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Environmental factors amplified by climate change contribute significantly to the global burden of
disease, disproportionately impacting vulnerable populations, such as individuals with rare diseases.
Researchers require innovative, dynamic data linkage methods to enable the development of risk
prediction models, particularly for diseases like vasculitis with unknown aetiology but potential
environmental triggers. In response, we present the Semantic Environmental and Rare Disease Data
Integration Framework (SERDIF). SERDIF was evaluated with researchers studying climate-related
health hazards of vasculitis disease activity across European countries (NP1 = 10, NP2 = 17, NP3 = 23).
Usability metrics consistently improved, indicating SERDIF’s effectiveness in linking complex
environmental and health datasets. Furthermore, SERDIF-enabled epidemiologists to study
environmental factors in a pregnancy cohort in Lombardy, showcasing its versatility beyond rare
diseases. This framework offers for the first time a user-friendly, FAIR-compliant design for
environment-health data linkagewith export capabilities enabling data analysis tomitigate health risks
posed by climate change.

Environmental exposures amplifiedby climatechange canhave a significant
and increasing impact on human health that extends across geographical,
cultural, and socioeconomic boundaries, contributing to a global burden of
23% of disability-adjusted life years (DALYs)1,2. The exposures’ impact
varies across and within countries, populations and individuals due to their
variety of genetic baselines, magnitudes of exposure and windows of
susceptibility3–6. For example, early life exposures can result in short-term
effects on health or accumulate and promote the development of diseases in
later stages of life7,8. However, epidemiological studies that aim to predict
and mitigate climate change impacts on public health need to overcome a
complexdata linkageprocess,wherepatient events are tracked throughboth
location and time, linking key information in environmental and health
datasets are linked9–11. Linking data is particularly challenging in rare disease
research due to the need to connect geospatially sparse health events over a
wide area (e.g. multiple counties, regions or countries) from heterogeneous
data sources12,13. This is necessary to overcome the challenges posed by the
low individual prevalence and the limited information available for each
disease. In addition, the lack of shared unique identifiers between clinical
and environmental datasets introduces technical complexities that require a

linkage model to reconcile the differences in temporal and spatial granu-
larity. Researchers need a clear provenance record to accurately integrate
diverse datasets to achieve sufficient sample sizes for analysis and ensure the
results are interpretable. This record is essential whenmultiple people work
on the integrated dataset, serving as the key reference for everyone involved.
This is the case of EU Horizon 2020-funded projects like the HEalth data
LInkage for ClinicAL Benefit (HELICAL) project, where datasets within an
interdisciplinary consortium need to be linked to gain new biological
insights for autoimmune vasculitides14. For these reasons, environmental
health studies will benefit from effective data linkage approaches to generate
linked datasets that are usable in a research context.

The challenge of achieving effective data linkages has been successfully
addressed in other domains, such as enterprise, retail, bioinformatics,
biology, life sciences, public sector, etc.—as Hogan, A. 2020 nicely sum-
marised in his article, by using aKnowledgeGraph (KG) approach based on
Semantic Web technologies15. This graph approach provides a harmonised
data model with semantics making the data understandable and usable for
both humans and software agents working on their behalf while enhancing
efficiency, transparency and provenance when establishing new data

1ADAPT Centre for Digital Content, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland. 2Health Data Science Centre, Fondazione
Human Technopole, Milan, Italy. 3Trinity Kidney Centre, Trinity College Dublin, The University of Dublin, Trinity Translational Medicine Institute, Dublin, Ireland.
4Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.

e-mail: albert.navarro@fht.org

npj Digital Medicine |           (2024) 7:274 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01267-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01267-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-024-01267-6&domain=pdf
http://orcid.org/0000-0002-2336-753X
http://orcid.org/0000-0002-2336-753X
http://orcid.org/0000-0002-2336-753X
http://orcid.org/0000-0002-2336-753X
http://orcid.org/0000-0002-2336-753X
http://orcid.org/0000-0001-9561-4635
http://orcid.org/0000-0001-9561-4635
http://orcid.org/0000-0001-9561-4635
http://orcid.org/0000-0001-9561-4635
http://orcid.org/0000-0001-9561-4635
http://orcid.org/0000-0001-8837-5250
http://orcid.org/0000-0001-8837-5250
http://orcid.org/0000-0001-8837-5250
http://orcid.org/0000-0001-8837-5250
http://orcid.org/0000-0001-8837-5250
http://orcid.org/0000-0001-6185-8607
http://orcid.org/0000-0001-6185-8607
http://orcid.org/0000-0001-6185-8607
http://orcid.org/0000-0001-6185-8607
http://orcid.org/0000-0001-6185-8607
http://orcid.org/0000-0001-6003-397X
http://orcid.org/0000-0001-6003-397X
http://orcid.org/0000-0001-6003-397X
http://orcid.org/0000-0001-6003-397X
http://orcid.org/0000-0001-6003-397X
http://orcid.org/0000-0003-1090-3548
http://orcid.org/0000-0003-1090-3548
http://orcid.org/0000-0003-1090-3548
http://orcid.org/0000-0003-1090-3548
http://orcid.org/0000-0003-1090-3548
mailto:albert.navarro@fht.org
www.nature.com/npjdigitalmed


