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Abstract
Neoadjuvant chemoimmunotherapy (NACI) has significant implications for the treatment of esophageal cancer. However, 
its clinical efficacy varies considerably among patients, necessitating further investigation into the underlying mechanisms. 
The rapid advancement of single-cell RNA sequencing (scRNA-seq) technology facilitates the analysis of patient hetero-
geneity at the cellular level, particularly regarding treatment outcomes. In this study, we first analyzed scRNA-seq data of 
esophageal squamous cell carcinoma (ESCC) following NACI, obtained from the Gene Expression Omnibus (GEO) database. 
After performing dimensionality reduction, clustering, and annotation on the scRNA-seq data, we employed CellChat to 
investigate differences in cell–cell communication among samples from distinct efficacy groups. The results indicated that 
macrophages in the non-responder exhibited stronger cell communication intensity compared to those in responders, with 
SPP1 and GALECTIN signals showing the most significant differences between the two groups. This finding underscores 
the crucial role of macrophages in the efficacy of NACI. Subsequently, reclustering of macrophages revealed that Mac-SPP1 
may be primarily responsible for treatment resistance, while Mac-C1QC appears to promote T cell activation. Finally, we 
conducted transcriptome sequencing on ESCC tissues obtained from 32 patients who underwent surgery following NACI. 
Utilizing CIBERSORT, CIBERSORTx, and WGCNA, we analyzed the heterogeneity of tumor microenvironment among 
different efficacy groups and validated the correlation between SPP1+ macrophages and resistance to NACI in ESCC using 
publicly available transcriptome sequencing datasets. These findings suggest that SPP1+ macrophages may represent a key 
factor contributing to resistance against NACI in ESCC.

Keywords  Esophageal squamous cell carcinoma · Neoadjuvant chemoimmunotherapy · Macrophages · Single-cell RNA 
sequencing · Bulk RNA sequencing

Introduction

Esophageal cancer is recognized as the sixth leading cause 
of cancer-related deaths worldwide, with more than 90% 
of cases identified as esophageal squamous cell carcinoma 
(ESCC) [1, 2]. In spite of advances in diagnostics and treat-
ment, less than 20% of ESCC patients survive five years 
after diagnosis [3]. Neoadjuvant chemoradiotherapy is fre-
quently necessary in cases of resectable locally advanced 
esophageal cancer [4]. However, this treatment confers ben-
efits to only a subset of patients, achieving a complete patho-
logical response rate of less than 50% [5]. Consequently, 
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there is a pressing clinical need for the development of more 
effective treatment strategies to enhance patient outcomes.

Recent studies have shown immune checkpoint inhibi-
tors to be a promising treatment for esophageal cancer [6]. 
Several recent clinical trials have demonstrated that neoad-
juvant chemoimmunotherapy (NACI) is a safe and feasible 
approach that can significantly improve clinical outcomes 
for patients [7–10]. However, despite notable advancements 
in NACI regimens, several issues continue to persist. For 
instance, while a subset of patients exhibits a favorable 
response to treatment, a significant proportion still does not 
demonstrate substantial tumor regression after treatment. 
Compared to conventional neoadjuvant chemotherapy, 
immunotherapy can inhibit the PD-1/PD-L1 axis to amelio-
rate T cell exhaustion [11]. Combined positive score (CPS), 
a well-known biomarker for immunotherapy, is based on the 
expression of PD-L1; however, its predictive capacity for 
the efficacy of immunotherapy is still considered suboptimal 
[12]. Understanding the complex interplay between tumors 
and immune system, as well as identifying potential factors 
that contribute to treatment resistance, is crucial for broad-
ening the population of patients who can benefit from these 
therapies.

The interactions among various immune cells within 
the tumor microenvironment (TME) are highly complex 
and represent a significant factor influencing the efficacy 
of neoadjuvant immunotherapy; however, the underlying 
mechanisms remain poorly understood [13, 14]. Single-cell 
RNA sequencing (scRNA-seq) technology is a powerful tool 
for analyzing cellular heterogeneity, allowing researchers to 
group and analyze cells in the TME based on the expression 
of specific genes. Recent studies have meticulously char-
acterized the cellular landscape of the ESCC TME before 
and after NACI, uncovering novel biomarkers that may 
predict the efficacy of NACI and revealing the strong rela-
tionship between the TME and NACI outcomes [15, 16]. In 
this study, we utilized scRNA-seq data from ESCC patients 
who received NACI to identify potential cellular populations 
influencing NACI efficacy. Using the CellChat method, we 
observed a significant increase in communication intensity 
among macrophages in the non-responder, with signals such 
as SPP1 and GALECTIN primarily transmitted to CD8+ T 
cells. Considering the heterogeneity of tumor-associated 
macrophages (TAMs), we identified three macrophage sub-
clusters characterized by high expression of C1QC, SPP1, 
and HSP, which exhibited notable metabolic and functional 
differences. Furthermore, the SPP1+ macrophages also 
exhibited elevated expression of LAGLS9, a member of the 
GALECTIN family, suggesting that SPP1+ macrophages 
may play a pivotal role in mediating resistance to NACI. 
Subsequently, we analyzed transcriptomic sequencing data 
from 32 ESCC patients who underwent NACI and correlated 
these findings with scRNA-seq data using techniques such as 

CIBERSORTx, thereby validating the results obtained in the 
single-cell analysis. Finally, we leveraged publicly available 
transcriptomic datasets to confirm the association between 
SPP1+ macrophages and resistance to immunotherapy in 
ESCC. Our research highlights the heterogeneity of mac-
rophage subclusters underlying NACI treatment in esopha-
geal cancer and identifies SPP1+ macrophages as a poten-
tially key factor contributing to NACI resistance, providing 
new insights for future therapeutic strategies in ESCC.

