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associated with maladaptive cardiac remodelling and HF 
development [6, 7], such as neurohormonal hyperactiva-
tion [8, 9], oxidative stress [10], and impairment of the 
protein quality control (PQC) system [11–13]. Myocardium 
tissue continuously suffers remodelling to ensure its opti-
mal mechanical function, in which the protein homeosta-
sis (proteostasis) is conserved by the constant production 
and degradation of the cardiac proteins [14]. These pro-
cesses are controlled by a complex quality control system 
that involves, for instance, protein-degradation machinery 
(e.g. ubiquitin-proteasome system [UPS] and autophagy), 
and the endoplasmic reticulum unfolded protein response 
(UPR) that reduces unfolded protein accumulation by e.g., 

Introduction

Heart failure (HF) is a complex syndrome with a dramatic 
negative impact on the quality of life and functional capac-
ity of patients [1, 2]. Despite the remarkable advances in 
cardiovascular medicine, patients with HF still show poor 
prognosis with high readmission and mortality rates [3–5]. 
At the cellular level, a wide diversity of factors has been 
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inducing molecular chaperone expression to assist the pro-
tein folding [15, 16]. However, prolonged or severe cardiac 
stress promoted by, e.g., hypoxia [17], oxidative stress [18], 
and high blood pressure [19], contributes to overload or fail-
ure of the PQC system and increased protein misfolding and 
aggregation [20]. An impaired PQC system has been linked 
to ageing [21], atherosclerosis [22, 23], hypertension [24, 
25], and HF [26–29]. Indeed, extracellular deposition of 
amyloid aggregates in the myocardium is frequent in older 
adults and has been implicated in HF development [30, 31]. 
Recently, we found that patients with HF with preserved 
ejection fraction (HFpEF) displayed higher levels of plasma 
SDS-resistant protein aggregates (SRA) than age-matched 
individuals, suggesting a compromised PQC machinery to 
counteract SRA burden [32]. SRA are hyper-stable struc-
tures, resistant to sodium dodecyl sulfate (SDS)-induced 
denaturation, that may accumulate in the organism due to 
their ability to overcome protein degradation systems. The 
accumulation of hyper-stable aggregates can lead to the 
sequestration and dysfunction of important interacting part-
ners, as well as to the disruption of organ architecture and 
function [32–35]. Also, Gene Ontology (GO) enrichment 
analysis indicated that the proteomic profile of these SRA 
was composed of extracellular proteins and most of them 
possess endopeptidase inhibitor activity and participate in 
several regulatory biological processes [32]. The GO anno-
tation enrichment analysis used the GO system to classify 
gene products according to the biological process, molecu-
lar function, and cellular component [36].

Exercise training is highly recommended as adjuvant 
therapy to HF management since it improves exercise tol-
erance and quality of life while reducing HF-related hos-
pitalizations [2, 37]. Moreover, evidence gathered mostly 
from animal studies indicates that exercise training restores 
PQC systems and/or reduces the burden of protein aggre-
gates in several cardiovascular disease models [38–41]. 
For instance, in a post-myocardial infarction-induced HF 
animal model, 8-week aerobic exercise increased cardiac 
function and improved proteostasis by restoring the PQC 
degradation systems [42, 43], and attenuated endoplasmic 
reticulum stress and UPR activation [44]. Aerobic exer-
cise also reduced oxidative stress and UPS overactivation 
in skeletal muscles, reducing muscle atrophy and exercise 
intolerance, in sympathetic hyperactivity-induced HF mice 
[45]. The same study showed that exercise-trained HF 
patients showed improved aerobic capacity and restored 
proteasomal activity in skeletal muscle [45]. However, ani-
mal findings may not translate into clinical ones [46, 47] 
or biopsies may be necessary to evaluate the impact of a 
therapeutic intervention on PQC. It is thus crucial to assess 
the impact of exercise training on the proteostasis of easily 
assessed biological fluids, such as plasma samples. Blood 

samples, collected via minimally invasive methods, may 
remove the practical obstacles that have been holding back 
the study of PQC systems and protein aggregation in routine 
clinical practice. Thus, this work aimed to study the effect of 
a 12-week exercise training program on the load and com-
position of protein aggregates in the plasma of patients with 
HF. We also aimed to determine the effects of the exercise 
training program on clinical parameters such as cardiore-
spiratory fitness, quality of life, and circulating biomarkers.