linkages. In the context of environmental health, the application of KG
approaches presents a novel frontier, where the development of a usable
framework to guide the implementation of these technologies for health
data researchers could reduce the technical complexities that are typically
associated with data linkage tasks.

In this paper, we present a framework to enable health data researchers
to efficiently link environmental and health data sources through location
and time information, named the Semantic Environmental and Rare Dis-
ease Data Integration Framework (SERDIF). The proposed framework
enables researchers to establish new links and construct datasets ready to be
used for analysis and published following open science best practices, in line
with the FAIR principles of Findability, Accessibility, Interoperability and
Reusability (FAIR)16. As such, SERDIF is presented here as an interoperable,
usable and open framework that can support health research that involves
environmental perspectives in a manner that will support new insights for
public health. This framework addresses the rare disease-specific challenge
of ensuring clarity when linking data from multiple sources with different
temporal and spatial units by maintaining a provenance record accessible
for both machines and humans. This paper focuses on the final version of
the SERDIF framework, shaped by the input of researchers studying pae-
diatric and adult vasculitis in multiple countries within Europe.

Results
To aid clarity of presentation of results, this section is structured following
the four steps of a user-centred design17: a description of how the users may
use SERDIF for their research (context of use), the identificationof the expert
user requirements (expert user requirements), the development of a refined
framework for data linkage based on expert requirements (data linkage
framework), and the usability testing results as evidence for the achievement
of the requirements (evaluation against requirements). Then, validation use
cases using real-world data are presented as successful stories, showcasing
the practical application and effectiveness of the proposed approach com-
pared with traditional methods.

Context of use
Health and environmental data are complex within their own domain, but
the complexity can be even higher for domain experts when linking these
diverse types of data. The common data elements between health and
environmental observations are time and location information. However,
no direct relationship exists unless the temporal resolution, collected data-
sets, and geospatial area match precisely. Flexible linkages, informed by
domain experts, are essential betweendatasets to support specific analyses in
each use case. The complexity of the initial data sources related to the use
cases (P1, P2 and P3) that required an effective data linkage method is
highlighted in Table 1. In addition, each of the data sources in this table was
accompanied by a set of metadata information that is not included in
the table.

Expert user requirements
The initial set of expert user requirements was gathered from research
meetings and through undertaking a consensus process with health data
researchers in a preliminary study18. The initial requirementswere refined in
an iterative manner over the three phases of the usability study (P1, P2 and
P3), which resulted in the following requirements.

Requirement 1: Enable health data researchers to query environmental
data associated with relevant/own individual health events through location
and time, within the area of the event and a period of data before the event.

Requirement 2: Support the understanding of event-environmental
linked data and metadata, with its use, limitations, and data protection risk
for individuals, by using a simplified view focused on the data linkage
process with optional further information.

Requirement 3: Export event-environmental linked (meta)data to be
used as input in statistical models for data analysis (CSV) and for publica-
tion (CSV, RDF).

SERDIF data linkage framework
The framework was designed to facilitate the data integration step for
researchers in health-environmental workflows (Fig. 1). The framework is a
combination of tools and processes to enable researchers to effectively link
health andenvironmental datausing aKGapproach. In this context, “enable
effective data linkage” refers to providing the means for researchers to (a)
make their datasets interoperable, (b) create queries to link datasets to a
particular event basedon the spatial and temporal aspects of thedata, and (c)
export a transformed view of the linked data in a usable format for humans
and machines.

The framework has three components: methodology, Knowledge
Graph (KG), and User Interface (UI). The Methodology component
describes a series of steps to facilitate the process of making data inter-
operable and usable for researchers while requiring and promoting the
collaboration between domain experts and knowledge engineers. The
SERDIF methodology steps from a technology-independent perspective
and guidance for each of the methodology steps is provided based on the
experience of the authors during the implementation of SERDIF (Table 2).

