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Multi-ancestry GWAS meta-analyses of lung
cancer reveal susceptibility loci andelucidate
smoking-independent genetic risk
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Lung cancer remains the leading cause of cancer mortality, despite declining
smoking rates. Previous lung cancer GWAS have identified numerous loci, but
separating the genetic risks of lung cancer and smoking behavioral suscept-
ibility remains challenging. Here, we perform multi-ancestry GWAS meta-
analyses of lung cancer using the Million Veteran Program cohort (approxi-
mately 95%male cases) and a previous study of European-ancestry individuals,
jointly comprising 42,102 cases and 181,270 controls, followed by replication
in an independent cohort of 19,404 cases and 17,378 controls. We then carry
out conditional meta-analyses on cigarettes per day and identify two novel,
replicated loci, including the 19p13.11 pleiotropic cancer locus in squamous
cell lung carcinoma. Overall, we report twelve novel risk loci for overall lung
cancer, lung adenocarcinoma, and squamous cell lung carcinoma, nine of
which are externally replicated. Finally, we perform PheWAS on polygenic risk
scores for lung cancer, with and without conditioning on smoking. The
unconditioned lung cancer polygenic risk score is associated with smoking
status in controls, illustrating a reduced predictive utility in non-smokers.
Additionally, our polygenic risk score demonstrates smoking-independent
pleiotropy of lung cancer risk across neoplasms and metabolic traits.

Lung cancer remains the leading cause of overall cancer mortal-
ity, as the most prevalent cancer type in men, and the second
highest in women after breast cancer1–3. Despite declines in
smoking rates in the US since the 1980s4, tobacco use is currently
implicated in upwards of 80% of lung cancer diagnoses1. Even in
those who have never smoked, nor had meaningful exposure to
environmental carcinogens1,5, there exists a heritable risk com-
ponent of lung cancer conferred by genetic factors6–8. Differ-
entiating the mutations that directly predispose an individual to

lung cancer from those whose effect is mediated through envir-
onmental components remains challenging.

Genome-wide association studies (GWAS) have identified lung
cancer risk variants associated with oncogenic processes such as
immune response7, cell cycle regulation9, and those affecting DNA
damage response and genomic stability8. Several lung cancer GWAS
have also reported strong effects of genes such as CHRNA nicotine
receptor genes which putatively increase the risk of lung cancer
through behavioral predisposition towards smoking5. Characteristic
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molecular markers and genetic risk factors in smokers and never-
smokers have been identified10,11, though fewer variants have been
found in GWAS performed exclusively in never-smokers12.

Lung cancer has a heterogeneous genetic architecture across
ancestral groups13,14. In the twomostwell-studied ancestries, European
(EA) and East Asian (EAS), the majority of genome-wide significant loci
are not shared15,16; this is in agreement withmolecular studies showing
differences in tumor characteristics between EA and EAS17. Smaller
African ancestry (AA) cohorts have replicated known loci from EA or
EAS8,18, though no AA-specific GWAS loci have been reported.

In this study, we examined lung cancer genetic variation in EA as
well as in the largest AA cohort to date. Our discovery analysis is per-
formed in an older cohort of mostly male US veterans in the Depart-
ment of Veterans AffairsMillion Veteran Program (MVP)19. Lung cancer
incidence is approximately twice as high in men than in women2, and
additionally, MVP contains a large number of cigarette smokers,
positioning this biobank as particularly valuable for these analyses.We
performed GWAS in overall cases of lung cancer as well as two non-
small cell lung cancer (NSCLC) subtypes, adenocarcinoma (LUAD) and
squamous cell lung carcinoma (LUSC).

Results
Genome-wide association studies for lung cancer
Weperformed a GWAS on overall lung cancer within EA participants in
MVP (10,398 lung cancer cases and 62,708 controls; Supplementary
Data 1), followed by a meta-analysis with the EA International Lung
Cancer Consortium OncoArray study (ILCCO)7, for a total of 39,781
cases and 119,158controls (SupplementaryFig. 1). The EAmeta-analysis
for overall lung cancer identified 26 conditionally independent SNPs
within 17 genome-wide significant loci (P < 5 × 10−8; Supplementary
Fig. 2a; Supplementary Data 2). All 12 loci reported by ILCCO7 were
confirmed, with consistent direction of effect in all single nucleotide
polymorphisms (SNPs) with P < 1 × 10−5, as well as high correlation of
effect sizes and allele frequency (Supplementary Fig. 3). Of the 17
genome-wide significant loci for overall lung cancer, four were novel

with respect to the broader literature: neuronal growth regulator
LSAMP, Wnt signaling regulator NMUR2, DNA damage repair protein
XCL2, and hedgehog signaling regulator TULP3, (Table 1; Supplemen-
tary Fig. 4a–d).

Further association tests stratified by cancer subtypes LUAD and
LUSC in MVP EA (Supplementary Fig. 2bc; Supplementary Data 3, 4)
replicated associations reported by ILCCO7 (Supplementary Fig. 3) and
identified additional loci. Two novel EA meta-analysis loci were iden-
tified for LUAD, proto-oncogeneMYC, andWnt signaling inhibitorTLE3
(Table 1; Supplementary Fig. 4e–h). For LUSC, we identified one novel
locus at 10q24.31 near NFκB inhibitor CHUK and BLOC1S2. Across all
subtypes for EA meta-analysis index variants, the MVP cohort had
associations with P < 0.05 in all but one in overall lung cancer, five in
LUAD, including approximately nominal significance at rs67824503
(MYC; P =0.057), and one in LUSC (Supplementary Data 2–4).

We investigated expression quantitative trait loci (eQTL) rela-
tionships between top SNPs from the EA meta-analysis across all lung
cancer GWAS in GTEx v8 Lung20 and the Lung eQTL Consortium21

(Supplementary Data 2–4). This analysis showed that the LUSC index
SNP rs36229791 on 10q24.31was associatedwith themRNAexpression
levels of BLOC1S2 (Fig. 1a–d), consistent with previous TWAS22.
BLOC1S2 is an oncogene whose gene product is associated with cen-
trosome function; centrosomal abnormalities have previously been
observed in vitro in LUSC23,24.