Methods

Study population

Eighteen patients with HFrEF were enrolled in this pro-
spective study. The recruitment was performed at the Unit 
of Cardiac Rehabilitation of the Cardiology Department 
of Centro Hospitalar Universitário do Porto - Hospital 
de Santo António, Porto, Portugal. The inclusion criteria 
included patients aged ≥ 18 years with a diagnosis of HFrEF 
according to the criteria of the European Society of Cardiol-
ogy [2], clinical stability and optimal medical treatment for 
≥ 6 weeks, and patients able to follow the exercise prescrip-
tion. Exclusion criteria: patients who have undertaken car-
diac rehabilitation within the past 12 months; implantable 
cardioverter-defibrillator (ICD), cardiac resynchronization 
therapy (CRT), or combined CRT/ICD device implanted in 
the last 6 weeks; myocardial infarction in the last 3 months; 
ischaemia signs during cardiopulmonary exercise testing; 
symptomatic and/or exercise-induced cardiac arrhythmia 
or conduction disturbances; currently pregnant or intend 
to become pregnant in the next year; inability to exercise 
or conditions that may interfere with exercise intervention; 
expectation of receiving a cardiac transplant in the next 6 
months; participation in another clinical trial; patients who 
are unable to understand the study information or complete 
the questionnaires. The study was approved by the hospital 
Ethics Committee [2019/123(103-DEFI/107-CE)]. Partici-
pants provided written informed consent and all procedures 
followed the Declaration of Helsinki.

Procedures

Clinical variables

Clinical files were consulted to obtain the patients’ demo-
graphic and clinical data, medical history, medication, and 
New York Heart Association (NYHA) functional class. 
Data were confirmed with the patient and/or the clinician. A 
standard wall-mounted stadiometer and scale were used to 
assess height and weight, respectively. Blood pressure (BP) 
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was assessed according to the ESH/ESC guidelines [48]. 
Left ventricular ejection fraction (LVEF) was assessed by 
transthoracic echocardiography with a cardiovascular ultra-
sound (Vivid E95®, GE Healthcare, Chicago, IL, USA) fol-
lowing the ESC guidelines [49].

At baseline and after the exercise program, N-terminal 
pro-B-type natriuretic peptide (NT-proBNP) and high-sen-
sitive C-reactive protein (hsCRP) were evaluated. Cardio-
respiratory fitness, measured as peak oxygen uptake (VO2 
peak), was assessed using an ergospirometry device during 
a maximal or symptom-limited treadmill exercise test using 
the modified Naughton or Bruce protocol. Functional exer-
cise capacity was determined with the 6-minute walk test 
(6 MWT) [50]. Health-related quality of life was assessed 
with the Minnesota Living with Heart Failure Questionnaire 
(MLHFQ) [51]. The MLHFQ comprises 21 items rated on a 
six-point Likert scale from 0 (‘no’) to 5 (‘very much’), pro-
viding scores for two dimensions, physical and emotional, 
and a total score.

Exercise training intervention

HF patients participated in a 12-week combined (aerobic 
plus resistance) exercise program with 2 training sessions 
per week, for a total of 24 sessions. Each training session 
was divided into 4 sections/parts: (i) 5–10 min of warm-
up with calisthenics and stretching exercise; (ii) 30 min of 
aerobic exercise on a treadmill or cycle ergometer, or walk-
ing training at 60-80% of VO2 peak (11–14 Borg´s scale); 
(iii) 25 min of resistance exercises with a combination of 
calisthenics exercises and an elastic band exercise; 2 sets of 
12–15 repetitions of 10 exercises (squat, leg curl, leg abduc-
tion, leg adduction, standing calf raise, bench press sitting, 
seated row, biceps, triceps, lateral raises); and (iv) 5 min of 
cool-down with stretching exercises.