Materials and methods

Patients and specimen collection

We enrolled a total of 32 patients diagnosed with ESCC, 
whose tumors were classified according to the 8th edition of 
the TNM system of the American Joint Committee on Can-
cer (AJCC). All patients had no prior history of anticancer 
treatment and subsequently underwent two cycles of NACI 
prior to surgery, which included camrelizumab, cisplatin, 
and nab-paclitaxel. Specimens of ESCC were obtained from 
these 32 patients following neoadjuvant therapy through 
surgical procedures for bulk RNA sequencing analysis. The 
response to NACI was evaluated using the Tumor Regres-
sion Grade (TRG) system, which is based on the guidelines 
established by the American Joint Committee on Cancer and 
the College of American Pathologists (AJCC/CAP). TRG 
scores ranging from 0 to 1 were classified as responders, 
while scores ranging from 2 to 3 were categorized as non-
responders. Consequently, the study cohort was stratified 
into two groups: 13 responders and 19 non-responders. The 
Ethics Committee at the First Affiliated Hospital of Zheng-
zhou University granted ethical approval for this research, 
with the approval number L2021-Y346-004. Informed con-
sent was obtained from all patients prior to the start of the 
study.

Data acquisition

The scRNA-seq data for the ESCC cohort, including datasets 
GSE203115 [17] and GSE196756, were downloaded from 
the Gene Expression Omnibus (GEO) database (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/). Additionally, the bulk transcriptome 
data, GSE53625 [18], were also obtained from the GEO 
database. Furthermore, gene expression information for 
ESCC patients was downloaded from The Cancer Genome 
Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/).

ScRNA‑seq data processing and clustering

The GSE203115 dataset includes tumor samples from 
ESCC patients who underwent two cycles of NACI, 
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comprising non-responder (n = 1) and responders (n = 2). 
The GSE196756 dataset comprises three ESCC tumor 
samples and three adjacent normal samples; however, only 
the three tumor samples were selected for combined analy-
sis with those from GSE203115. ScRNA-seq samples were 
examined for quality control using their raw count matrix. 
Cells exhibiting more than 20% mitochondrial genes and 
fewer than 300 or exceeding 7000 expressed genes were 
considered not to meet the research requirements and were 
subsequently excluded from further analysis. Data nor-
malization, identification of variable genes, scaling (utiliz-
ing the NormalizeData, FindVariableFeatures, and Scale-
Data functions), principal component analysis (RunPCA), 
dimensionality reduction (RunUMAP), and unsupervised 
graph-based clustering (FindNeighbors & FindClusters) 
were performed using Seurat (version 5.0.3) [19]. Har-
mony (version 1.2.0) [20] was employed to remove batch 
effects (RunHarmony). A total of 13 clusters were identi-
fied through UMAP clustering analysis, and differentially 
expressed genes (DEGs) for each cluster were ascertained 
using FindAllMarkers. Cell types were ultimately anno-
tated by integrating previously reported and most signifi-
cantly altered marker genes.

Cell–cell communication analysis

To explore the intricacies of cell–cell communication, a cell-
to-cell communication network was constructed and visu-
alized using CellChat (version 1.6.1) [21]. It simulates 
intercellular communication by evaluating the interactions 
among ligands, receptors, and their respective co-factors. 
We separately created CellChat objects for non-responder 
and responders, subsequently merging them for compara-
tive analysis to identify cell clusters exhibiting differential 
functionality between the two groups and to uncover key 
ligand-receptor pairs and signaling pathways. The visualiza-
tion methods employed include netVisual_circle, netVisual_
bubble, and netVisual_chord_gene.

Single‑cell trajectory analysis

Pseudotime analysis was performed on macrophage sub-
sets using CytoTRACE2 (version 1.0.0) [22] and Monocle 
(version 2.30.1) [23]. CytoTRACE2 facilitated the determi-
nation of the differentiation status of each cell sub cluster. 
Subsequently, Monocle was utilized to conduct pseudotime 
analysis based on the differential genes among the cell 
subsets, followed by dimensionality reduction using the 
reduce dimension function. Visualization was subsequently 
achieved using functions such as plot_cell_trajectory and 
plot_pseudotime_heatmap.

Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were conducted utilizing 
the R package clusterProfiler (version 4.10.1) [24], a widely 
employed algorithm for identifying statistically enriched 
pathways in sorted gene lists. Gene Set Variation Analy-
sis (GSVA) was performed utilizing the Hallmark gene sets 
from the MSigDB database to uncover differential pathways. 
Additionally, specific gene set scores were calculated for 
single-cell and bulk transcriptomic data utilizing the AUCell 
function from the Seurat package and ssGSEA, respectively, 
which included the scoring of macrophage subgroups such 
as M1 and M2 [25]. We also employed the scMetabolism 
[26] package to compare metabolic differences among vari-
ous macrophage subsets. The STRING database was used to 
construct protein–protein interaction (PPI) networks.