We improved our variant selection by fine-mapping and estimat-
ing credible sets of candidate causal variants in the EA meta-analysis
using sum of single effects (SuSiE)25,26 modeling. For overall lung can-
cer, LUAD, and LUSC, we identified 23, 23, and 9 high-quality credible
sets, respectively, containing 370, 246, and 192 total SNPs (Supple-
mentary Data 5).

GWAS in AA
We analyzed overall lung cancer risk in 2438 cases and 62,112 controls
of African ancestry (AA), the largest AAGWASdiscovery cohort to date
(Supplementary Fig. 5a). Two loci reached genome-wide significance in

Table 1 | Novel GWAS loci

Lung cancer
subtype

rsID Chromosome:
Position (hg19)

Candidate
gene

EA/
NEA

EAF Discovery P Replication P Combined meta-analysis
OR (95% CI)

Combined meta-
analysis P

Novel loci from the European ancestry GWAS meta-analysis

Overall rs77045810a 1:168,505,017 XCL2 A/C 0.89 1.43 × 10−10 5.72 × 10−3 1.09 (1.07, 1.12) 3.94 × 10−12

Overall rs144840030 3:117,147,326 LSAMP T/G 0.01 1.09 × 10−8 0.487 1.26 (1.16, 1.37) 5.01 × 10−8

Overall rs62400619 5:152,343,053 NMUR2 T/C 0.68 6.33 × 10−9 0.156 1.05 (1.03, 1.07) 1.10 × 10−8

Overall rs9988980a 12:3,038,917 TULP3 T/C 0.39 5.34 × 10−8 2.16 × 10−3 1.05 (1.04, 1.07) 3.72 × 10−10

LUAD rs67824503a 8:129,535,264 MYC T/C 0.75 1.81 × 10−8 5.05 × 10−5 1.10 (1.07, 1.14) 4.09 × 10−12

LUAD rs11855650a 15:70,431,773 TLE3 T/G 0.38 1.12 × 10−8 1.22 × 10−7 1.10 (1.07, 1.13) 1.15 × 10−14

LUSC rs36229791a 10:101,991,135 BLOC1S2 A/T 0.04 4.04 × 10−8 1.49 × 10−4 1.26 (1.18, 1.35) 2.48 × 10−11

Novel loci from the African ancestry GWAS

Overall rs78994068 12:127,225,803 LINC00944 C/A 0.01 1.87 × 10−9 0.901 1.76 (1.42, 2.17) 1.81 × 10−7

Novel loci from the multi-ancestry meta-analysis (not genome-wide significant in the European meta-analysis)

Overall rs329122a 5:133,864,599 JADE2 A/G 0.43 1.12 × 10−8 0.0529 0.96 (0.94, 0.97) 3.69 × 10−9

Overall rs7300571a 12:47,857,826 RPAP3 T/C 0.11 3.47 × 10−8 4.44 × 10−3 1.08 (1.06, 1.11) 6.48 × 10−10

Novel loci after conditioning the European ancestry GWAS meta-analysis on cigarettes per day

Overall rs1124241a 6:97,722,453 MMS22L A/G 0.22 1.26 × 10−8 6.15 × 10−3 1.07 (1.05, 1.10) 3.39 × 10−10

LUSC rs61494113a 19:17,401,859 ABHD8 A/G 0.29 4.90 × 10−8 3.12 × 10−3 1.11 (1.08, 1.15) 6.39 × 10−10

Novel genome-wide significantGWAS index variants for lungcancer risk inEuropean-ancestrymeta-analyses fromMVPand ILCCO7 cohorts,MVPAfrican ancestry,multi-ancestrymeta-analyses, and
in European-ancestrymeta-analyses after conditioning oncigarettes per day. Replication of these novel variantswas conducted in theexternal OncoArray dataset. Finally,we performeda combined
meta-analysis of our discovery results with the OncoArray replication results. Discovery P-values were assessed for genome-wide significance (P < 5 × 10−8), replication using a nominal significance
threshold (P < 0.05), and combined meta-analysis using the conservative threshold of P < 4.17 × 10−9 (5 × 10−8/12 total GWAS analyses). Significant alleles meeting this threshold after replication are
indicated witha. All meta-analyses in this table refer to fixed-effect inverse variance-weighted meta-analysis.
LUAD lung adenocarcinoma, LUSC squamous cell lung carcinoma, EA effect allele, NEA non-effect allele, EAF effect allele frequency in the given population, OR (95% CI) odds ratio and 95%
confidence interval.
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our discovery scan: 15q25, replicating the association inCHRNA5 for AA
populations reported by an earlier GWAS18, and a putative novel locus
at 12q23 with index SNP rs78994068 (Table 1; Fig. 1e). We further
performed GWAS in AA within LUAD and LUSC subtypes but found no
genome-wide significant associations (Supplementary Fig. 5b, c).

The putative AA locus at 12q23 is driven by six SNPs inhigh linkage
disequilibrium (LD; R2 > 0.8) found in long non-coding RNAs
LINC00943 and LINC00944 (Fig. 1e). These imputed SNPs all had odds
ratios (ORs) close to 2, with 1.3% frequency in AA and 0% in EA, con-
sistent with gnomAD v3. LINC00944 is highly expressed in immune
cells and enriched in T cell pathways in lung tissue and cancer27–30. We
fine-mapped this locus to define a 95% credible set (Supplementary
Data 6) and annotated the functional consequence of the variants
using the Variant Effect Predictor (VEP)31. Two variants, rs78994068,
and rs115962601, were in a known enhancer regulatory region
(ENSR00000974920) and thus may involve regulatory changes.
However, this locus was directionally consistent but not significant in
our AA replication cohort (discussed below); therefore, larger-scale AA
analyses are needed to confirm this finding.

