cultivated 
cassava accessions of CIAT, we predict potential resistance to CBSD on 35 genetically distant accessions originally 
from seven countries in South America for validation tests. These markers were selected based on their ability 
to explain a high percentage of the phenotypic variation and their potential to define a favorable genotype based 
on the two-phenotype distribution (CBSD symptoms severity and CBSV infection). Other markers represented 
challenges in defining a favorable genotype and were therefore not considered. The proposed candidate 
accessions can accelerate the development of improve crop varieties, and the identified markers can support 
markers-assisted selection in breeding programs.

Our study demonstrates how genomic resources derived from genebank collections, integration of data from 
previous studies from genebanks users, and statistical analysis can support and facilitate informed access to 
and use of genetic resources, particularly in large national or international collections. Additionally, it provides 
insights into the molecular mechanisms underlying disease resistance.

Methods
Germplasm and phenotypic data used in this study
A subset of 234 accessions from the 629 of the CIAT cassava core collection, conserved in Palmira, Colombia, was 
used in this study. The accessions originate from 20 countries, primarily in South America, including Colombia 
(59), Brazil (53), and Peru (28), followed by Venezuela (18), Paraguay (18), Ecuador (11), and other countries 
such as Argentina, Bolivia, Costa Rica, Cuba, the Dominican Republic, Guatemala, Mexico, Panama and Puerto 
Rico. Fourteen accessions originated from countries outside South America, namely Fiji, Indonesia, Malaysia, 
Nigeria, and Thailand. This set of accessions was selected based on available CBSD resistance phenotypic data 
reported by Sheat el. al. (2019) in supplementary materials22. Sheat et al. (2019) reported the severity of CBSD 
symptoms and the presence or absence of viral infection for the 234 accessions. This information was obtained 
after artificial inoculation with the pathogenic virus isolate (CBSV-Mo83) through auxiliary bud grafting22. 
The severity of CBSD symptoms was categorized on a five-point scale: no symptoms on leaves and stems (1); 
very mild stem symptoms, inconspicuous symptoms on leaves only (2); moderate symptoms on leaves only (3); 
severe symptoms on leaves and stems (4), and wilting, followed by plant death (5). Additionally, virus infection 
data consisted of two categories: presence (1) or absence (0)22. The accessions names, origins, biological status, 
severity scales of CBSD, and presence or absence of viral infection are summarized in Supplementary Table S1.
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DNA extraction and genotyping
Leaf tissue was collected from in-vitro conserved plantlets and stored at -20  °C. Subsequently, samples were 
lyophilized for 3 days at -50 °C and 0.002 mbar. Approximately 10 mg of lyophilized leaf tissue was used for DNA 
extraction, as previously described by Carvajal-Yepes et al. (2024)45. In brief, samples were homogenized and 
lysed with Cetyltrimethylammonium bromide (CTAB) extraction buffers61. After vortex mixing and incubation 
at 65 °C for 30 min, the samples were mixed and incubated with an equal volume of chloroform: Isoamyl alcohol 
24:1 (Sigma-Aldrich, USA). Following centrifugation, the aqueous phase was collected in another tube and 
mixed with equal volume of cold isopropanol, followed by 1 h of incubation at -20 °C. Upon removal of the 
supernatant, the formed pellets were washed with 80% cold ethanol. Subsequently, the pellets were air-dried 
and resuspended in TE buffer (pH 8.0, Alpha Teknova, USA) with 40  µg of RNase (QIAGEN, Germany), 
and incubated for 30 min at 37 °C. The extracted DNA was stored at -20 °C. The concentration and purity of 
DNA was estimated by calculating the absorbance at 260/280 nm, while the integrity of DNA was assessed by 
electrophoresis using 0.8% agarose gel in 0.5X TBE stained with GelRed (2 µl/100 ml of gel).

A total of 50ul of genomic DNA, with a concentration of 50ng/µl, was shipped to Diversity Array Technology in 
Canberra, Australia, for genotyping by sequencing using DArTseq™ technology, which involves a combination of 
MseI and PstI restriction enzymes. The prepared DNA libraries were sequenced following the protocol described 
by Nadeem et al. (2018)62. SNP calling was performed with DS14 software (Diversity Arrays Technology P/L).

Filter applied to select high-quality SNP markers
To assess the population structure, a subset of 17,989 high-quality markers was selected based on the following 
four criteria: (i) missing values (≤ 0.2); (ii) minor allele frequency (MAF ≥ 0.005); (iii) average marker count (≥ 5 
and ≤ 75), which represents the average number of sequence-tag copies of a marker (calculated by averaging 
the mean number of seq-tag copies on the two SNP alleles), and (iv) reproducibility (≥ 0.99). The latter is an 
estimate calculated by DArTseq, which assesses the proportion of technical replicate assay pairs for which the 
calls of a given marker were consistent. To conduct the association analysis, we selected markers that mapped 
to the eighteen chromosomes of the cassava reference genome v6.1, obtaining a total of 16,452 SNP markers34.