DEGs analysis and weighted gene co‑expression 
network analysis (WGCNA)

The R package DESeq2 [27] was used to analyze DEGs, 
identifying genes as DEGs if they met the criteria of p 
value < 0.05 and |log2FC|> 1.0. The R package WGCNA 
[28] was utilized to analyze the bulk transcriptomic data 
of clinical esophageal cancer. Gene co-expression networks 
were constructed based on the interaction patterns of genes. 
Finally, hierarchical clustering and the dynamic tree cutting 
algorithm were utilized to identify 38 gene modules.

Immune infiltration analysis

We conducted deconvolution analysis on bulk RNA-seq data 
utilizing the CIBERSORT algorithm and CIBERSORTx 
[29]. Firstly, CIBERSORT analysis, which correlated with 
reference mRNA expression values (LM22), was employed 
to compare the relative infiltration levels of 22 immune cell 
types between the non-responders and responders. Subse-
quently, three distinct macrophage subtypes derived from the 
ESCC single-cell transcriptome dataset were uploaded to the 
CIBERSORTx database, and the “Create Feature Matrix” 
module was utilized to construct feature genes for each cell 
subtype. Finally, the proportions of the three macrophage 
subtypes were calculated for the clinical ESCC bulk tran-
scriptome dataset.

Statistical analysis

R software (version  4.3.0)  was  used  for  all  statisti-
cal  analyses. T-tests were utilized to compare the 
mean gene expression and gene features between two 
groups of cells. The  Wilcoxon  test  was  used  to ana-
lyze data that were not normally distributed. Spearman's 
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rank correlation coefficient was used for correlation analy-
sis. Statistical significance was defined as a p value < 0.05 
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

Results

Cell–Cell communication analysis 
reveals macrophage heterogeneity 
between the non‑responders and responders 
in NACI‑treated ESCC patients

The experimental process is shown schematically in Fig. 1.
This study included six single-cell samples from patients 

with ESCC, consisting of three untreated samples and three 
samples obtained after NACI treatment, which included one 
non-responder and two responders. After rigorous quality 
control and filtering of the scRNA-seq data, a total of 24,325 
cells were obtained from these samples. By employing unsu-
pervised clustering, these cells were mapped onto a two-
dimensional UMAP plane, leading to the identification of 13 
distinct cell populations (Fig. 2A). These clusters included 
CD8+ T cells, CD4+ T cells, B cells, epithelial cells, fibro-
blasts, macrophages, monocytes/DC, plasma cells, endothe-
lial cells, myofibroblasts, immune cycling cells, mast cells, 
and neutrophils. The distribution of these cell clusters 
across the samples was relatively uniform, with no evident 

sample-specific characteristics shown (Fig. 2B). The marker 
genes and expression patterns for each cell type are shown 
in a heatmap (Fig. 2C). Additionally, UMAP visualizations 
illustrating the relationship between treatment status and dif-
ferent efficacy groups, as well as the proportions of various 
cell types across different samples and groups, are shown 
(Fig. S1A-E).

To investigate the differences in intercellular commu-
nication between the non-responder and responders, we 
employed the human CellChat database to analyze the inter-
cellular interactions among the 13 identified cell clusters. 
Initially, we compared the number and strength of com-
munications across all cell populations between the non-
responder and responders, revealing that the non-responder 
exhibited a greater communication strength (Fig.  2D). 
Next, we employed network diagrams to compare the com-
munication intensities among different cell populations 
across the groups, demonstrating that the communication 
strength between macrophages and CD8+ T cells, CD4+ 
T cells, and epithelial cells was significantly enhanced in 
the non-responder (Fig. 2E). The constructed intercellu-
lar communication heatmap indicated that macrophages 
ranked prominently in both signal reception and transmis-
sion strength, suggesting that they significantly influence the 
functional states of other cell types (Fig. 2F). Furthermore, 
we identified variations in the signaling intensities of differ-
ent cell populations between the groups, again showing that 
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macrophages represented the cell population with the most 
pronounced differences (Fig. 2G). These results indicate that 
macrophages within the TME play a pivotal role in shaping 
the outcomes of NACI.

The SPP1 and GALECTIN signaling pathways 
in macrophages may contribute to resistance 
to NACI in ESCC patients

We further investigated the specific signaling changes in 
macrophages between the non-responder and responders, 
discovering that macrophages in the non-responder exhib-
ited elevated levels of SPP1 and GALECTIN signaling, 
while also receiving enhanced MIF signals (Fig. 3A). At 
the global signaling pathway level, the predominant sign-
aling patterns in the non-responder encompassed SPP1, 
GALECTIN, CCL, MK, and MIF pathways, with SPP1 
demonstrating significant differences between the two 
groups (Fig. 3B). A heatmap illustrating the incoming and 
outgoing signaling patterns across various cell populations 
revealed that macrophages served as the primary senders 
of SPP1 and GALECTIN signals (Fig. 3C). To elucidate 
the sending and receiving relationships, a network diagram 
was employed to compare the strength of various signaling 
pathways between the two groups. The results indicated that 
macrophages primarily influenced CD8+ T cells through the 
SPP1 and GALECTIN pathways (Fig. 3D and E), suggesting 
their potential significance in NACI efficacy. Additionally, 
macrophages received enhanced MIF signals from epithelial 
cells and CD8+ T cells, which may contribute to alterations 
in macrophage function (Fig. 3F).