GWAS multi-ancestry meta-analysis
We conducted fixed-effect inverse variance-weighted multi-ancestry
meta-analyses, combining the EAmeta-analysis and theMVP AAGWAS
for overall lung cancer, LUAD, and LUSC (Supplementary Data 7–9;
Supplementary Fig. 6a–c). These analyses identified two additional
novel genome-wide significant loci in overall lung cancer (Table 1;
Supplementary Data 10; Supplementary Fig. 4i, j): ubiquitin ligase
JADE2, previously associated with smoking initiation32, and RNA

polymerase-associated RPAP3. Neither of these novel multi-ancestry
meta-analysis loci were reported in a recent multi-ancestry analysis by
Byun et al.8 that included fewer AA and more EAS samples, indicating
the value our larger AA sample provided for novel discovery. All
genome-wide significant EA meta-analysis associations reached
genome-wide significance in the multi-ancestry meta-analyses except
rs11855650 (TLE3) in LUAD (P = 6.19 × 10−8). We additionally performed
random-effects meta-analyses using the Han-Eskinmethod (RE2)33 and
observed similar P-values to the fixed effect meta-analyses, with all
index variants PRE2 < 5 × 10−8 (Supplementary Data 7–9).

Polygenic risk scoring
To gain an understanding of the penetrance and pleiotropy of lung
cancer risk, we constructed polygenic risk scores (PRSs) based on the
ILCCO summary statistics7 for every EA subject in MVP. As expected,
the PRS was highly associated with both lung cancer risk as well as
smoking behavior (Supplementary Fig. 7a, b). Even after removing
individuals with any history of lung cancer risk to prevent the enrich-
ment of risk factors and comorbidities, the association with smoking
behavior remained, suggesting that the PRS is partially capturing
genetic smoking behavioral risk factors (Supplementary Fig. 7c). In all
groups, individuals at the top decile of the PRS were at significantly
higher risk of lung cancer than those in the lowest decile.

Multi-trait conditional analysis for smoking status
Despite adjusting for smoking status, both in MVP EA and ILCCO7, a
significant genetic correlation was observed between all subsets of
lung cancer GWAS and a recently published GWAS of smoking
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Fig. 1 | Highlighted novel GWAS loci. a–dGWASof squamous cell lung carcinoma
(LUSC) in European ancestry (EA)meta-analysis identifies a novel locus at 10q24.31.
a Odds ratios and 95% confidence intervals for rs36229791 in LUSC compared to
lung adenocarcinoma (LUAD) and overall lung cancer. Inset p-values were obtained
from a fixed-effect inverse variance-weighted meta-analysis. b BLOC1S2 expression
varies by genotype at rs36229791 inGTEx v8 Lung tissue samples. t-test was utilized
and a two-sided p-value is shown. The center box plot line represents the median
(50th percentile). The box edges are the 25th and 75th percentiles (interquartile
range; IQR). Whiskers extend to the smallest and largest values within 1.5 times the
IQR. Source data are provided as a Source Data file. c BLOC1S2 eQTL t-statistic vs

LUSC z-statistic. d Regional association plot showing SNP significance and genes
around lead SNP rs36229791. Association p-values were obtained from a fixed-
effect inverse variance-weighted meta-analysis. The dashed line marks the thresh-
old for genome-wide significance (P = 5 × 10–8). Source data are provided as a
SourceDatafile. eTheAfrican ancestryGWAShighlights a putatively novel locus on
chr12 at LINC00944. The risk allele has effectively 0% frequency in EA. Association
p-values were obtained from a two-sided test of the z-statistic, calculated using
logistic regression. The dashed line marks the threshold for genome-wide sig-
nificance (P = 5 × 10–8).
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behaviors34 (Fig. 2a, Supplementary Data 11). In order to remove all
residual effects of smoking on lung cancer susceptibility, we con-
ducted a multi-trait-based conditional and joint analysis (mtCOJO)35,36,
conditioning on a GWAS for cigarettes per day34, which was the
smoking trait most strongly correlated with overall lung cancer and
subtype GWAS from the EA meta-analysis. Because lung cancer case
selection also preferentially selects smokers, conventional adjustment
for smokingmay inadvertently cause selection bias,which functions as
a collider to induce biased genetic effects37. mtCOJO is considered
more robust to potential collider bias than conventional covariate
adjustment35,36. The total observed-scale SNP-heritability38 of lung
cancer risk decreased substantially after conditioning on cigarettes
per day, from 5.4% to 3.1% in overall LC, from6.7% to 5.5% in LUAD, and
from 5.8% to 3.8% in LUSC (Fig. 2b; Supplementary Data 12).

Significant loci from the conditional analyses are shown in Sup-
plementary Figs. 8 and 9 and Supplementary Data 13–15. As expected,
the statistical significance of loci harboring smoking-related genes
(e.g., CHRNA5, CYP2A6, CHRNA4) dropped to below genome-wide

significance after conditioning (Fig. 3). Conversely, five signals (four
loci) became significant only after conditioning, including novel sig-
nals at MMS22L in overall lung cancer and 19p13.1 (ABHD8) in LUSC.
MMS22L is a novel GWAS signal but was previously identified as over-
expressed in lung cancer in a genome-wide gene expression scan39.
Thesemay represent biological lung cancer signals partiallymaskedby
countervailing genetic effects on smoking behavior. We performed
fine-mapping to identify candidate causal variants in the conditioned
EA meta-analysis summary statistics, and for overall lung cancer,
LUAD, and LUSC, we identified 11, 15, and 6 high-quality credible sets,
respectively, containing a total of 243, 277, and 78 SNPs (Supplemen-
tary Data 5).