The KG component addresses the data interoperability aspect by
uplifting the tabular datasets to standard graphs, importing these graphs to a
database, and exposing an API for researchers to run queries against the
constructedKG. In particular, theW3C implementation of SERDIF (steps 2
and 3 in Table 2) structures data in RDF format with a standard
subject–predicate–object triples representation of data (Box 1). Researchers
can formulate SPARQL queries to link, retrieve and manipulate this RDF
data, leveraging the flexibility and power of this query language to extract
meaningful insights (Supplementary Fig. 1). In addition, the KG provides
themeans to explain the linkage process between health and environmental
data basedon researchers’ input, with a view to enhancing theuse of the data
within appropriate contexts.

Table 1 | Summary of the initial data sources to highlight the complexity of the data used in this paper for the 2011-2021 period

Data type Format Size Variability Structure Temporal
resolution

Spatial coverage Phase

Disease registry Relational
database, RDF

16MB 668 patients Patient records Daily Ireland 1

National survey CSV 2MB 48 regions Single location time
series

Daily Japan 2

Disease registry Relational
database, RDF

33MB 1391 patients Patient records Daily Ireland, UK, Switzerland, Czech
Republic

3

Weather NetCDF, HTML, TXT 1 GB 9 variables Spatial grid time series Daily Europe 1–3

Air pollution CSV 32 GB 462 variables Single location time
series

Daily, monthly,
yearly

Ireland, UK, Switzerland, Czech
Republic

1–3

Administrative
areas

RDF 2MB 1782
geometries

Nested geometries _ Europe 1–3
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The UI component is a tool towards addressing usability of inter-
operable data from the KG component (Fig. 2). The UI makes the query
process intelligible for domain experts, the resulting linked data from the
query easier to understand given a specific context of use and provides
export functionality to retrieve the linked data for analysis and publication.

Evaluation against requirements
SERDIFwas evaluatedwith three real use cases that requiredmeaningful data
linkage of health and environmental data to validate hypotheses of envir-
onmental risk factors for rare diseases. The evaluation included a total of 30
different health data researchers studying adult and paediatric vasculitides,
ANCA-Associated Vasculitis (AAV) in Ireland (P1) and Europe (P3), and
KawasakiDisease (KD) in Japan (P2).Theusability studywas able todiscover
>90%of theusabilityproblems that canhappen10%of the time, given the last
pool of researchers (NP3 = 23)

19. Researchers were asked to complete a series
of data linkage tasks, refined throughout the three phases of the study fol-
lowing a think-aloud protocol while interacting with the SERDIF UI.

The progress of usability metrics (efficiency, effectiveness, and satis-
faction) across the three phases (P1–P3) is presented in Fig. 3. The efficiency
improved from a median of 40 to 28min between P2 and P3 for the data
linkage tasks (Fig. 3A). The effectiveness improved oncemore in Phase 3 as
denoted by the lower number of assists required per participants when
completing the data linkage tasks (Fig. 3B). The satisfaction identified from
the PSSUQ scales improved slightly from P2 (Fig. 3C). The usability pro-
blems decreased between phases as denoted by the themes and findings that
emerged after conducting a thematic analysis that combined the quantita-
tive andqualitative usabilitymetrics (SupplementaryTable 1). The potential
usefulness of SERDIF increased across phases, with more findings asso-
ciatedwith thismetric. Beyond thequalitativeprogress basedon thefindings
and references, the findings can be classified as usability problems or
potential usefulness categories to quantify their decrease and increase,
respectively. The decrease in usability problems results in P1 = 413 (73%),
P2 = 1306 (68%) andP3 = 631 (39%)despite increasing andgeneralising the
pool of researchers. The increase in potential usefulness results in P1 = 126
(23%), P2 = 624 (32%) and P3 = 985 (61%) (Supplementary Table 1).

Validation cases using real-world data
SERDIF was validated in three studies investigating the environmental
factors associated with (1) systemic vasculitides in the UK, (2) AAV in
Ireland and the UK, and (3) preterm birth in Lombardy (Italy).