Finally, we delineated the interaction pathways between 
macrophages and T cells, discovering that the SPP1 signals 
emitted by macrophages in the non-responder are predomi-
nantly received by CD8+ T cells via the receptors CD44 
and ITGB1. In the context of GALECTIN signaling, the 
LGALS9 emitted by macrophages is primarily received by 
CD8+ T cells through receptors CD44, CD45, and HAVCR2, 
as well as by CD4+ T cells via receptors CD44 and CD45. 
Additionally, macrophages predominantly receive MIF 
signals via receptors CD74, CD44, and CXCR4 (Fig. 3G). 
Furthermore, we observed that, in comparison to LGALS9, 
SPP1 demonstrates a characteristic of specific expression in 
macrophages (Fig. 3H and I).

SPP1+ macrophages are the primary macrophage 
subcluster contributing to resistance to NACI 
in ESCC patients

Evidently, macrophages exhibit a crucial role in intercellular 
communication within the non-responder. To further eluci-
date their characteristics, we classified them into three dis-
tinct cell clusters based on unique gene markers, designated 

as Mac-C1QC, Mac-HSP, and Mac-SPP1 (Fig. 4A and B). 
The ratio of observed over expected cell numbers (Ro/e) was 
employed to illustrate the tissue preferences of macrophage 
subclusters, revealing that Mac-HSP predominantly resided 
in pre-treatment samples, while Mac-C1QC was primarily 
identified in post-treatment samples. The proportion of Mac-
SPP1 exhibited minimal variation before and after treatment 
(Fig. 4C). Notably, in addition to SPP1, Mac-SPP1 dem-
onstrated high expression of LGALS9 (Fig. 4D), suggest-
ing that Mac-SPP1 may be a critical factor contributing to 
resistance to NACI. Mac-C1QC exhibited elevated levels of 
inflammatory cytokines such as CXCL1, CXCL2, CXCL3, 
and CXCL8, potentially facilitating the recruitment and acti-
vation of immune cells (Fig. S2A).

Subsequently, we utilized M1 and M2-related gene sets 
to compute AUC scores for the various macrophage sub-
clusters. The results indicated that Mac-HSP, predominantly 
identified in pre-treatment tissues, exhibited the highest M2 
score, thereby confirming its classification as classic TAMs 
(Fig. 4E). Among the two cell populations primarily pre-
sent in post-treatment samples, Mac-C1QC demonstrated 
a higher M1 score, indicating its beneficial role in NACI 
(Fig. 4F). Furthermore, the M2 scores of pre-treatment sam-
ples were significantly higher than those observed in post-
treatment samples, but no significant difference was found 
in M2 scores between the non-responder and responders. 
(Fig. S2B). This suggests that NACI reverses the M2 polari-
zation of macrophages, resulting in a shift towards the anti-
tumor M1 phenotype. No significant difference was observed 
in M1 scores between the pre-treatment patients and post-
treatment non-responder; however, both were higher than 
those in responders, indicating that a high M1 score may 
not be adequate to predict a favorable response to NACI 
(Fig. S2C).

To further elucidate the differences among various 
macrophage subclusters, we conducted GSVA on DEGs 
(Fig. 4G). The results indicated that Mac-SPP1 exhibited 
enrichment in pathways such as PI3K_AKT_MTOR_
SIGNALING, OXIDATIVE_PHOSPHORYLATION, and 
MTORC1_SIGNALING. Oxidative phosphorylation rep-
resents a primary metabolic pathway in M2 macrophages, 
suggesting that Mac-SPP1 may exhibit characteristics typi-
cal of M2 macrophages. Mac-C1QC exhibited enrichment in 
pathways such as INFLAMMATORY_RESPONSE, KRAS_
SIGNALING_UP, and IL2_STAT5_SIGNALING, which 
indicate its involvement in anti-tumor immune responses. 
Mac-HSP exhibited enrichment in pathways associated with 
HEDGEHOG_SIGNALING and WNT_BETA_CATENIN_
SIGNALING, indicating that these cells play significant 
roles in tissue repair and regeneration, consistent with its 
predominant presence in pre-treatment samples.

In GO enrichment analysis (Fig.  4H), Mac-C1QC 
was enriched in gene sets related to the processing and 
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presentation of exogenous peptide antigens through MHC 
class II, underscoring its pivotal role in antigen processing 
and presentation, specifically regarding MHC class II-medi-
ated presentation of exogenous peptide antigens. This sug-
gests that Mac-C1QC is likely to play a crucial role in T cell 
activation and the initiation of adaptive immune responses. 
Mac-HSP was enriched in gene sets associated with proton 
motive force-driven ATP synthesis, purine ribonucleoside 
triphosphate, and purine nucleoside triphosphate metabolic 
processes. The proton motive force-driven ATP synthesis is 
a key step in mitochondrial oxidative phosphorylation, indi-
cating that Mac-HSP is likely to be highly active in nucleic 
acid synthesis and cell signaling.

Lastly, we conducted a comprehensive exploration of 
metabolic differences among the three macrophage subclus-
ters utilizing scMetabolism package (Fig. 4I). The results 
indicated that Mac-SPP1 exhibited the activation of multiple 
metabolic pathways, including citrate cycle (TCA cycle), 
pentose phosphate pathway, and glycolysis/gluconeogenesis. 
These metabolic characteristics imply that Mac-SPP1 cells 
constitute a metabolically active macrophage subcluster, 
potentially engaged in complex energy demands and meta-
bolic reprogramming.