We constructed PRS based on mtCOJO-conditioned ILCCO
summary statistics7 to directly compare the predictive performance
of PRS derived from the conditioned and non-conditioned GWAS in
MVP EA. While the PRS based on the non-conditioned overall lung
cancer GWAS exhibited reduced performance in never-smokers
compared to ever-smokers, the PRSbased on the conditional analysis

Overall

LUAD

LUSC

Small

MVP European
ILCCO (2017)
Meta-Analysis

Overall

LUAD

LUSC

−1.0 −0.5 0.0 0.5 1.0

Genetic correlation rG (95% c.i.)Genetic correlation rG (95% c.i.)
−1.0 −0.5 0.0 0.5 1.0

Smoking Cessation Age of Initiation

a Smoking Initiation Cigarettes Per Day

b c

Fig. 2 | Association of lung cancer GWAS with smoking behaviors. a Genetic
correlations between the lung cancer GWAS and smoking behaviors, including
smoking initiation, cigarettes per day, smoking cessation, and age of initiation.
Error bands represent the 95% confidence interval of the genetic correlation point
estimates. b SNP heritability for the meta-analysis and conditional meta-analysis.
The heritability decreases in the conditional analysis for overall lung cancer as well
as both subtypes, suggesting that some portion of the heritability of lung cancer is

due to smoking behavior. Error bands represent the 95% confidence interval of the
SNP-heritability point estimates. c Polygenic risk scores (PRS) based on standard
lung cancer GWAS (blue) perform worse in never-smokers than former or current
smokers, while conditioning on smoking behavior (orange) results in similar per-
formance. Error bands represent the 95% confidence interval of the odds ratio (OR)
associated with a one standard deviation increase in PRS.
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Fig. 3 | Forest plot of genome-wide significant associations.Within each cancer
subtype, changes in effect size and significance are shown before and after con-
ditioning on cigarettes per day in the Europeanmeta-analysis cohort. Novel loci are
indicated by an asterisk after the gene name (*). Loci that became significant after

conditioning (P < 5 × 10−8) are in red. Ncases = 39,664; Ncontrols = 119,158. Association
p-values were obtained from fixed-effect inverse variance-weighted meta-analysis
of MVP European and ILCCO7 cohorts. The dashed line in −log10(p) marks the
threshold for genome-wide significance (P = 5 × 10–8).
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resulted in similar performance across smoking status (Fig. 2c; Sup-
plementary Data 16).

Replication of novel variants and combined meta-analysis
We queried the OncoArray Consortium Lung Study (OncoArray)8,40 as
an external non-overlapping replication dataset for our significant
GWAS signals (Supplementary Data 1, 17, and 18). For GWAS in the EA
meta-analyses for overall lung cancer, LUAD, and LUSC, we replicated
five of seven novel loci (P < 0.01) in an OncoArray European ancestry
cohort: XCL2 and TLE3 in overall lung cancer, MYC and TLE3 in LUAD,
and BLOC1S2 in LUSC. The novel African ancestry association for
overall lung cancer at LINC00944 was not replicated. We meta-
analyzed OncoArray European and African ancestry participants to
replicate our multi-ancestry meta-analysis signals (Supplementary
Fig. 10, Supplementary Data 18) for overall lung cancer at RPAP3
(P = 0.0044) and JADE2 which bordered on nominal significance
(rs329122; P = 0.053). For the two novel loci that were identified in the
EA meta-analysis conditioned on cigarettes per day, we included
smoking as a covariate for association analysis in the OncoArray Eur-
opean ancestry cohort. These association signals were replicated for
overall lung cancer at MMS22L (P =0.006) and LUSC at ABHD8
(P = 0.003). In a variant-level replication of 137 conditionally inde-
pendent discovery associations that fell within ≤1Mb of a previously
reported lung cancer GWAS signal, 134 had P < 0.05 in OncoArray, and
42 had P < 5 × 10−8 (Supplementary Data 19).

We then performed a combined meta-analysis of our discovery
results with OncoArray replication results (Supplementary Data 19). We
considered a conservative threshold of P<4.17 × 10−9 (P< 5× 10−8/12
total GWAS analyses) to be significant, which wasmet by 9 of the 12 loci.
Because rs329122 in JADE2 achieved the more conservative significance
threshold (P=3.69× 10−9), and has also been associated with smoking
behavior32 and identified as a splicing-related variant associated with
lung cancer41, we considered this locus to be replicated. In the combined
meta-analysis we observed similar P-values in fixed effects and random
effects (RE2) models.

Next, for all previously reported lung cancer and subtype loci in
this study, we identified lung cancer associations from the GWAS
Catalog which fell within the same loci as our index variants (Supple-
mentary Data 20). We confirmed two loci that previously had been
reportedonly in a recent genome-wide associationbyproxy (GWAx) of
lung cancer42: CENPC (rs75675343) in overall lung cancer in the EA
meta-analysis (P = 2.40 × 10−8) and the multi-ancestry meta-analysis,
and TP53BP1 in overall lung cancer in the multi-ancestry meta-analysis
(rs9920763; P = 1.63 × 10−8). Our multi-ancestry meta-analysis for
overall lung cancer also confirmed a recently reported locus at 4q32.2
(NAF1)15 in EAS.

Multi-trait analysis with breast cancer
At 19p13.1, a knownpleiotropic cancer locus43,44, the index SNPof LUSC
conditioned on smoking (rs61494113) sits in a gene-rich regionwhere a
recent fine-mapping effort of breast cancer risk loci45 proposed two
independent associations, one affecting the regulation of ABHD8 and
MRPL34, and another causing a coding mutation in ANKLE1. Here, we
used the increased power provided by a multi-trait analysis of GWAS
(MTAG)46 of LUSC and estrogen receptor negative (ER−) breast
cancer47 to disentangle the complex relationships between cancer risk
and thegenes in this locus (Fig. 4a).OverexpressionofABHD8hasbeen
shown to significantly reduce cell migration43,44. Similar odds ratios at
rs61494113 were observed across LUSC and breast cancer, and MTAG
enhanced the GWAS signal at this locus (Fig. 4b).