1. Systemic vasculitides in the UK: Researchers explored the possibility of
linking environmental data (air pollution and weather data) with the
UK vasculitis registry. The aim of this linkage was to investigate the
short- and long-termeffect of historicalweather patterns (temperature,
wind and humidity) on the incidence of vasculitis. SERDIFwas used to
validate current traditional linkage methods towards improving the
efficiency in linking historic environmental data with patient data. A
key finding from this comparisonwas that SERDIF showed to be faster
and more robust in linking both the weather and air pollution data
through internal nearest neighbour stations using intersecting and
proximity polygons20. The linked datasets were ready to be used for the
development of disease predictive models to predict the impact of
climate change (e.g. distributed lag non-linear models), and more
specifically effects of previous weather patterns on disease
incidence21,22. Figure 4A presents an example of the type of modelling
outputs used to predict the lagged effect of weather variables on rare
disease incidence, as applied to the vasculitis registry in the UK.
Though the analyses were exploratory and the findings are not
generalisable, theyshowwhat’s possiblewhenappropriate andeffective
linkage tools and methodologies are applied to rare disease research.

2. AAV in Ireland and the UK: Researchers investigated the effect of
ultraviolet (UV) radiation and vitamin D on AAV relapse risk in Ire-
land, using ann-of-1 studydesign23. Individual-patient levelUVBdose,
captured at the highest spatial and temporal resolution to date, was
modelled. This required dynamic spatiotemporal linkage of UVB data
with health data from the Irish Rare Kidney Disease registry (Table 1)
as the patientmoved through space and time over their disease course.
The original linkage process applied in this study was complex and
labour-intensive. This was subsequently successfully replicated using
SERDIF. Similar to its application in the UK (above), SERDIF was
faster, more efficient and more user-friendly, while maintaining
accuracy. Figure 4B exemplifies the effectmodel output to demonstrate
how a patient-specific exposure can be associated with an increased
risk of relapse after an effective linkage process. SERDIF is currently
being leveraged to explore the effect of other climate-related health
hazards (including weather and pollution variables) on AAV risk in
Ireland, using a multi-modal approach.

3. Preterm birth in Lombardy: Researchers were able to conduct small
area-level linkages of layers of environmental observations to
population-based data on health outcomes in pregnancy and at birth

Fig. 1 | Role of SERDIF in researcher’s health-
environment workflow. This figure depicts the
integration of available data using SERDIF, posi-
tioned between study design and data analysis. It
highlights how SERDIF links datasets to facilitate
comprehensive analysis in the health-environment
workflow.
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from administrative health records (~70k births per year, 2012–2023)
inLombardy.This spatiotemporal linkage is enabling the identification
of environmental causes of preterm births (<37 weeks gestation),
assumed to be the main drivers of its unclear aetiology24. The
preliminary results of this case study were presented at the 12th
Congress of the Società Italiana di Statistica Medica ed Epidemiologia
Clinica (SISMEC) in 2023 (Fig. 4C).

Overall, researchers were able to efficiently link relevant weather and
pollution datasets from local environmental stations and satellites with
individual onset and relapse events of AAV patients from multiple patient
registries, and with pregnancy events from administrative data at a regional
level. Furthermore, SERDIF enabled the definition of a window of exposure
to study a period of increased vulnerability for the health of AAV patients
and pregnant women. The resulting linked exposure dataset for both pro-
jects included an interoperable distribution (RDF) ready to be deposited in
anopendata repository towardsmaking thedatasetFAIRcomplywithopen
sciencepractices.Anexampleof the resultingFAIRdatasets fromthe studies
ismade available in Zenodo, including anHTML report (Fig. 4C), RDFdata
and metadata graphs, and CSV datasets at different aggregation levels25.

Discussion
The usability study yielded a satisfactory outcome for SERDIF in meeting
the expert user requirements for efficiently linking health events and
environmental data in a rare disease context. This context required a usable,
interoperable and open data framework to support rare disease research on
climate resilience.

The interoperability aspect of the framework is given by using Web
standard knowledge graphs (Box 1), making the graph data model under-
standable for machines with shared semantics and standards. Semantics
provide enough context for machines to effectively interpret the intended

meaning of the data. This contributes to higher levels of interoperability and
scalability, addressing themost complex step for researchers inmaking data
FAIR26. This poses an advantage in data-rich disciplines like the health-
environment, enablingmachines to efficiently perform tasks beyondhuman
capability. Furthermore, the graph data model provided flexibility by
emphasising the generation of new relationships between data points, fos-
tering novel insights from existing data. This flexibility enables more
complex queries to be used for scientific research by generating query
templates that can infer relationships between health events and environ-
mental data based on location and time without a shared identifier.