To investigate the characteristics of macrophage subtype 
differentiation, we employed the CytoTRACE tool to analyze 
the cellular stemness among various macrophage subtypes 
(Fig. 5A). The results indicated that Mac-C1QC exhibited a 
higher level of cellular differentiation compared to two other 
subtypes, representing the final stage of macrophage dif-
ferentiation (Fig. 5B). Subsequently, we utilized the Mono-
cle tool to perform pseudotime analysis of the macrophage 
subtypes (Fig. 5C), which shown the distribution of the three 
macrophage subclusters (Fig. S2D). As the pseudotime trajec-
tory progressed, the expression changes of markers associ-
ated with the macrophage subtypes (C1QC, HSPA6, SPP1) 

were shown, as shown in this figure (Fig. 5D). Notably, C1QC 
exhibited a similar expression pattern to HSPA6, while SPP1 
displayed a similar pattern to LGALS9, with contrasting trends 
between the two pairs. The pseudotime trajectory plot, based 
on the expression levels of SPP1 and LGALS9, demonstrated 
a remarkably similar distribution of high expression regions 
for both genes (Fig. S2E). Furthermore, Mac-C1QC and Mac-
SPP1 were identified as the most predominant macrophage 
subclusters in post-treatment samples. Collectively, these find-
ings suggest that Mac-SPP1 may be associated with resistance 
to NACI, while Mac-C1QC may hold greater significance in 
the context of NACI treatment.

Bulk transcriptome sequencing analysis confirms 
the association between macrophage subset 
and resistance to NACI in ESCC

We conducted transcriptome sequencing on tumor specimens 
obtained from 32 patients diagnosed with ESCC who under-
went NACI, with their clinical information shown in Table 1. 
Based on pathological TRG scores of postoperative specimens, 
samples with scores of 0 and 1 were categorized into respond-
ers, whereas those with scores of 2 and 3 were categorized into 
non-responders. Utilizing our transcriptome sequencing data, 
we identified a total of 1,346 DEGs between non-responders 
and responders, with 511 genes upregulated in responders and 
835 genes upregulated in non-responders (Fig. 6A). The heat-
map of DEGs demonstrated distinct clustering of samples from 
non-responders and responders (Fig. 6B). We subsequently 
performed KEGG enrichment analysis on identified DEGs. 
Genes that were highly expressed in non-responders (Fig. 6C) 
were enriched in pathways including cytokine-cytokine recep-
tor interaction, transcriptional misregulation in cancer, and 
viral protein interaction with cytokine and cytokine receptor. 
In contrast, genes that were highly expressed in responders 
(Fig. 6D) were enriched in pathways such as cytoskeleton in 
muscle cells and calcium signaling pathway. These findings 
suggest that non-responders exhibit significant inflammatory 
responses, abnormal immune system activation, and dysregu-
lation of metabolic and transcriptional processes.

Next, CIBERSORT deconvolution algorithm was employed 
to analyze the immune microenvironment between non-
responders and responders (Fig. 6E). There were no statisti-
cally significant differences in the proportions of the majority 
of immune cell types between two groups. However, non-
responders exhibited a significantly higher composition of 
“Macrophage M0” compared to responders, suggesting that 
genes associated with “Macrophage M0” may correlate with 
resistance to NACI in ESCC.

Fig. 2   Single-cell landscape of tumor microenvironment of ESCC 
and analysis of cell–cell communication between NR and R. A 
UMAP plot illustrates the cellular distribution across six samples. B 
UMAP plot displays the distribution of 13 cell populations within the 
tumor microenvironment, distinguished by different colors. C Heat-
map presents the average expression levels of characteristic marker 
genes used to distinguish among cell populations. D Bar graph illus-
trates the total number (left) and strength (right) of ligand-receptor 
interactions between NR and R. E Network diagram compares the 
differences in the intensity of cell communication between NR and 
R, with the thickness of lines representing the levels of strength. The 
blue lines indicate stronger communication in NR, while the red lines 
represent stronger communication in R. F Heatmap illustrates the 
communication differences between different cell populations in NR, 
with vertical axis representing ligand cells and horizontal axis repre-
senting receptor cells. G Comparison of the incoming and outgoing 
interaction intensities among cell populations in NR and R
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The characteristic gene set for SPP1+ macrophages 
is identified by integrating bulk and single‑cell 
RNA‑seq data

The WGCNA algorithm was employed to modularize gene 
expression across all patients to identify the core gene set 
most closely associated with “Macrophage M0”. A soft 
threshold of 12 was selected (Fig. 7A), and the clustering 
dendrogram revealed a total of 38 gene modules (Fig. 7B). 
The violet module, which contains 61 genes, exhibited 
a strong correlation with “Macrophage M0” (Fig. 7C). 
Subsequently, we calculated and visualized the correlation 
matrix between the violet module and individual genes, 
along with the phenotypic correlation. It was shown that 
genes highly correlated with the traits also played critical 
roles within the key module (Fig. 7D). Based on the sig-
nificant p values of gene-trait relationships, 58 hub genes 
were identified from the 61 genes in the violet module. 
Subsequently, we conducted GO enrichment analysis on 
these 58 genes (Fig. 7E), identifying the enriched terms 
such as response to macrophage colony-stimulating fac-
tor, lipoprotein catabolic process, and plasma lipoprotein 
particle clearance. Thus, this module is likely associated 
with alterations in lipid metabolism and macrophage activ-
ity. Furthermore, the PPI network analysis highlighted 
TREM2, APOE, MMP9, SPP1, CTSB, CDST, CHIT1, 
and APOC1 as hub genes, indicating their potential sig-
nificance (Fig. 7F).