We used the coloc-SuSiE method48 to assess colocalized associa-
tions between pairs of credible sets in this locus underlying the risk of
LUSC and ER− breast cancer, allowing for multiple causal signals. We
found evidence for a shared causal signal between credible sets in the
LUSCconditionalmeta-analysis andER−breast cancer (97.7%posterior

probability; Supplementary Data 21). The index SNPs for the credible
sets of LUSC conditioned on smoking and ER− breast cancer
(rs61494113 and rs56069439, respectively) have r2 = 0.99.

The eQTL effect of ABHD8 was replicated in multiple tissues of
GTEx v8, including Lung (Fig. 4c). Interestingly, the group of SNPs in
the LUSC-BCcredible set did nothave themost significant eQTL effect,
suggesting a complex relationship between the multiple causal var-
iants at the locus and gene expression (Fig. 4d). For instance, a recent
splice variant analysis49 implicated splicing of BABAM1 (a BRCA1-
interacting protein) as a culprit of the associations observed in 19p13.1.
Consistent with previous reports43,44, the cancer risk-increasing hap-
lotype was correlated with increased expression of ABHD8 and alter-
native splicing ofBABAM1. However, there was no overlap between the
95% eQTL credible sets of ABHD8 and BABAM1, and neither of the
credible sets included rs61494113.

Phenome-wide association study
Finally, to investigate the pleiotropy of lung cancer genetic risk in the
absence of the overwhelming effect of smoking behavior, we per-
formed phenome-wide association studies (PheWAS) inMVP using the
PRS scores constructed from the ILCCO summary statistics7 for overall
lung cancer, both based on the standard GWAS (“unconditioned PRS”;
Fig. 5a; Supplementary Data 22) and the GWAS conditioned on cigar-
ettes per day using mtCOJO (“conditioned PRS”; Fig. 5b; Supplemen-
tary Data 23). Each PRS was tested for association with 1772 phecode-
based phenotypes. Overall, 240 phenotypes were associated with the
unconditioned PRS and 112 were associated with the conditioned PRS
at a Bonferroni-corrected significance threshold (P < 0.05/1772).
Although lung cancer remained a top association with the conditioned
PRS, the association with tobacco use disorder was greatly reduced,
from anOR associated with a standard deviation increase in the PRS of
1.151 [1.142–1.160] (P = 2.32 × 10−237) in the unconditioned PRS to OR=
1.046 [1.038–1.053] (P = 1.05 × 10−32) in the conditioned PRS. However,
the effect on alcohol use disorder was only modestly attenuated
between the unconditioned (OR = 1.098 [1.089–1.108]; P = 1.05 × 10−87)
and conditioned LC (OR = 1.078 [1.069–1.088], P = 4.41 × 10−60) PRSs.
Whether a role for alcohol in lung cancer exists independently of
smoking is controversial50,51; this analysis suggests that may be the
case. Other putatively smoking-related associations, such as chronic
obstructive pulmonary disease, pneumonia, and peripheral vascular
disease were greatly diminished with the conditioned PRS. Mood dis-
orders, depression, and post-traumatic stress disorder were also sig-
nificantly associated with the unconditioned PRS but no longer
significantly associated with the conditioned PRS, reflecting neu-
ropsychiatric correlates of smoking behavior.

Intriguingly, a category of metabolic traits that were not asso-
ciated with the unconditioned PRS was highly associated with the
conditioned PRS and in a negative effect direction. We observed pro-
tective associations of the conditioned PRS with metabolic traits such
as type 2 diabetes (OR =0.945 [0.938–0.952], P = 9.46 × 10−52) and
obesity (OR =0.952 [0.945–0.959], P = 2.48 × 10−41). Neither were
associated with the unconditioned PRS (OR = 1.006 [0.999–1.014];
P =0.092, andOR= 1.005 [0.998–1.012]; P = 0.183, respectively). Other
traits in this category included sleep apnea and hyperlipidemia. These
findings are consistent with prior observational findings of an inverse
relationship between BMI and lung cancer52 and illustrate the extent to
which smoking may be a major confounder of this relationship.

Finally, we observed strong associations of the lung cancer PRS
with skin cancer and related traits, such as actinic keratitis. In basal cell
carcinoma, the OR increased from 1.087 [1.072–1.102] (P = 6.06 × 10−32)
with theunconditionedPRS to 1.105 [1.090–1.120] (P = 1.82 × 10−47)with
the conditioned PRS. As a sensitivity analysis, we tested the strength of
this association after removing the TERT locus, which is prominently
associated with both traits. Doing so only modestly reduced the effect
of the conditioned PRS to OR= 1.092 [1.077–1.107] (P = 4.08 × 10−36).
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Thus, our results are consistent with a genome-wide genetic correla-
tion between lung cancer andbasal cell carcinoma that is strengthened
when the effect of smoking is removed. Overall, our results suggest
that the biology underlying lung cancer risk may be partially masked
by the residual genetic load of smoking.

Discussion
We identified novel lung cancer-associated loci in a new cohort of EA
andAAparticipants, including the largest AA cohort analyzed todate.
We also show that, despite studies on the genetic basis of lung cancer
risk taking smoking status into account, the effects of smoking
continue to obfuscate our understanding of lung cancer genetics. In
particular, we report two novel loci, at MMS22L (overall) and ABHD8
(LUSC), which may be partially masked by countervailing genetic
effects on smoking. Our replication analysis which adjusted for
smoking pack-years confirmed these loci. Additionally, our analyses
demonstrated that PRSs for lung cancer contain large uncorrected
genetic loading for smoking behavioral factors. Our results indicate
that controlling for these factors can improve risk assessment
models, potentially improving lung cancer screening even for non-
smokers. Finally, our phenomic scans comparing PRSs derived from
GWAS with and without genomic conditioning on smoking showed
divergent associations across numerous traits, especially metabolic
phenotypes.

