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Alzheimer’s disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation
learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in
symptomatic mild cognitive impairment (MCI) and AD patients: the “diffuse-AD” (R1) dimension shows widespread brain atrophy,
and the “MTL-AD” (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely
known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the
presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively
unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes
unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in
differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle,
and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1),
and cancer (R1 and R2). Several of them were “druggable genes” for cancer (R1), inflammation (R1), cardiovascular diseases (R1),
and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with
R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen
our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are
associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction—
driven by genes different from APOE—which may collectively contribute to the early pathogenesis of AD. All results are publicly
available at https://labs-laboratory.com/medicine/.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common cause of
dementia in older adults and remains incurable despite many
pharmacotherapeutic clinical trials, including anti-amyloid
drugs [1, 2] and anti-tau drugs [3]. This is largely due to the
complexity and multifaceted nature of the underlying neuro-
pathological processes leading to dementia. The research
community has embraced several mechanistic hypotheses to
elucidate AD pathogenesis [4–6]. Among these, the amyloid
hypothesis has been dominant over the past decades and has
proposed a dynamic biomarker chain: extracellular beta-
amyloid (Aβ) triggers a cascade that leads to subsequent
intracellular neurofibrillary tangles, including hyperphosphory-
lated tau protein (tau and p-tau), neurodegeneration, including
medial temporal lobe atrophy, and cognitive decline [7, 8].

However, the amyloid hypothesis has been re-examined and
revised due to substantial evidence that questions its current
form [8–10]. While amyloid remains critical to AD development,
the amyloid cascade model has been continually refined as
other biological factors are discovered to influence the pathway
from its accumulation to cell death.
Cardiovascular dysfunction has been widely associated with an

increased risk for AD[11]. There is also growing evidence that
inflammatory [10–12] and neuroendocrine processes [5, 13]
influence pathways of amyloid accumulation and neuronal death.
The inflammation hypothesis claims that microglia and astrocytes
release pro-inflammatory cytokines as drivers, by-products, or
beneficial responses associated with AD progression and severity
[12–14]. The neuroendocrine hypothesis, first introduced in the
context of aging [15], has been extended to AD [16], where it
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proposes that neurohormones secreted by the pituitary and other
essential endocrine glands can affect the central nervous system
(CNS), which subsequently contribute to developing AD. For
example, Xiong and colleagues [17] recently found that blocking
the action of follicle-stimulating hormone in mice abrogates the
AD-like phenotype (e.g., cognitive decline) by inhibiting the
neuronal C/EBPβ–δ-secretase pathway. These findings emphasize
the need to further elucidate early brain and body changes well
before they lead to irreversible clinical progression [18].
Recent advances in artificial intelligence (AI), especially deep

learning (DL), applied to magnetic resonance imaging (MRI),
showed great promise in biomedical applications [19, 20]. DL
models discover complex non-linear relationships between
phenotypic and genetic features and clinical outcomes, thereby
providing informative imaging-derived endophenotypes [21]. In
particular, AI has been applied to MRI to disentangle the
neuroanatomical heterogeneity of AD with categorical disease
subtypes [22–26]. The genetic underpinnings [17, 27, 28] of this
neuroanatomical heterogeneity in AD are also complex and
heterogeneous. The most recent large-scale genome-wide asso-
ciation study [28] (GWAS: 111,326 AD vs. 677,633 controls) has
identified 75 genomic loci, including APOE genes, associated with
AD. However, such case-control group comparisons conceal
genetic factors that might contribute differentially to different
dimensions of AD-related brain change. More importantly, the
genetic variants that contribute to the initiation and early
progression of brain change in younger and asymptomatic
individuals are poorly understood.
In this study, we utilize a novel semi-supervised deep

learning approach, Surreal-GAN, to characterize the neuroana-
tomical heterogeneity of the disease. Unlike our previous
model, Smile-GAN [22], which categorized subtypes, Surreal-
GAN generates multiple continuous latent dimensional repre-
sentations, simultaneously accounting for spatial and temporal
disease heterogeneity, similar to what was accomplished in a
previous unsupervised clustering model known as Sustain [24].
These multi-dimensional scores reflect the co-expression level
of respective brain atrophy dimensions in the same patient; this
is biologically plausible, as brain diseases like AD often progress
continuously over a long disease trajectory. Refer to the method
(Surreal-GAN for disease heterogeneity) and Supplementary
eMethod 1 for methodological details of Surreal-GAN, compar-
isons to other subtyping methods, and strengths of semi-
supervised representation learning. We hypothesized that
genetic variants, potentially unrelated to APOE genes, con-
tribute to early manifestations of multiple dimensions of brain
atrophy in early asymptomatic stages. We first trained the
Surreal-GAN model to define the AD dimensions to test this
hypothesis in the late symptomatic stages. We then examined
their expression back to early asymptomatic stages. In our
previous study [29], we derived two neuroanatomical dimen-
sions (R1 and R2) by applying Surreal-GAN to the MCI/AD
participants (target population) and cognitively unimpaired
(CU) participants (reference population) from the Alzheimer’s
Disease Neuroimaging Initiative study (ADNI [30]). Herein, we
applied the trained model to three asymptomatic populations
and one symptomatic population: the general population
(N= 39,575; age: 64.12 ± 7.54 years) from the UK Biobank
(UKBB [31]) excluding demented individuals; the cognitively
unimpaired population (N= 1658; age: 65.75 ± 10.90 years) from
ADNI and the Baltimore Longitudinal Study of Aging study
(BLSA [32]); the cognitively unimpaired population with a family
risk (N= 343; age: 63.63 ± 5.05 years) from the Pre-symptomatic
Evaluation of Experimental or Novel Treatments for Alzheimer’s
Disease (PREVENT-AD [33]); the MCI/AD population (N= 1534;
age: 73.45 ± 7.69 years) from ADNI and BLSA. Refer to the
method (Study design and populations) and Table 1 for details of
the definition of these populations. Ta
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MATERIALS AND METHODS
Study design and populations
The current study consists of four main populations (Table 1), which were
jointly consolidated by the iSTAGING [34] and the AI4AD consortia (http://
ai4ad.org/): the iSTAGING consortium consolidated all imaging and clinical
data; imputed genotyping data were downloaded from UKBB; the AI4AD
consortium consolidated the whole-genome sequencing (WGS) data for
the ADNI study. The iSTAGING consortium is an NIH-funded effort that
systematically and statistically consolidates and harmonizes brain imaging
data for the study of aging and AD, including different ethnicity groups
and demographics, and covers the entire lifespan. The AI4AD consortium
aims to leverage the power of AI to study AD and aging, which also
consolidates WGS data across the USA. Supplementary eMethod 2 details
each population’s definition and inclusion criteria. Our goal is to
consolidate and harmonize large-scale lifespan imaging data to model
the full spectrum of Alzheimer’s disease and assess how the identified AD
dimensions are expressed across various stages of the disease, especially at
the early stages.