Blood sampling and protein quantification

Peripheral venous blood was drawn into ethylenediami-
netetraacetic acid (EDTA) tubes at baseline and after the 
12-week intervention (48 h after the last training session). 
Plasma samples were separated by centrifugation (15 min 
at 2000 g at 4 ºC) and stored at -80 ºC. Protein quantifica-
tion was carried out with the bicinchoninic acid (BCA) pro-
tein assay kit (Pierce®, Thermo Scientific, Massachusetts, 
USA).

Analysis of SDS-resistant protein aggregates

A detailed description of the diagonal two-dimensional 
(D2D) SDS-PAGE assay, developed by Xia et al. [33], was 
applied to SRA analysis as previously described [32]. The 

D2D SDS-PAGE assay was employed in the pre- and post-
exercise samples of 5 randomly selected participants. In 
brief, for the isolation of SRA by D2D SDS-PAGE, plasma 
samples were depleted from the two most abundant plasma 
proteins (albumin and IgG). For the first dimension, protein 
sample (150 µg) was incubated with 1 x SDS sample buffer 
and electrophoresed in 12% SDS-PAGE gel. Next, the gel 
lane was cut out and boiled in SDS equilibration buffer with 
DTT, followed by alkylation with iodoacetamide. Then, the 
gel lane was placed on top of a 12% polyacrylamide gel and 
electrophoresis was performed at 55 mA/gel. Coomassie-
stained gels were digitalized in the GS-800 calibrated den-
sitometer (Bio-Rad, California, USA) and protein bands 
quantification was performed with ImageLab software (Bio-
Rad) by a blinded examiner.

Spots digestion and protein identification by liquid chro-
matography-mass spectrometry.

SRA spots were washed, reduced, alkylated, and digested 
with trypsin overnight. Then, peptides were extracted and 
sent for mass spectrometry analysis. A detailed description 
of the mass spectrometry analysis can be found here [32]. In 
4 samples of each assessment moment (baseline and post-
exercise), SRA spots #1–6 were analysed as a pool; in 1 sam-
ple per moment, each SRA spot was analysed individually. 
The separation of peptides was performed on a Q Exactive 
Orbitrap through the EASY-spray nano ESI source (Thermo 
Fisher Scientific, Bremen, Germany) coupled to an Ultimate 
3000 (Dionex, Sunnyvale, CA) HPLC system. Spectra were 
processed and database searching was performed using MS 
Amanda, Sequest HT, and percolator algorithms embedded 
in Proteome Discoverer (version 2.2, Thermo Scientific). 
All searches were performed against the UniProtKB/Swiss-
Prot human proteome sequence database (version of Febru-
ary 2018). The following database search parameters were 
applied: carbamidomethylation of cysteine (C) was defined 
as a static modification, and oxidation of methionine (M) 
and acetylation of N-terminal protein (N-Terminus) were 
set as dynamic modifications and up to two trypsin missed 
cleavages were considered. Only proteins found at least 
twice on each set of samples (baseline and post-exercise) 
were considered. The posttranslational modifications oxida-
tion and dioxidation were searched through the analysis of 
mass shifts of + 15.995 and + 31.990 Da, respectively. The 
mass spectrometry proteomics data have been deposited to 
the ProteomeXchange Consortium via the PRIDE [52] part-
ner repository with the dataset identifier PXD045161.

