Skip to main content
. 2024 Oct 4;14:23144. doi: 10.1038/s41598-024-72832-y

Table 2.

Classification analysis results of individual features where supervised ML was performed using logistic regression from the Classifier App while unsupervised ML was performed using k-means; the results for the supervised ML show the mean of all algorithms that were trained/tested. A – accuracy (%), 95% CI – confidence interval (%) SE – sensitivity (%), SP – specificity (%), AUC – area under the ROC curve.

Features t-test (p-score) Supervised ML Unsupervised ML
Training + Testing
AUC (Training only) A CI SE SP A CI SE SP
Inline graphic 0.001 0.85 85.7 15.0 84.6 87.5 76.2 18.2 88.9 66.7
Inline graphic 0.0099 0.86 67.7 20.2 72.7 60.0 76.2 18.2 100 64.3
Inline graphic 0.3146 0.61 33.3 20.2 42.8 0.0 57.1 21.2 71.4 50
Inline graphic 0.0055 0.93 85.7 15.0 90.9 80.0 76.2 18.2 100 64.3
Inline graphic 0.0244 0.86 66.7 20.2 66.7 66.7 66.7 21.2 85.7 57.1
Inline graphic 0.3489 0.24 52.4 21.4 55.6 33.3 47.6 21.4 60 45.4
Inline graphic 0.0006 0.86 81.0 16.8 78.6 85.7 85 15 84.6 87.5
Inline graphic 10−6 0.89 90.5 12.5 91.7 88.9 95.2 9.1 92.3 100
Inline graphic 0.0104 0.8 81.0 16.8 78.6 86.7 80.9 16.8 78.6 85.7
Inline graphic 0.0006 0.84 85.7 15.0 84.6 87.5 90.5 12.5 91.7 88.9
Inline graphic 0.0006 0.89 81.0 16.8 83.3 77.8 85.7 15 80 100
Inline graphic 0.0011 0.85 76.2 18.2 81.8 70.0 80.9 16.8 90 72.7
SBP 0.3327 0.4 47.6 21.4 52.9 75.0 52.4 21.4 50 55.5
DBP 0.8195 0.57 52.4 21.4 55.0 0.0 57.1 21.2 33.3 75