To investigate which cell population is associated with 
“Macrophage M0” characteristic gene set, we utilized 
AUCell to evaluate different cell populations derived 
from the aforementioned scRNA-seq data (Fig. 7G). The 
AUC score for macrophage cell population was signifi-
cantly higher than that of the other cell populations. More 
importantly, Mac-SPP1 score was significantly higher than 
that of both Mac-C1QC and Mac-HSP (Fig. 7H), whereas 
no significant difference was observed in the AUC values 
between Mac-C1QC and Mac-HSP. This indicates that the 
gene set associated with “Macrophage M0” is character-
istic of Mac-SPP1.

Public database validation confirms that SPP1+ 
macrophages are associated with immunotherapy 
resistance in ESCC

To investigate whether there were differences in the pro-
portions of Mac-SPP1, Mac-C1QC, and Mac-HSP between 
non-responders and responders in the clinical bulk tran-
scriptome data, we employed the deconvolution algorithm 
CIBERSORTx to generate a macrophage profile from the 
previously mentioned scRNA-seq data (Fig. 8A). Non-
responders exhibited a higher proportion of Mac-SPP1, 
whereas responders demonstrated a greater proportion of 
Mac-C1QC, with negligible presence of Mac-HSP in both 
groups. Due to the limited availability of single-cell samples 
from ESCC following NACI treatment, a similar distribution 
of macrophage subsets as in bulk RNA-seq was not found in 
the scRNA-seq data. Nevertheless, the markedly low abun-
dance of Mac-HSP in post-treatment ESCC samples was 
observed in both scRNA-seq data and our transcriptomic 
findings. Correlation analysis revealed a significant negative 
correlation between the proportions of Mac-SPP1 and Mac-
C1QC (Fig. 8B, Fig. S2F), which aligns with the conclu-
sions derived from the pseudotime analysis of macrophage 
subsets.

Finally, we aim to further validate our findings in public 
databases. We identified 12 genes through the intersection 
of the DEGs between non-responders and responders in bulk 
transcriptomic data and the genes within the violet mod-
ule (Fig. 8C), among which SPP1 and MMP9 are pivotal 
genes (Fig. 8D). Based on expression characteristics of T 
cell dysfunction and exclusion, Tumor Immune Dysfunc-
tion and Exclusion (TIDE) analysis predicts immunotherapy 
responses. In the TCGA cohort, ESCC patients were divided 
into two groups according to the median score based on the 
intersected genes and then subjected to TIDE analysis. The 
group with higher scores had elevated TIDE scores, suggest-
ing a greater likelihood of developing resistance to immu-
notherapy (Fig. 8E). Subsequently, we conducted a similar 
analysis on GSE53625 dataset, yielding consistent conclu-
sions with those from TCGA database (Fig. 8F).

Discussion

Increasing evidence indicates that immunosuppressive 
components within the TME play a pivotal role in confer-
ring resistance to immunotherapy [30]. The TME of ESCC 
constitutes a highly immunosuppressive environment, pre-
senting substantial challenges to the eradication of cancer 
cells and the induction of antitumor immunity [31]. TAMs, 
as a principal component of TME, exhibit considerable 
plasticity and heterogeneity, and can facilitate cancer cell 
survival, induce angiogenesis, and suppress CD8+ T cell 

Fig. 3   Cell–cell communication between macrophages and other cell 
populations. A Differences in various signaling pathways in mac-
rophages between NR and R. B Differences in the overall signaling 
pathway between NR and R. C Heatmap illustrates the incoming and 
outgoing signaling patterns of NR and R, with color intensity repre-
senting relative strength of different signaling pathways. D-F Net-
work diagram displays GALECTIN(D), SPP1(E) and MIF(F) signal-
ing pathway network in NR and R. G Communication probabilities 
of important ligand-receptor pairs between macrophages and T cells 
in NR. The color of dots represents the communication probabil-
ity, while the size of dots indicates p value. H, I Comparison of the 
expression levels of SPP1(H) and LGALS9(I) among different cell 
populations
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function through cell–cell interactions, inhibitory cytokine 
secretion, and upregulation of immune checkpoints, thereby 
playing a significant role in treatment resistance [32]. Nev-
ertheless, the roles of distinct macrophage subsets in the 
NACI treatment of ESCC remain ambiguous. Single-cell 
technologies have empowered researchers to delineate cell 
populations based on unique transcriptomic characteristics, 
thereby revealing their diverse biological significance.