Bioinformatics analysis.
The protein-protein interaction (PPI) network and the 

functional enrichment analysis were performed with the 
search tool for the retrieval of interacting genes/proteins 
(STRING) version 11.0 (https://string-db.org) [53].
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1:10000) and ficolin-3 (#AF-2367, R&D systems, United 
Kingdom, 1:10000). After incubation with the proper horse-
radish-peroxidase (HRP)-conjugated secondary antibody, 
membranes were visualized using the enhanced chemilu-
minescence method (Amersham ECL Prime WB detection 
kit, RPN2236) and ChemiDocTM image acquisition sys-
tem (Bio-Rad, USA). Densitometry values of the proteins’ 
signals were standardized to a reference sample, allowing 
for comparing samples among different blots. The resulting 
optical density signal was normalized to Ponceau S staining, 
a loading control.

Data analysis

SPSS version 27.0 (SPSS IBM Corporation, Chicago, IL, 
USA) was used to carry out all statistical analyses. The 
normality of data distribution was evaluated with the Shap-
iro–Wilk test, histogram analysis, and checked for kurtosis 
and skewness. Descriptive statistics (mean ± SD or median 
(IQR), counts, percentages, and ratios) were computed for 
sample characterization. Paired t-tests or Wilcoxon signed-
rank tests were performed for comparisons from baseline to 
the end of the exercise. The level of significance was set as 
a P value less than 0.05.

Results

Baseline characteristics and clinical data of the 
participants

The baseline characteristics of the participants are displayed 
in Table 1. The mean age of the patients was 63.4 ± 6.5 years 
old, mostly men (78%), and most of them were in NYHA 
functional class II (78%).

Effect of exercise training on clinical variables

After the exercise program, NT-proBNP levels [-13.5 
(33.1)%, p = 0.048], the 6MWT performance (10.6 ± 7.7%, 
p < 0.001), and the VO2peak [8.4 (19.4)%, p = 0.002] 
improved significantly (Table 2). Health-related quality of 
life also improved [-50.9 (79.1)%, p = 0.004], mostly due to 
an improvement in the physical dimension of the MLHFQ 
(Table 2).

Effect of exercise training on the load of SDS-
insoluble protein aggregates

SDS-insoluble protein aggregates (SRA) were resolved 
by D2D gels. Representative images are shown in Fig. 1a 
(all gels are presented in Supplementary Fig. 1). Overall, 

Immunoblot analysis

Protein samples (50 µg) in SDS sample buffer were sepa-
rated in 10% SDS-PAGE gel, transferred to nitrocellulose 
membranes, and blocked with 5% non-fat dry milk in TBS-T. 
The membranes were probed overnight at 4ºC with antibod-
ies for haptoglobin (#ab131236, Abcam, United Kingdom, 

Table 1 Demographics and clinical characteristics of the HFrEF 
patients at baseline
Characteristics N = 18
Age (years) 63.4 ± 6.5
Sex (Female/Male) 4/14
LVEF (%) 33.4 ± 11.6
Ischaemic aetiology, n (%) 9 (50)
NYHA functional class, n (%)
 I 3 (17)
 II 14 (78)
 III 1 (6)
Medical history, n (%)
 Overweight/ Obesity 9 (50)
 Currently smoking 5 (28)
 Hypertension 7 (39)
 Diabetes 8 (44)
 Dyslipidaemia 15 (83)
 Atrial fibrillation 4 (22)
 CAD 6 (33)
 PAD 3 (17)
 OSA 1 (6)
 Previous stroke 2 (11)
 Previous MI 6 (33)
 Kidney disease 4 (22)
Medication/devices, n (%)
 ACE-I and/or ARB 11 (61)
 β-blocker 18 (100)
 Loop diuretic 12 (67)
 MRA 13 (72)
 Digoxin 1 (6)
 Statin 15 (83)
 Anticoagulant 6 (33)
 Antiaggregant/antiplatelet 9 (50)
 Antiarrhythmic 2 (11)
 Sacubitril/Valsartan 5 (28)
 Antidiabetic 7 (39)
 SGLT2i 3 (17)
 CPAP 2 (11)
 ICD 5 (28)
 CRT 4 (22)
Data are mean ± standard deviation or number (%). LVEF, left ven-
tricular ejection fraction; NYHA, New York Heart Association; 
CAD, coronary artery disease; PAD, peripheral artery disease; 
OSA, obstructive sleep apnoea; MI, myocardial infarction; ACE-I, 
angiotensin-converting enzyme inhibitor; ARB, angiotensin recep-
tor blocker; MRA, mineralocorticoid receptor antagonist; SGLT2i, 
sodium-glucose co-transporter 2 inhibitor; CPAP, continuous posi-
tive airway pressure therapy; ICD, implantable cardioverter-defibril-
lator; and CRT, cardiac resynchronization therapy
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Content analysis of SDS-insoluble protein 
aggregates in plasma