Genetic diversity and population structure
Population structure analysis was conducted using the snpgdsPCA function from the SNPRelate package 
v1.6.463, in the R program v4.2.264 to compute eigenvectors and eigenvalues for principal component analysis 
(PCA). Additionally, a pairwise genetic distance matrix (1-IBS, identity by state) was calculated using 17,989 
SNP markers. The distance matrix was used for agglomerative clustering with the minimum variance clustering 
method (Ward.D2)65, employing the hclust function in the stats R package v4.2.265. The find.clusters function 
in the adegenet R package v2.1.10 was used to identify clusters using K-means and the Bayesian Information 
Criterion (BIC)66. Furthermore, the best estimation of K ancestral populations was determined using the 
snfm function of LEA R package v3.2.067. For analysis, the SNPs were transformed into genlight objects and 
converted into STRUCTURE input files with the gl2structure function of the dartR R package v2.9.768. The 
structure-formatted files were then converted into the geno format using the struc2geno function of LEA. Visual 
representations, including bar plots of admixture coefficients and cross-entropy values plots across different K 
values, were generated using the ggplot2 R package v3.3.369.

Genome-wide association analysis
The association analyses were conducted using 234 cassava accessions and 16,452 SNP markers, as well as two 
types of phenotypic data: (i) CBSD symptom severity, and (ii) presence or absence of cassava brown streak virus 
(CBSV), as determined by Sheat et al. (2019)22. The SNP markers were filtered to select those with missing values 
below 0.2, MAF above 0.005, average marker count (AvgMarkerCount) between 5 and 75 and reproducibility 
above 0.99. The AvgMarkerCount parameter represents the average number of sequence-tag copies of a marker 
and is calculated by averaging the mean number of sequence-tag copies of the two SNP alleles. Reproducibility 
assesses the proportion of technical replicate assay pairs for which the calls of a given marker were consistent. This 
parameter is estimated by DArT P/L. Three statistical models were implemented in Genomic Association and 
Prediction Integrated Tool version 3 (GAPIT3)70. The models used include MLM, BLINK and FarmCPU. This 
analysis employed the Bonferroni correction method with a significant threshold set at 0.05. The associations are 
visualized in Manhattan plots with values above 5.5 -log10(p-value). Linkage disequilibrium (LD) was estimated 
using correlation coefficients (r²) between pairs of loci on each chromosome, based on 16,451 SNPs with a minor 
allele frequency above 0.05, using the gl.report.ld.map function from the dartR package v2.9.768. Results were 
visualized with the ggplot2 package v3.4.3.

Functional annotation
The functional annotation was conducted using the Next-Generation Sequencing Experience Platform (NGSEP) 
software v4.3.171 to determine whether the significant markers are located within or near genes, regulatory 
regions, or functional elements, and to assess the potential functional consequences of genetic variants. The 
VCF annotate option, from NGSEP, was used with default settings: 1000 bp offset upstream and a 300 bp offset 
downstream, with a splice donor/acceptor offset of 2, a splice region intron offset of 10, and a splice region 
exon offset of 2. The cassava reference genome v6.137 was utilized for this analysis. Subsequently, the identified 
associated genes and proteins were reviewed for their function using Pfam 202172.

Selection of a subset of potential CBSD-Resistant accessions
Favorable genotypes for the four selected markers (7118148-40-G/T, 13856723-54-G/C, 20486307-57-T/G and 
7148270-42-A/C) were done based on the phenotype distribution of CBSD severity and the presence (1) or 
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absence (0) of the viral infection as reported by Sheat et al., (2019). The four markers were reviewed in a panel 
of 5,307 cassava cultivated accessions for which DArTseq genotypic data is available (Supplementary Table 
S6). Accessions harboring from 3 to 2 favorable genotypes were selected, as well as accessions with a favorable 
genotype for either of these two markers 20486307-57-T/G and 7148270-42-A/C. To identify genetic distinctness 
and redundancy within the selection of accessions we implemented the procedure reported by Carvajal-Yepes et 
al. (2024) and the dataset of 5,307 accessions and 7,180 SNP markers45. In brief, we calculated Identity-By-State 
(IBS) distances using the 1-IBS function in PLINK v1.073, and collapsed multilocus genotypes (MLGs) within 
accessions using a genetic distance threshold of 0.015 to identify a set of unique accessions45.

Data availability
The genotypic data that support the findings of this study have been deposited in Dataverse in the following link: 
https://doi.org/10.7910/DVN/H4PDE5.
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