Our analysis revealed that in the non-responder receiving 
NACI, the GALECTIN signaling pathway in macrophages 
was significantly enhanced, interacting with CD8+ T cells 
and CD4+ T cells through receptors such as CD44, CD45, 

Fig. 4   Single-cell RNA-seq reveals the characteristics of macrophage 
subclusters. A UMAP plot displays three distinct subclusters of mac-
rophages. B Heatmap shows the average expression levels of charac-
teristic marker genes used to distinguish different macrophage sub-
clusters. C Heatmap displays the Ro/e index to compare the tissue 
distribution preferences of the three macrophage subclusters. D Com-
parison of the expression levels of SPP1 and LGALS9 among differ-
ent macrophage subclusters. E–F Comparison of M2(E) and M1(F) 
polarization signature scores among the three macrophage subclus-
ters. G Heatmap illustrates the different pathways that are enriched in 
the DEGs of three macrophage subclusters. H GO enrichment analy-
sis of differentially expressed genes among macrophage subclusters. 
I Comparison of metabolic pathways among three macrophage sub-
clusters
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Fig. 5   Pseudotime analysis of macrophage subclusters. A, B 
CytoTRACE detects differences in the degree of differentiation 
among macrophage subclusters. C Differences in the changes and 
distribution of pseudotime trajectories among the three macrophage 
subclusters. D The waveform plot illustrates the density changes of 

the three macrophage subclusters during the pseudotime process. The 
heatmap displays the differential gene expression changes and cluster-
ing of the three macrophage subclusters during the pseudotime pro-
cess. The left panel shows the expression patterns of marker genes 
and LGALS9 during the pseudotime process
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and HAVCR2. Similarly, SPP1 signaling was also mark-
edly pronounced, interacting with CD8+ T cells via recep-
tors including CD44, ITGB1, ITGAV, and ITGA5. SPP1, 
also known as osteopontin, is a critical extracellular matrix 
protein that plays a significant role in various biological pro-
cesses, including cell adhesion, migration, and proliferation 
[33]. Recent studies have demonstrated that SPP1 plays a 
crucial role in the initiation and progression of many cancers 
[34–36]. High levels of SPP1 have been detected in various 
types of cancer and are associated with poor prognosis, act-
ing as a potential biomarker and therapeutic target [37–39]. 
SPP1 has also been shown to be involved in the regulation 
of the TME [40]. The interaction between SPP1 and the 
cell surface receptor CD44 can inhibit T cell activation and 
proliferation, thereby promoting tumor immune evasion 
[41]. Likewise, LGALS9, the gene encoding galectin-9, 
has been documented to be implicated in tumor progression 
[42]. The LGALS9-CD44 interaction has been demonstrated 
to enhance the differentiation and maintenance of suppres-
sive regulatory T cells [43]. Thus, it may provide a poten-
tial strategy to reverse the immunosuppression in ESCC by 
attenuating these signaling pathways through the downregu-
lation of CD44 expression.

Furthermore, we observed that in the non-responder, 
macrophages received more robust MIF signals from 
CD8+ T cells and epithelial cells via CD74, CD44, and 
CXCR4. MIF is a multifunctional molecule that functions 
as a pro-inflammatory factor and chemokine, regulating 
cellular proliferation, angiogenesis, and fibrosis [44]. 
Research has demonstrated that MIF can enhance tumor 
cell proliferation by influencing the tumor suppressor gene 
p53 [45]. MIF secreted by tumor cells can promote the 
formation of myeloid-derived suppressor cells (MDSCs), 
which subsequently inhibit the proliferation and antitumor 
functions of CD8+ T cells [46]. Additionally, MIF may 
contribute to chemotherapy resistance [47]. Therefore, 
targeting MIF not only directly inhibits tumor cell growth 
but also suppresses the generation of MDSCs, potentially 
reversing the tumor immunosuppressive microenvironment 
and enhancing the efficacy of NACI in ESCC.

In this study, we identified three macrophage subsets 
in ESCC; among these, Mac-SPP1 exhibited elevated lev-
els of SPP1 and LGALS9 and was metabolically active 
through various pathways. Previous research has indicated 
that Mac-SPP1 is abundant in cancer, displaying increased 
M2 signaling, and is generally associated with a poor 
prognosis [48]. However, in our study, we did not observe 
characteristics of M2 polarization in Mac-SPP1, which 
may be attributed to the reversal of TAM M2 polarization 
induced by NACI. In contrast to Mac-SPP1, although Mac-
C1QC has been implicated in predicting poor prognosis 
in various cancers, there is also evidence suggesting that 
Mac-C1QC represents an antitumor immune cell popula-
tion [49, 50]. In our study, Mac-C1QC exhibited higher 
expression levels of inflammatory cytokines, including 
IL1B, CXCL1, CXCL2, CXCL3, CXCL8, and CCL3. 
CXCL1, CXCL2, and CXCL3 bind to the chemokine 
receptor CXCR3, inducing the recruitment of granulocytes 
to sites of injury or infection, thereby triggering inflamma-
tory responses [51]. CCL3 can bind to CCR1, CCR3, and 
CCR5, which are involved in recruiting monocytes and 
lymphocytes during inflammation [52]. Due to this, Mac-
C1QC may play an active role in recruiting and regulat-
ing immune cells during tumor-associated inflammation. 
Additionally, enrichment analysis of Mac-C1QC indicated 
its efficient antigen-presenting function, suggesting that it 
is a primary macrophage subset responsible for clearing 
apoptotic cells. Previous studies have also confirmed that 
the C1Q molecule can enhance the phagocytic capacity of 
macrophages [53]. Our findings suggest that Mac-C1QC 
is an important antigen-presenting macrophage subset that 
promotes T cell activation in esophageal cancer, revealing 
its significant antitumor role within the TME. Understand-
ing the mechanisms by which Mac-C1QC regulates tumor 
immune responses represents a promising avenue for 
future research. Mac-HSP is primarily found in untreated 