The usability aspect of the framework was evaluated in a three-phase
study, with each phase involving the refinement of the expert user
requirements and theSERDIFcomponents.The summativeusability part of
the evaluation provided evidence for the improvement of the usability
(efficiency, effectiveness, and satisfaction) of SERDIF against previous
Phases (Fig. 3). The formative usability part of the evaluation (observational
findings) supported SERDIF in being usable for non-technical users and
potentially useful for health-environment researchers (Supplementary
Table 1).However, the combinationof some importantdata linkage features
and text descriptions being unclear and the lack of preparation from the
participants required guidance from the moderator to complete the tasks.
The mixed methods approach, combining thematic analysis with quanti-
tative metrics to support the findings and the transparency of the reporting
of these findings, provided an effective means to refine the framework
efficiently. The usability improvement throughout the study reinforces the
adequacy of the evaluation approach taken to evaluate the framework
against the three-user expert requirements and demonstrates the general
applicability of the framework within different health and environmental
data contexts.

The openness aspect of the framework is provided by following best
practices in open data publication in line with the FAIR principles16. The

Table 2 | SERDIF methodology technology independent steps and implementation annotated with design choices based on
World Wide Web standards (W3C), generally accepted methods (GAM) and usability evaluation results (UER)

Methodology steps Technology independent step and design choices Implementation

Step 0: Preparation Perform the design study phase in a health-environmental workflow, defining the strategy to answer a research question using empirical
data. The design study phase also requires a clear definition for the health events relevant to the study, and the permission to process the
health event’s location and date to link it with environmental data. Another important element is the definition of potential queries to help
explore the research question.GAM. Include the KG approach to link environmental datasets and health events through potential personal
information (event’s location and time) as part of the data processing strategy and compliance.

Step 1: Data collection Gather the available environmental datasets relevant to the research question of the study. The datasets are expected to have spatial and
temporal features, which are required for Step 3: Data linkage. GAM. Include dataset metadata with at least the information related to the
dataset descriptors (e.g. licence, title, version, temporal and spatial information and structure of the dataset), data provenance (e.g.
distribution and download url), data use, agents that downloaded the data (e.g. researcher, software and entity) and the definitions for the
environmental variables, including the units and source of information; and geometry data for relevant study areas

Step 2: Semantic uplift Design and execute rules on how to make the environmental datasets gathered in Step 1: Data collection interoperable. W3C. Define the
uplift mapping using the Relational database to RDF Mapping Language (R2RML) using the RDF Data Cube vocabulary (QB) for the data,
and Geographic Query Language for RDF Data (GeoSPARQL), PROV Ontology (PROV-O), Data Catalogue Vocabulary (DCAT) and Open
Digital Rights Language (ODRL) for metadata (Supplementary Fig. 1).W3C. Uplift environmental datasets to RDF graphs. W3C. Store the
RDF files resulting from the execution of the mapping and the semantic (meta)data vocabularies in a triplestore with GeoSPARQL support

Step 3: Data linkage Define a query template that links the environmental datasets within an area relevant to an event location and selects a period of data before
that event date. The query template has placeholders (or variables) for users’ input (Step 4: Data visualisation) and should be designed to be
generic enough to adapt to different data sources. W3C. Link datasets and events using a SPARQL query template with GeoSPARQL
(spatial) and xsd:dateTime (temporal) reasoning functionalities to establish new relationships adequate for each use case (Supplementary
Figure 2).

Step 4: Data interaction Design an initial User Interface (UI) to allow non- technical users to (i) input the minimum event data required to link with environmental
datasets, (ii) specify the user’s relevant data linkage variables for the query template defined in Step 3: Data linkage, and (iii) execute the data
linkagequery andexport the linkeddata andmetadatagenerated asadata table for analysis, a graph for publication andan interactive report
for exploration.UER.Design a simple UI on top of the KG focused on the data linkage process that allows for the input of health events with
minimum information for the spatiotemporal linkage, the selection of linkage options and the export of linked data and metadata as a data
table (CSV), graph (RDF) and interactive report (HTML).

Step 5: Usability evaluation Evaluate the usability and potential usefulness of the UI solution defined in Step 4: Data interaction in achieving the user requirements.
Conduct the evaluation in an iterative manner progressing from version to version until the user requirements are achieved.GAM.Combine
summative and formative conceptualisations of usability as evidence for achieving the expert requirements and using standard usability
metrics when possible.