For identification of SRA protein constituents by mass spec-
trometry, the SRA spots were evaluated individually on 
two representative D2D gels from one patient with HFrEF 
(pre- and post-exercise training gels, Fig. 2a). Further, in 
the baseline and post-exercise training samples of the other 
4 HFrEF patients, the SRA spots of each gel were analysed 
as a pool (Supplementary Fig. 1). A detailed list of all pro-
teins identified in SRA spots is provided in Supplementary 
Table 1. A total of 31 different proteins were identified and 
were common to baseline and after the 12-week exercise 
training program. Of note, some immunoglobulins were 
also detected in this study (Supplementary Table 2). The 

baseline and post-exercise program plasma samples pre-
sented a similar 2D migration pattern of protein aggre-
gates (Supplementary Fig. 1). After the exercise training, 
the relative levels of SRA expressed as a percentage of the 
whole protein content decreased significantly (SRA/total: 
38.0 ± 8.9 to 36.1 ± 9.7%, p = 0.018). Likewise, SRA levels 
expressed as a percentage of the soluble fraction (SRA/solu-
ble) decreased from 64.3 ± 27.1 to 59.8 ± 27.7% (p = 0.003) 
(Fig. 1b). The relative abundance of SDS-resistant pro-
teins (Fig. 1a, green box) also decreased significantly, from 
1.32 ± 0.48 to 1.12 ± 0.39% (p = 0.012).

Fig. 1 Analysis of plasma samples of HFrEF patients by D2D SDS-
PAGE. (a) Representative D2D SDS-PAGE gels of plasma samples of 
patients with HFrEF before (baseline) and after 12 weeks of exercise 
training (post-exercise). D2D SDS-PAGE gel displays: in the blue box, 
the usual electrophoretic diagonal pattern of non-SDS-resistant, solu-
ble, proteins, that migrate equal distances in both dimensions; in the 
green box, SDS-resistant proteins that are located below the diagonal 
soluble proteins pattern, since they migrate less in the first electropho-
retic run; in the red box, SDS-resistant aggregates (SRA), that do not 

resolve in the first electrophoretic dimension (remain at the interface 
between the stacking and the resolving gels), but resolve in the sec-
ond dimension (run vertically), after boiling the samples with SDS and 
DTT, which dissociate SRA complexes into their subunits. (b) Percent-
age of relative abundance between SRA and all proteins present in 
the gel (‘SRA/total’) or between SRA and the soluble protein fraction 
(‘SRA/soluble’) in the D2D gels, before (‘Baseline’) and after (‘Post-
exercise’) the exercise training program. Mean data are presented in 
graphs (n = 5 per condition)

 

Characteristics Baseline 12 weeks Change 
from 
baseline

P value

BMI (kg/m2) 27.3 ± 3.9 27.0 ± 4.1 0.3 ± 0.8 0.053
SBP (mmHg) 117.3 ± 17.6 115.3 ± 14.8 -2.0 ± 15.0 0.290
DBP (mmHg) 67.6 ± 12.0 68.6 ± 11.8 1.0 ± 13.8 0.813
Heart rate (bpm) 67.9 ± 11.5 70.5 ± 10.0 2.6 ± 11.3 0.175
NT-proBNP (pg/mL)* 720.0 