Table 1   Clinical characteristics 
of ESCC patients (N = 32)

CPS combined positive score, 
TRG​ Tumor Regression Grade, 
NR non-responders, R respond-
ers

Characteristics N (%)

Sex
 Female 5(15.6)
 Male 27(84.4)

Age
 < 60 11(34.4)
 ≥ 60 21(65.6)
cTNM
 II 14(43.7)
 III 7(21.9)
 IV 11(34.4)

CPS
 ≥ 10 12(37.5)
 < 10 19(59.4)
 Unknown 1(3.1)

TRG score
 0 11(34.4)
 1 2(6.2)
 2 10(31.3)
 3 9(28.1)

Pathological response
 NR 19(59.4)
 R 13(40.6)
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ESCC samples and exhibits high levels of M2 polarization, 
which is characteristic of classical TAMs cells. Studies 
have shown that Mac-HSP is present in a higher propor-
tion in ESCC compared to normal tissues and is negatively 
correlated with survival outcomes [54].

CIBERSORT analysis of clinical samples revealed a 
significantly higher proportion of “M0 macrophages” 

in non-responders. Given the heterogeneity of tumors, 
WGCNA was used to identify the most relevant gene set; 
additionally, we observed that this gene set was signifi-
cantly enriched in Mac-SPP1. These findings suggest a 
greater abundance of Mac-SPP1 in non-responders, as 
indicated by transcriptomic sequencing data. Furthermore, 
CIBERSORTx analysis demonstrated that responders 

Fig. 6   Differential analysis 
of clinical bulk transcriptome 
sequencing samples. A Volcano 
plot illustrates the differentially 
expressed genes between NR 
and R. B Heatmap displays 
the expression patterns of the 
200 genes with the largest fold 
changes between NR and R, 
along with their correlations 
with clinical traits. C, D KEGG 
analysis of genes that are highly 
expressed in NR(C) and R(D). 
E Box plot illustrates the differ-
ences in the proportions of 22 
immune cell types between NR 
and R as assessed by CIBER-
SORT. The box represents the 
interquartile range (IQR), show-
ing the middle 50% of the data, 
with a line for the median. The 
whiskers extend to the smallest 
and largest values within 1.5 
times the IQR from the quartiles
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Fig. 7   WGCNA identifies the “M0 macrophage” module, and 
AUCell reveals its association with Mac-SPP1. A Selecting a soft 
threshold to construct a gene co-expression network. B The cluster-
ing diagram illustrates the distribution of different gene modules. C 
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module. F PPI network constructed using genes from violet module. 
G, H AUC scores of violet module genes across different cell clusters 
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exhibited elevated levels of Mac-C1QC, and a significant 
negative correlation was observed between the propor-
tions of Mac-C1QC and Mac-SPP1. This finding further 
supports the positive role of Mac-C1QC in the response 
to NACI. Previous studies have classified patients into 
distinct groups based on the gene markers of Mac-C1QC 
and Mac-SPP1, revealing differences in prognoses, tumor 
stages, and levels of immune cell infiltration [55]. This 
underscores the functional heterogeneity exhibited by 
these two macrophage subtypes. Finally, TIDE analysis 
of the GEO and TCGA cohorts further validated that the 
presence of Mac-SPP1 is associated with unfavorable 
therapeutic outcomes.

Our study presents several limitations. For instance, the 
limited availability of single-cell samples of ESCC treated 
with NACI in public databases complicates the dissection 

of highly heterogeneous cell clusters at a finer resolution, 
which may lead to the oversight of other significant features. 
Future research will necessitate larger datasets to investigate 
the relationship between various cell subclusters and clini-
cal outcomes. Furthermore, our conclusions are predomi-
nantly derived from data mining and have yet to be validated 
through additional experimental studies. Future experimen-
tal research is essential to explore the specific mechanisms 
that various macrophage subclusters exert their functions 
and to identify more precise targets for enhancing clinical 
outcomes.

As a result, we identify the distinct roles of macrophage 
subclusters in NACI-treated esophageal cancer. Mac-SPP1 
may contribute to NACI resistance through the secretion 
of SPP1 and LAGLS9, thereby inhibiting T cell response 
activity. Conversely, Mac-C1QC may play a crucial role 
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Fig. 8   Validation of the association between Mac-SPP1 characteris-
tics and immune therapy resistance using public transcriptome data-
bases. A Using CIBERSORTx to infer the proportions of three mac-
rophage subclusters in clinical bulk transcriptome sequencing data. 
The box represents the interquartile range (IQR), showing the mid-
dle 50% of the data, with a line for the median. The whiskers extend 
to the smallest and largest values within 1.5 times the IQR from the 
quartiles. B Heatmap displays the correlations between the propor-

tions of three macrophage subclusters in bulk transcriptome sequenc-
ing data. C Venn diagram shows the intersection between the genes in 
violet module and the differentially expressed genes between NR and 
R. D PPI network of the intersecting genes. E, F In TCGA(E) and 
GEO(F) datasets, groups with higher scores for the intersecting genes 
have higher TIDE scores, indicating poorer outcomes for immune 
therapy
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in the recruitment and regulation of immune cells. Our 
research offers novel insights for future therapeutic strate-
gies in ESCC.
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