The vocabularies and languages refer to W3C recommendations and standards using Semantic Web technologies.
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SERDIF implementation based on W3C standards produced a linked data
output as anRDFgraph ready forpublication.TheRDFoutput also includes
information about the origin of the dataset together with the processing
steps to generate the dataset (i.e. provenance metadata). Then, the
researcher can make FAIR by: (i) licensing the dataset, specifying the data
use, and (ii) defining the accessibility of the dataset and metadata when
deposited in an open data repository. The achievement of FAIR data
practices and goals can benefit future European and International projects
with data linkage tasks present in their agendas. These projects can follow
the technology-independent design of the methodology component of
SERDIF or adopt theW3C standard approach design choice based on their
goals and context. An offline and ready-to-use distribution of SERDIF was
made available to the community under the permissive and open-source
MIT licence: https://w3id.org/serdif. This distributionwould enable projects
with personal and/or sensitive data to work offline with a semi-automatic
process to effectively link the data based on user inputs. The offline dis-
tribution can only input environmental datasets in certain formats (.nc,
.grid, .csv and .tsv) with specific column names, as indicated in the user
interface, which was noted by researchers during the validation use cases
with real-world data.

SERDIF’s design and usability were shaped to provide an efficient
alternative to traditional data linkage methods for linking health and
environmental data, leveraging meaningful feedback from health data
researchers. These researchers, typically using ad-hoc approaches such as
SQL, Python, or R scripts with geospatial libraries, found SERDIF’s
knowledge graph (KG) approach to be a novel and efficient alternative. The
usability study revealed that SERDIF offers significant advantages in terms
of efficiency, effectiveness, and satisfaction compared to traditional meth-
ods, as evidenced by the feedback from both technical (i.e. data scientists or
technicians) and higher-level conceptual researchers (i.e. clinicians, epide-
miologists, and principal investigators). SERDIF enhances data linkage
workflows with its user-friendly interface, efficient processing, flexible
querying, and adherence to W3C standards. By using SPARQL and

knowledge graphs, the framework offers tailored queries for specific
research needs and standardises data linkage processes, ensuring con-
sistency across projects with multiple partners and diverse data sources.
Notably, state-of-the-art reviews highlight usability problems and structural
heterogeneity as major challenges in integrating heterogeneous health data,
recommending semantic web technologies like SERDIF to address these
issues27,28. The validation of SERDIF in three real-world studies demon-
strated its effectiveness in linking complex health and environmental data,
supporting the generation of predictive models and enabling the identifi-
cation of environmental influences on health outcomes.

The SERDIF framework requires researchers to define events with a
date and location to be linked with spatiotemporal observations from
environmental data. This affordable requirement makes the framework
adaptable for studying the environmental interaction from various diseases
and health events such as respiratory and cardiovascular diseases. In addi-
tion, SERDIF can potentially be applied a range of other fields, such as
analysing environmental impacts on animal or plant populations (ecolo-
gical), comparing survey perceptions with actual environmental conditions
(sociological), highlighting environmental injustices (political), and doc-
umenting air quality changes based on industry emissions (sustainability).
However, generalisability is limited by the spatiotemporal reasoning cap-
abilities ofW3Cstandards.While the standards cover temporal aspects such
as intervals, lags and date manipulation, spatial linkage is limited to
GeoSPARQL features29. Researchers should become familiar with GeoS-
PARQL capabilities during the Preparation step in the linkage process
(Table 2). The implementation of SERDIF requires collaboration between
health data researchers and KG experts to uplift the data to graphs and co-
design the linkage query templates. The semantic uplift process and defi-
nition of SPARQL queries (Box 1) require technical expert knowledge to
define the semantic models, execute the mappings and link the datasets
through location and time (Supplementary Figs. 1 and 2). Despite the
complexity associated with the implementation, the collaboration between
health data and KG experts improves the flexibility of the input data

Box 1 | Web standard knowledge graphs

Semantic Web technologies refer to the World Wide Web Consortium
(W3C) standards to support theWeb of data with the goal of making data
machine- and human-understandable45. The W3C developed the
resource description framework (RDF) as the standard graph datamodel
for data interchange and publication of information on the Web (i.e.
standard-based implementation of knowledge graphs). RDF data is
structured as a graph where real-world concepts are represented as
subject–predicate–object statements (triples), capable of describing any
type of data. The entities (subject) and relationships (predicate) of the
statements are identifiedwith UniformResource Identifiers (URI), and the

object entity is either a URI or a literal (of type string, date, integer, etc.).
RDF can use RDF schema (RDFS), the web ontology language (OWL)
languages to describe groups of related resources and relationships
between these resources and provide meaning (semantics) and logic
rules understandable by machines as vocabularies and ontologies. The
RDF SPARQL query language (SPARQL) can be used to express queries
across diverse data sources in RDF with the capabilities of querying
graph patterns for tasks such as data linkage, exploration, aggregation,
transformation, annotation, or validation tasks, to name a few.