(850.0)
587.0 
(847.3)

-57.0 
(266.8)

0.048

hsCRP (mg/mL)*# 1.5 (1.4) 1.2 (1.5) -0.1 (1.6) 0.532
6MWT (m) 461.2 ± 64.4 508.2 ± 65.5 47.1 ± 33.4 < 0.001
VO2peak(mL/min/Kg)* 16.4 (5.9) 19.0 (5.2) 1.9 (2.6) 0.002
MLHFQ (points)
Physical dimension 12.0 (16.0) 4.0 (10.5) -4.5 (8.0) 0.009
Emotional dimension 4.0 (4.0) 3.0 (8.5) 0.0 (3.0) 0.282
Total 25.0 (26.5) 13 (30.5) -9.0 (13.5) 0.004

Table 2 Changes in clinical 
variables from baseline to the end 
of the 12-week exercise training 
program

Data are mean ± standard devia-
tion or *median and interquartile 
range (IQR). BMI, body mass 
index; SBP, systolic blood pres-
sure; DBP, diastolic blood pres-
sure; NT-proBNP, N-terminal 
pro-B-type natriuretic peptide; 
hsCRP, high-sensitive C-reactive 
protein; 6MWT, six-minute 
walk distance test; VO2peak, peak 
oxygen uptake, and MLHFQ, 
Minnesota Living with Heart 
Failure Questionnaire. # n = 15
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most proteins were related to the regulation of peptidase 
activities, and binding to proteins, including proteases and 
chaperones (Fig. 3b, in green). This chaperone binding 
function was attributed to four of the identified aggregated 
proteins, namely ceruloplasmin, albumin, fibrinogen, and 
fibronectin 1. Regarding the top GO biological processes 
(Fig. 3b, in blue), most of the identified SRA were involved 
in platelet degranulation, post-translational modifications, 
vesicle-mediated transport, and regulation of exocytosis, 
besides defence response. Finally, enrichment analysis of 
diseases to which the identified proteins have been related 
to retrieved amyloidosis and metabolic diseases as highly 
enriched (Fig. 3c). SRA proteins transthyretin, complement 
C3, albumin, fibrinogen, α-2-macroglobulin, fibronectin 1, 
and α-1-antitrypsin have been related to amyloidosis.

main proteins identified before and after exercise training 
are provided in Fig. 2b.

To gain valuable biological insight into the identified 
proteins in SDS-resistant aggregates, the STRING database 
was employed for protein-protein interaction (PPI) network 
analysis and to perform GO annotation enrichment analysis. 
The PPI network retrieved by STRING revealed a network 
of dense interactions between the identified SRA proteins 
(Fig. 3a).

Relatively to these proteins’ properties, Fig. 3b shows 
the top 10 most statistically significant GO enrichment 
terms. All the proteins identified in SRA were found in the 
extracellular space, and most of them were also associated 
with the GO cellular component terms “blood micropar-
ticle”, “extracellular exosome”, and “vesicle” (Fig. 3b, in 
salmon). Concerning the enriched GO molecular functions, 

Fig. 3 STRING analysis of the 
protein components of SDS-
resistant aggregates identified 
in common between pre- and 
post-exercise plasma samples of 
HFrEF patients. a. PPI network 
where each node represents a 
protein, and the edges represent 
their interactions. The correspon-
dence of gene ID to protein name 
is presented in Supplementary 
Table 1. b. Scheme with the top 
10 most significantly enriched 
GO terms regarding molecular 
component, molecular function, 
and biological process. c. Top 
disease enrichment analysis. The 
bars represent the -log10 of the 
false discovery rate (FDR) for the 
corresponding classification, and 
the number in the bar represents 
the number of proteins enriched 
in each term