The increased sample size in this study enabled the interpretation of
multiple causal variants underlying the gene-rich ADHL8-BABAM1 region,
synthesizing prior observations into a clearer understanding of this
locus. Our other novel loci strengthen established lung cancer mechan-
isms. We identify for the first time a susceptibility locus at MYC, a well-
known oncogene and master immune regulator. XCL2 is involved in
cellular response to inflammatory cytokines53. LSAMP is a tumor sup-
pressor gene in osteosarcoma54, and 3q13.31 homozygous deletions have
been implicated in tumorigenesis55. TLE3 is a transcriptional corepressor
involved in tumorigenesis and immune function56. The transcription
factor TULP3 has been implicated in pancreatic ductal adenocarcinoma
and colorectal cancer57. XCL2, NMUR2, and TULP3may also be related to
cancer progression via G-protein-coupled receptor (GPCR) signaling
pathways58. JADE2 expression has been experimentally linked to NSCLC59

and has been identified in GWAS of smoking behavior34. Finally, DNA
damage repair genes are implicated, including RPAP3, an RNA poly-
merase that may be involved in DNA damage repair regulation60, and
MMS22L which repairs double-strand breaks61.

Although smoking is the major risk factor for lung cancer, it is
important to clearly disentangle the effect of smoking to fully under-
stand the complex genetic and environmental causes of the disease.
Our approach enables the development of new polygenic scores,
which can improve precision medicine applications for lung cancer in
both smokers and nonsmokers.
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Fig. 4 | Significant locus after conditioning on smoking behavior, 19p13.11, has
pleiotropic associations with ER-negative breast cancer. a Regional association
plot of the 19p13.11 multi-trait analysis of GWAS (MTAG) locus. P-values are derived
from the two-tailed MTAG test. The dashed line marks the threshold for genome-
wide significance (P = 5 × 10–8). b Odds ratios and 95% confidence intervals for lead
SNP rs61494113 in squamous cell lung carcinoma (LUSC), before and after con-
ditioning on cigarettes per day, compared to lung adenocarcinoma, overall lung
cancer, and MTAG analysis with estrogen receptor-negative (ER−) breast cancer.

c ABHD8 expression varies by genotype at rs61494113 in GTEx v8 Lung tissue
samples. t-test was utilized and a two-sided p-value is shown. The center box plot
line represents the median (50th percentile). The box edges are the 25th and 75th
percentiles (interquartile range; IQR). Whiskers extend to the smallest and largest
values within 1.5 times the IQR. Source data are provided as a Source Data file.
d ABHD8 eQTL t-statistic vs LUSC z-statistic; red X’s indicate the 95% credible set.
Source data are provided as a Source Data file.
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Methods
Ethics/study approval
The VA Central Institutional Review Board (IRB) approved the
MVP000 study protocol. Informed consent was obtained from all

participants, and all studies were performed with approval from
the IRBs at participating centers, in accordance with the
Declaration of Helsinki. Only previously generated data were
analyzed in this study.
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Fig. 5 | Phenome-wide association study (PheWAS) of polygenic risk scores
(PRS) of lung cancer and lung cancer conditioned on cigarettes per day.
a PheWAS of PRS on lung cancer is mostly confounded with smoking associations.
b PheWASof the conditionalmeta-analysis PRS shows associationswith skin cancer

and metabolic traits. Association p-values were obtained from a two-sided test of
the z-statistic, calculated using logistic regression. The red line in each plot indi-
cates Bonferroni-corrected significance (P = 2.8 × 10–5).
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Cohort definition
Patients were identified from MVP participants19 utilizing clinical
information available through the United States Department of
Veterans Affairs (VA) Corporate Data Warehouse (CDW) with ICD
codes for primary lung cancer. Occurrences of the ICD-9 codes 162.3,
162.4, 162.5, 162.8, and 162.9 or the ICD-10 codes C34.10, C34.11,
C34.12, C34.2, C34.30, C34.31, C34.32, C34.80, C34.81, C34.82, C34.90,
C34.91, and C34.92 were used in case identification. Patients with
secondary lung cancer were excluded from the cohort using ICD-9/10
codes 197.x, C78.00, C78.01, and C78.02. Additional patients were
identified in the VA Cancer Registry using the ICD-O site, including
lung/bronchus, other respiratory system or intrathoracic organs, or
trachea. The Cancer Registry was also used to determine the lung
cancer subtypes LUAD and LUSC among cases.

Preliminary totals of 18,633 and 10,845 patients with MVP parti-
cipation were identified from the VA CDW and Cancer Registry,
respectively. A combined cohort of 20,631 unique patients was gen-
erated for further analysis. The cohort was predominantly male (~95%)
with a median age of 64–68 for sub-cohorts, depending on ancestry
assignments and cancer subtypes. The cohort was curated further to
remove any participant with missing data. The final cohorts are
described in Supplementary Data 1.

Once patients were identified from VA’s CDW and Cancer Reg-
istry, cases were used to gather records related to age, sex, smoking
status, and ancestry. Smoking status included former, current, and
never, based on the MVP survey at the time of enrollment and on
electronic medical records. Ancestry was defined using a machine
learning algorithm that harmonizes self-reported ethnicity and genetic
ancestry (HARE)62. All analyses described here were performed on
patients of EA or AA ancestry in ancestry-stratified cohorts. Addition-
ally, the cohorts were further stratified by lung cancer subtypes for
analysis. Matched controls were selected based on age, gender,
smoking status, and HARE assignments. Age was binned into 5-year
intervals for this purpose.

Genotyping and principal component analysis
Genotyping and quality control were conducted as described
previously63. Briefly, we removed all samples with excess hetero-
zygosity (F statistic < −0.1), excess relatedness (kinship coefficient ≥0.1
with 7 or more MVP samples), and samples with call rates <98.5%.
Additional samples with a mismatch between self-reported sex and
genetic sex were removed.