Fig. 2 | Screenshot of the SERDIF UI displaying the data linkage steps. This screenshot displays the SERDIF user interface with the four data linkage steps: (1) deposit
environmental data, (2) upload health data, (3) define linkage options, and (4) export linked datasets.
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involved and the validity of the linkage undertaken. This contrasts with
other approaches in the health-environmental domain that use automated
linking, ontologymatching30 or interlinking approaches in this domain, but
without guaranteeing authoritativeness31,32. A further limitation of thiswork
is the narrow focus of the usability study, which only assessed SERDIF’s
usability among health data researchers and did not include lay-users or
extend to different tasks and contexts beyond environmental-health data
linkage.

Future studies onmore advanced use cases beyond ongoing rare disease
studies can include logic rules to look for specific patterns across the data to
discover new links in an automaticmanner. Furthermore, the usability of the
framework could be extended to patient cohorts, including data annotation
tasks with relevant health-related information requested by a health profes-
sional in a self-reported manner. This information could be combined with
existinghealthandenvironmentaldata for amorecomplete viewof thehealth
event. Beyond rare disease research, the frameworkhas thepotential to set the
grounds for an early warning system to be used EU-wide. The early warning
system would need to include an automatic data uplift stream to import the
up-to-date and forecast data from the environmental sites and a connection
with the healthcare centres to assess the health risk for specific vulnerable
groups; and obtain the necessary approvals to be used as a risk assessment
system in terms of GDPR and local regulations.

In conclusion, SERDIF is an effective framework for overcoming the
complex challenges of linking environmental and health datasets when
studying environmental triggers of vasculitis across Europe. The framework
facilitates the data linkage process while generating an interoperable out-
come ready to be shared as FAIRdata.As SERDIF continues to gain traction
in the research community, the use of this framework can lead to new
insights for predicting and mitigating climate change impacts on public
health that go beyond borders and disciplines, contributing to a better
understanding of how the environment affects human health.

Methods
Study design and participants
The usability and potential usefulness of SERDIF were evaluated for a
specific group of health data researchers (expert users) to conduct data
linkage tasks (goal) towards studying the environmental factors associated
with health events related to rare diseases (context of use). The study fol-
lowed a user-centred design, considered a common approach to develop
solutions for expert users33, to interact with KGs34–36. This approach consists
of four iterative steps that continue until the solution meets the user
requirements37:
1. The solution developer endeavours to understand the context of use by

gathering insights about the domain, practical aspects, and real-world
scenarios where the solution will be used.

2. Expert user requirements for the desired user interface are refined by
collaborating with domain experts and users to expand upon an initial
set of requirements.