 

Fig. 2 D2D gels of pre- and post-
exercise plasma samples from a 
patient with HFrEF. a. Selected 
protein spots analysed by mass 
spectrometry are numbered. b. 
Distribution by spots 1–6 of the 
main proteins identified in at least 
4 samples at both assessment 
moments, baseline and post-
exercise intervention
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[54–57]. In this study, we observed several benefits with 
clinical impact as a result of a 12-week exercise training pro-
gram in patients with HFrEF. Patients showed an improve-
ment in VO2 peak of 8.4(19.4)%, clinically relevant since 
every 6% increase in VO2 peak over 3 months has been asso-
ciated with an 8% lower risk for cardiovascular mortality or 
HF hospitalization [58]. Furthermore, patients increased the 
6MWT distance by 47.1 ± 33.4 m, and 30–50 m are con-
sidered to be the minimum clinically important difference 
in 6MWT, linked to an improvement of NYHA functional 
class [59]. These functional improvements are reflected in 
a better health-related quality of life, indicated by a 9-point 
improvement in the MLHFQ, with a decrease of ≥ 5 in the 
MLHFQ score already considered to be clinically mean-
ingful [60]. Together with the NT-proBNP reduction, these 
improvements are strong indications of the benefits of exer-
cise intervention among this patient population.

HF is multifactorial, and the cardiotoxicity of misfolded 
and aggregated proteins constitutes one of the mechanisms 
associated with HF development [11, 13, 20, 26]. Exercise 
training has been shown to counteract the proteotoxicity of 
misfolded proteins by the re-establishment of PQC systems 
[38, 43, 61–63]. Likewise, in previous studies using animal 
models or tissue collected during a biopsy, we also observe 
significant changes in the protein aggregation after exercise 
training, using a plasma sample. In a mice model of desmin-
related cardiomyopathy, a 22-week exercise intervention 
decreased pre-amyloid oligomers formation, decelerated 
HF progression, and increased lifespan [64]. A study in 
older mice showed that a 12-week treadmill running pro-
gram improved autophagic flux, clearance of ubiquitinated 
proteins, and protein aggregates [61]. Additionally, in both 
animal models and patients with HF, exercise training has 
been shown to prevent or reverse skeletal muscle wasting 
by reducing excessive protein degradation, which was asso-
ciated with the restoration of redox balance and reduction 
of UPS hyperactivity [45, 63, 65]. Indeed, after 3 weeks of 
treadmill walking, HFrEF patients exhibited a re-establish-
ment of skeletal muscle proteasomal activation to normal 
levels, which was accompanied by improvement in aerobic 
capacity [45]. Also, in the LEICA study, after 4-weeks of 
endurance training, HF patients showed reduced E3 ligase 
MuRF-1 levels, an enzyme that targets proteins to protea-
somal degradation, and lower ubiquitinated protein levels in 
skeletal muscle biopsies [63].

In our study, we observed a decrease in plasma SRA load 
after a 12-week exercise training program among HFrEF 
patients. MS analysis revealed that these SRA are composed 
of at least 31 proteins, with α-2-macroglobulin and hapto-
globin as the most abundant ones. These proteins are extra-
cellular chaperones that inhibit aggregation of misfolded 
proteins in the extracellular environment [66, 67]. Also, both 

Quantitative analyses of the average abundances of the 
identified proteins (Supplementary Tables 1 and 3), revealed 
that the main components of SRA in plasma samples of 
HFrEF patients, were α-2-macroglobulin and haptoglobin, 
corresponding to > 95% of the SRA protein content (Sup-
plementary Fig. 2). These were also the two SRA proteins 
more heavily oxidized, a post-translational modification 
associated with misfolding and aggregation, that was also 
retrieved by the mass spectrometry analysis (Supplementary 
Tables 4 to 7).