Principal component (PC) analysis was conducted as described
previously63. Briefly, PCs were generatedwith PLINK 2.064 (v2.00a3LM)
using a pruned set of SNPs (window size 1Mb, step size 80, r2 < 0.1,
minor allele frequency (MAF) < 0.01, Hardy–Weinberg equilibrium
P < 1 × 10−10, missingness rate < 10%) within unrelated European ances-
try (EA) and African ancestry (AA) individuals. (Unrelated individuals
were defined as greater than third-degree relatives.) PCs were then
projected onto related individuals.

Imputation
Prior to imputation, a within-cohort pre-phasing procedure was
applied across the whole cohort by chromosome using Eagle265.
Imputation was then conducted on pre-phased genotypes using
Minimac466 and the 1000 Genomes Phase 3 (v5) reference panel67 in
20Mb chunks and 3Mb flanking regions. The quality of imputation
was then re-computed in EA and AA separately to be used as filters for
respective GWAS (Minimac Rsq or INFO >0.3). An MAF cutoff of
>0.001 was applied for all analyses. Imputed loci reaching genome-
wide significance were tested for deviation from Hardy–Weinberg
equilibrium (HWE) in 61,538 EA controls (Supplementary Data 24). Of
the 93 conditionally independent SNPs across the GWAS analyses, 6
SNPs had a significant (P < 1 × 10−6) HWE signal; unsurprisingly, the
strongest HWE signal was from SNPs in the Major Histocompatibility

Complex region. However, none of the 12 novel loci reported inTable 1
significantly deviated from HWE.

Association analyses
For the EA lung cancer overall and subtype GWAS, we performed
standard logistic regression using PLINK 2.0 (v2.00a2LM)64 with a
matched control design. EA GWAS was performed in unrelated indi-
viduals, defined as greater than third-degree relatives. For the AA lung
cancer overall and subtype analyses, because the case numbers were
smaller, we performed a mixed-model logistic regression using
REGENIE (v1.0.6.7)68; REGENIE applies a whole-genome regression
model to control for relatedness and population structure and
includes a Firth correction to control for bias in rare SNPs as well as
case-control imbalance. GWAS covariates for each ancestry included
age, age-squared, sex, smoking status as a categorical variable (cur-
rent, former, never), and the first ten principal components. Partici-
pants withmissing smoking status (n = 786) were removed. Pearson’s r
was calculated for effect size concordance between MVP EA and
ILCCO7 cohorts.

EA meta-analysis
We performed inverse-variance weighted meta-analyses of MVP-EA
summary statistics and summary statistics previously reported by
ILCCO7 using METAL (v20100505)69 with scheme STDERR. Significant
inflation across GWAS and meta-analyses was not observed (all geno-
mic control values (λ) for GWAS in this study ≤1.15). Only variants
present in both studies were meta-analyzed. We further performed a
sensitivity analysis using the Han-Eskin random effects model (RE2) in
METASOFT v2.0.133.

Lung eQTL consortium
The lung tissues used for eQTL analyses were from human subjects
who underwent lung surgery at three academic sites: Laval University,
the University of British Columbia (UBC), and the University of Gro-
ningen. Genotyping was carried out using the Illumina Human1M-Duo
BeadChip. Expression profiling was performed using an Affymetrix
custom array (see GEO platform GPL10379). Only samples that passed
genotyping and gene expression quality controls were considered for
eQTL analysis, leaving sample sizes of 409 for Laval, 287 for UBC, and
342 for Groningen. Within each set, genotypes were imputed in each
cohort with the Michigan Imputation Server66 using the Haplotype
Reference Consortium70 version 1 (HRC.r1-1) data as a reference set,
and gene expression values were adjusted for age, sex, and smoking
status. Normalized gene expression values from each set were then
combined with ComBat71. eQTLs were calculated using a linear
regressionmodel and additive genotype effects as implemented in the
Matrix eQTL package inR72. Cis-eQTLswere defined by a 2Mbwindow,
i.e., 1Mb distance on either side of lung cancer-associated SNPs. Pre-
computed lung eQTLs were also obtained from the Genotype-Tissue
Expression (GTEx) Portal20. Lung eQTLs in GTEx (version 8) are based
on 515 individuals and calculated using FastQTL73.

Fine-mapping
We performed Bayesian fine-mapping of the genome-wide significant
loci from EA meta-analysis and AA using the FinnGen fine-mapping
pipeline74 (https://github.com/FINNGEN/finemapping-pipeline) and
the SuSiE R package (v0.9.1.0)25,26. Pairwise SNP correlations were
calculated directly from imputed dosages on European-ancestry MVP
samples from this analysis using LDSTORE 2.074. The maximum num-
ber of allowed causal SNPs at each locus was set to 10. Fine-mapping
regions which overlapped the major histocompatibility complex
(MHC; chr6:25,000,000–34,000,000) were excluded. High-quality
credible sets were defined as those with minimum r2 < 0.5 between
variants. The functional consequences of the AA credible set variants
were annotated using the Variant Effect Predictor (VEP)31.
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Replication analysis
External replication was performed for all genome-wide significant
associations in overall lung cancer, LUAD, and LUSC in OncoArray
Consortium Lung Study (OncoArray)8,40. Replication for genome-
wide significant multi-ancestry associations was performed in a
fixed-effects meta-analysis of OncoArray CEU Europeans for sig-
nificant EAmeta-analysis associations, and in a YRI AAmeta-analysis
composed of 5 studies8 for significant MVP AA associations. Meta-
analysis associations from this study were replicated against ameta-
analysis of these OncoArray groups; Pearson’s r was calculated for
effect size concordance between these groups. To replicate sig-
nificant variants from EA analysis conditioned on smoking, pack-
years was additionally included as a covariate in replication cohorts.
There was no participant overlap between the replication cohorts
and the ILCCO study7 used in the discovery scan. Covariates inclu-
ded the first five genetic principal components and participant
study sites. Proxy SNPs were used to replicate known associations at
rs75675343 (rs2318539/4:67831628:C:A; R2

EUR = 1) and rs4586884
(rs4435699/4:164019500:C:G; R2

EUR = 0.999).