3. A prototype solution is developed or refined based on the user's
requirements.

4. Usability testing is conducted to evaluate the solution against the
requirements.
The user-centred design for SERDIF concluded after three
progressive iterations, named Phase 1 (P1), Phase 2 (P2) and Phase
3 (P3), that included rare disease case studies that required
meaningful data linkage to be undertaken by health data researchers,
to test hypotheses of exploring environmental risk factors associated
with health outcomes. The rare disease case studies included health
data researchers studying ANCA-associated vasculitis (AAV) in
Ireland (P1), Kawasaki disease (KD) in Japan (P2) and AAV in
Europe (P3). AAV and KD are vasculitides that affect small and
mediumblood vessels in adults and children respectively, resulting in
damage to vital organs. While the aetiology of these conditions is
unknown, the current theory proposes a complex interaction
between environmental and epigenetic factors in a genetically
susceptible individual38–40. The participants in the study were health
data researchers with a health background and statistical or data
analysis experience, including clinicians, health data scientists and
epidemiologists from academia and research institutes, and without
practical expertise in using KG technologies. These researchers
typically need to link patient registry data with weather and pollution
datasets (P1, P3); and Japanese national survey data with aerosol
datasets (P2). The use of SERDIF to support these rare disease case
studies took place in a sequential and progressive manner, with the
results from each case study informing the refinement of the
requirements and framework before the next case study and
increasing the pool of researchers from the previous phase (NP1 = 10,
NP2 = 17 and NP3 = 23).
The researchers participated in SERDIF usability testing sessions
conducted remotely using the Zoom video conferencing platform,
where participants were asked to share their screen and audio while
observed and assisted, if necessary, by a usability moderator (authors
of this paper). The recordings were manually transcribed to remove
any personal information before storing the transcriptions in Tagu-
ette, a local database for coding text documents41. The participants
were asked to complete a series of tasks during the sessions while
following a think-aloud protocol42. The tasks were gathered and
derived from consensus among researchers with real workflows in
mind before the usability testing sessions. The tasks were the
following:
Task 1: Link environmental data to relevant (or example) health
events for your research.
Task 2: Export the data linkage output and explore the interactive
report generated (.html).
Task 3: Discuss if you are confident in using the linked data for your
research.
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Fig. 3 | Progression of the comparable quantitative metrics for usability collected
in the Phase 1, 2 and 3 of the evaluation. The participants denoted by n refer to the
number of health data researchers that participated in each of the evaluation phases
(P1, white, n = 10; P2, grey, n = 17; P3, dark grey, n = 23). a Efficiency: time spent per
participant during the data linkage tasks. b Effectiveness: number of assists from the
moderator during the data linkage tasks. c Satisfaction: Post-Study System Usability
Questionnaire (PSSUQ v2) results for the System Usefulness (SysUse), Information
Quality (InfoQual), Interface Quality (IntQual) and Overall scales. The lower the
value of the quantitative metrics, the higher the usability.
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Task 4: Explain if you would need any additional features or infor-
mation before starting the analysis of the linked data.
Task 5: Summarise verbally your overall experience when linking data
using SERDIF.

The evaluation approach was submitted to and gained approval from
the relevant EthicsCommittee inTrinityCollegeDublin (reference number:
20200201). Informed consent to participate in the study was obtained from
all participants.

Metrics
The three usability tests shared common elements to enable the comparison
between phases such as the metrics gathered during the usability testing
session, the data analysis methods, and instruments to evaluate the usability

and potential of SERDIF based on researchers’ requirements33. The metrics
combined quantitative (summative) and qualitative (formative) metrics to
support the findings, following best practices19. The usability metrics were
associated with the definition of usability (ISO 9241-11:2018) including the
effectiveness, efficiency and satisfaction attributes, and the potential useful-
ness of the framework for health data researchers (ISO/IEC25010:2011). The
effectiveness was measured using the assists during task completion, as the
moderator’s interventions during the Think-Aloud protocol can influence
the task completion rates42. The efficiencywasmeasured using the time spent
in completed data linkage tasks (Tasks 1 and 2). The satisfaction was mea-
sured using the Post-Study System Usability Questionnaire (PSSUQ v2)43, a
standard usability test survey, scores and scales gathered from the partici-
pants. Theusability problems andpotential usefulness of the frameworkwere
identified by the observational findings from the session transcripts.

Fig. 4 | Examples of how data linked through SERDIF can be used to model and
predict environmental exposures associated with rare disease incidence and
relapse and visualise the spatiotemporal linkage process for pregnancy cohorts.
a The UK vasculitis registry was used to evaluate the lag-response association between
historical weather patterns and the incidence of AAV. These figures were generated on
a small subset of the vasculitis registry and cannot be generalised to the vasculitis

population in theUK.bEffects plotdemonstrating themarginal effect of averagewinter
vitD-UVB (kJ/m2) (UVB at wavelengths specific for vitamin D synthesis) on relapse
risk in Ireland. We demonstrated that a patient’s specific exposure (i.e. low ambient
UVB,particularlyduringwinter), is associatedwith an increased riskof relapse inAAV.
c Interactive visualisation (html) of small-area linkages for specific time windows, for
example, pregnancy events and real environmental data in Lombardy.
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Data analysis
The metrics recorded during the usability testing sessions were analysed
following the trustworthy thematic analysis approach by Nowell et al. 44,
towards minimising the subjectivity and increasing the credibility of the
qualitative analysis. TheTaguette software41 and local databasewas used as a
tool to facilitate the execution and documentation of the ThematicAnalysis.

Data availability
The datasets generated and/or analysed during the current study are
available in the serdif repository, https://w3id.org/serdif.

Code availability
The underlying code for this study is available in serdif and can be accessed
via this link https://w3id.org/serdif.
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