Effect of exercise training on SRA proteins 
abundances and haptoglobin levels

The relative abundances of each SRA protein at baseline 
and after the exercise training are presented in Supplemen-
tary Tables 1 and 3. Only SRA proteins identified in base-
line and post-exercise paired samples of at least two patients 
were considered. Exercise training significantly decreased 
the amount of haptoglobin in SRA, from 1.83 × 1011 
± 0.54 × 1011 at baseline to 1.51 × 1011 ± 0.59 × 1011 
(p = 0.049) after the exercise training program, correspond-
ing to an average decrease of 19.8 ± 16.6% (Supplementary 
Table 1).

The effect of exercise training on the plasma levels of 
haptoglobin and of another SRA protein, ficolin-3, was 
evaluated by immunoblotting under non-DTT reducing 
conditions (Fig. 4). Patients presented similar ficolin-3 
levels after exercise training (0.83 ± 0.27 to 0.81 ± 0.23, 
p = 0.622; Fig. 4a). As shown in Fig. 4b, the haptoglobin 
levels increased significantly after the exercise training pro-
gram (1.03 ± 0.40 to 1.11 ± 0.46, p = 0.031).

Discussion

This study assessed the effects of a 12-week exercise train-
ing program on the extracellular proteostasis of patients 
with HFrEF, particularly the SRA insoluble protein aggre-
gates. Exercise training significantly decreased both the 
total amount of plasma SRA and the amount of haptoglo-
bin in SRA, while increasing the plasma haptoglobin lev-
els (hence, in its more soluble form). Given the chaperone 
activity of haptoglobin, these data suggest a better extra-
cellular proteostasis. Exercise training also improved NT-
proBNP levels, cardiorespiratory fitness, functional exercise 
capacity (walking distance), and health-related quality of 
life of HFrEF patients.

Exercise training has been reported to induce a myriad 
of positive effects in multiple organ systems, improving 
inflammation, oxidative stress, sensitivity to insulin, glucose 
control, cardiac output, neurogenesis, and neuroplasticity 
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misfolded proteins in a soluble state, under conditions of a 
large excess of aggregation-prone proteins [70, 72, 73].

Regarding the impact of exercise training on the SRA 
content, although most of the 31 SRA proteins were present 
both at baseline and after the exercise intervention, the exer-
cise program significantly decreased the haptoglobin SRA 
levels. Given haptoglobin’s high abundance in SRA, this 
decrease is probably the main contributor to the observed 
exercise-induced decrease in SRA load. Haptoglobin has 
been proposed to act as a clusterin-like chaperone, limiting 
the toxicity of protein aggregates [74–76], and functioning 

α-2-macroglobulin and haptoglobin were highly oxidized, a 
post-translational modification associated with protein mis-
folding and aggregation [68, 69]. Functional analyses char-
acterized SRA proteins as mainly extracellularly located 
and with known functions in the regulation of exocytosis, 
defence response, and post-translational modifications, all 
processes already associated with protein aggregation. The 
presence of chaperones in extracellular insoluble protein 
aggregates has been reported in proteinopathies like amy-
loidotic cardiomyopathy [70], Alzheimer’s disease [71] and 
TTR amyloidosis [72], and related to failed attempts to keep 

Fig. 4 Effect of 12 weeks of 
exercise training on ficolin-3 and 
haptoglobin levels in the plasma 
from patients with HFrEF. 
Representative immunoblots and 
graphic analyses of (a) ficolin-3 
(n = 18) and (b) haptoglobin 
(n = 17) levels in 1D SDS-PAGE 
gels, run in non-DTT reduc-
ing conditions. Haptoglobin is 
present in plasma as different 
types of polymeric forms with 
high molecular weight, or as 
tetrameric proteins composed 
of two α-chains (α1 and/or α2) 
and two conserved β-chains; the 
anti-haptoglobin antibody used 
detects its β-chain, and thus all 
the native haptoglobin forms
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