Multi-ancestry meta-analysis
A multi-ancestry meta-analysis of MVP EA and AA cohorts with sum-
mary statistics previously reported by ILCCO7 was conducted in
METAL69 using an inverse variance-weighted fixed effects scheme.
Only variants present in two or more cohorts were meta-analyzed.
Index variants were defined using the two-stage “clumping” procedure
implemented in the Functional Mapping and Annotation (FUMA)
platform75. In this process, genome-wide significant variants are col-
lapsed into LD blocks (r2 > 0.6) and subsequently re-clumped to yield
approximately independent (r2 < 0.1) signals; adjacent signals sepa-
rated by <250kb are ligated to form independent loci. Novel variants
are defined as meta-analysis index variants located >1Mb from pre-
viously reported lung cancer associations. We additionally performed
a sensitivity analysis using the random effects model (RE2) in META-
SOFT v2.0.133.

Polygenic risk score (PRS) calculation
We constructed PRSs based on the ILCCO summary statistics7 and the
conditional meta-analysis of ILCCO adjusted for cigarettes per day34

for every EA subject in MVP. We used PRS-CS76 to generate effect size
estimates under a Bayesian shrinkage framework and then used PLINK
2.0 (v2.00a3LM)64 to linearly combine weights into a risk score using a
global shrinkage prior of 1 × 10−4, which is recommended for less
polygenic traits. Finally, scores were normalized to a mean of 0 and a
standard deviation of 1.

Multi-trait analyses
In order to remove all residual effects of smoking on lung cancer
susceptibility, we conducted a multi-trait meta-analysis35 conditioned
on cigarettes per day, which was shown to be most significantly cor-
related with all lung cancer GWAS34. The meta-analysis was performed
on the EA meta-analysis summary statistics using mtCOJO, part of the
GCTA software package77. An LD reference was constructed from
50,000 MVP EA samples.

Multi-trait analysis of GWAS (MTAG)46 (v0.9.0) was applied using
genome-wide LUSC summary statistics after conditioning on cigar-
ettes per day, and estrogen receptor negative (ER−) breast cancer
summary statistics47 (21,468 ER− cases and 100,594 controls) which
were munged using LDSC (v1.01)38. Colocalization between LUSC
conditioned on cigarettes per day and ER− breast cancer allowing for
multiple causal signals was performed using the coloc-SuSiE method48

of coloc (R; v5.2.1)78 for variants at ABHD8 (chr19: 17,350,000 to
17,475,000). A posterior probability >0.9 for Hypothesis 4 was used as
the criteria for colocalization.

Heritability and genetic correlations
Linkage Disequilibrium score regression (LDSC) v1.0.1 was used to
calculate observed-scale SNP-heritability38 using lung cancer and sub-
types summary statistics, before and after conditioning on cigarettes
per day. Pairwise genetic correlations were estimated between lung
cancer and subtypes fromMVP, ILCCO7, andEAmeta-analysis, and four
smoking traits (smoking initiation, cigarettes per day, smoking cessa-
tion, and age of initiation)34.

Conditional and joint SNP analysis
To find independently associated genome-wide significant SNPs at
each locus in a stepwise fashion, we used GCTA-COJO77 using the
--cojo-slct option. An LD reference was constructed from 50,000MVP
EA samples. Variants withMAF <0.01 in theCOJO reference panel were
not included in the identification of independent signals. LDTrait79 was
queried to identify previously published significant GWAS variants
within 1Mb of our index variants in all populations. Novel loci were
defined as those at which the index variant was located >1Mb from
previously reportedgenome-wide significant lead SNPs for lung cancer
or its subtypes in any ancestry.

Phenome-wide association study (PheWAS)
We conducted a PheWAS of electronic health record-derived phe-
notypes and lab results in EA subjects using either the normalized
PRS as the predictor or independently associated genome-wide
significant SNPs. Comparison of unconditioned PRS PheWAS and
conditioned PRS PheWAS were based on ILCCO summary statistics7

and used MVP EA as the out-of-sample test set. Associations were
tested using the R PheWAS package80 (v0.1) with QC procedures
described previously81. Control and sex-based exclusion criteria
were applied.

Statistics and reproducibility
Samples sizes for the case-control status of overall lung cancer,
LUAD, and LUSC in MVP participants are provided in Supplementary
Data 1. EA GWAS meta-analysis was performed across lung cancer
and its subtypes using MVP and an external cohort, ILCCO7, com-
prised of up to 39,664 cases and 119,158 controls (Supplementary
Data 1). GWAS replication and combined meta-analysis were per-
formed using an external OncoArray8,40 cohort made up of 19,404
cases and 17,378 controls (Supplementary Data 1); these participants
had no overlap with ILCCO7. All statistical tests were two-tailed linear
or logistic regressions unless otherwise noted. Nominal significance
was defined as P < 0.05. In hypothesis-free scans, we applied strict
significance thresholds to account for multiple hypothesis testing.
For GWAS analyses, the standard genome-wide significance thresh-
old (P < 5 × 10−8) was used. In PheWAS analyses, we applied
Bonferroni-corrected significance thresholds. All P-values are pre-
sented without adjustment for multiple hypotheses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full summary level association data from the individual population
analyses in MVP are available via the dbGaP study accession number
phs001672. ILCCO7 summary statistics can be found in GWAS Catalog
accession numbers GCST004748, GCST004744, and GCST004750.
OncoArray Consortium8,40 summary statistics used for replication can
be found in dbGaP study accession number phs001273. GTEx v8 lung
eQTL summary data were accessed on the GTEx portal [https://
gtexportal.org]; full data are available via the dbGaP study accession
number phs000424.v8.p2. Source data are provided with this paper.
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Code availability
This study did not use any custom computer code or algorithms to
generate results. All software tools used in this analysis were open
source.
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