Image preprocessing
All T1w-weighted MR images were first corrected for magnetic field
intensity inhomogeneity [35]. A deep learning-based skull stripping
algorithm was applied for the removal of extra-cranial material. In total,
145 anatomical regions of interest (ROIs) were generated in gray matter
(GM, 119 ROIs), white matter (WM, 20 ROIs), and ventricles (6 ROIs)
using a multi‐atlas label fusion method [36] (Supplementary eMethod
3). The 119 ROIs were statistically harmonized by an extensively
validated approach, i.e., ComBat-GAM [37], using the entire imaging
data of iSTAGING. Supplementary eFig. 1 demonstrates the normality
check for the MUSE ROI (right accumbent area) before and after
statistical harmonization, illustrating that our statistical harmonization
enhanced the normality of ROIs across various studies. The harmonized
MUSE ROIs were then fit to Surreal-GAN to derive the dimensions.

Surreal-GAN for disease heterogeneity
Surreal-GAN [29] (Supplementary eFig. 2) dissects underlying disease-
related heterogeneity via a deep representation learning approach
under the principle of semi-supervised learning [22, 23]. At a high level,
its most fundamental novelty is that it provides a continuous
representation of the presence of multiple, non-exclusive abnormal
brain patterns in each individual, rather than clustering individuals into
one of many clusters, i.e., disease subtypes. More specifically, several
methodological advancements were considered compared to its
predecessor, Smile-GAN [22]. First, Surreal-GAN is to model neuroana-
tomical heterogeneity by considering both spatial and temporal (i.e.,
disease severity) variation using only cross-sectional MRI data.
Secondly, Surreal-GAN disentangles the neuroanatomical heterogene-
ity of AD by enabling patients to simultaneously exhibit multiple
distinct imaging patterns (i.e., high scores for expressing all these
patterns), resulting in high-dimensional scores across multiple dimen-
sions. Lastly, in contrast to prior probability-based clustering methods
like Smile-GAN, Surreal-GAN operates without the constraint that all
dimensional scores must sum to 1. This allows for a more normal
distribution of dimensional scores suited for GWAS (Supplementary
eFig. 3). Further methodological details are elaborated upon in
Supplementary eMethod 1.
Alternative clustering techniques, such as Sustain [24] and Bayesian

latent [38] methods, are available for deciphering the neuroanatomical
heterogeneity in AD [22–26, 39]. Surreal-GAN distinguishes itself from
these approaches based on fundamental methodological distinctions,
such as its utilization of semi-supervised deep learning compared to
the unsupervised approach of others [40]. Additionally, Surreal-GAN
generates continuous dimensions associated with distinct phenotypic
outcomes, allowing the simultaneous co-expression of multiple
patterns instead of categorizing patients into a single dominant
subtype or stage, as seen in other methods. Notably, the two
dimensions, R1 and R2, displayed correlations with the four subtypes
generated by Smile-GAN, particularly R2 exhibited a correlation with P3
(reflecting medial temporal lobe atrophy), and both R1 and R2
displayed correlations with P4 (representing global atrophy), as
depicted in Supplementary eFig. 4. These two dimensions capture
the individual-level manifestation of the two distinct imaging atrophy
patterns, contrasting them with healthy control groups within the ADNI
study across the AD spectrum.

Brain and clinical variable associations
We performed brain-wide associations for the 119 GM ROIs. For baseline
brain-wide associations, linear regression models were fitted with R1 and
R2 dimensions as independent variables, with each ROI as the dependent
variable, controlling for age, sex, intracranial volume (ICV), and/or diagnosis
as covariates.
We performed a two-step linear regression for longitudinal brain-wide

associations. First, we derived the individual-level age change rate using a
linear mixed-effects model. To this end, we included a participant-specific
random slope for age and random intercept; age and sex were treated as
fixed effects. Secondly, the same linear regression model as in baseline
brain associations was fitted with the age change rate as the independent
variable.
We also performed clinical variable association for all clinical variables

and neuropsychological testing available for each population, using the
same model in the baseline brain-wide associations. Bonferroni correction
of 119 GM ROIs was performed to adjust for the multiple comparisons. We
included various clinical variables across different studies, including AI-
derived imaging signatures, such as SPARE-AD [41], an imaging surrogate
for AD atrophy patterns, and SPARE-BA [42] for brain aging-related
atrophy. Other clinical variables also included cognitive scores (e.g., the
Rey Auditory Verbal Learning Test (RAVLT)), modifiable risk factors (e.g.,
BMI), and CSF biomarkers (Aβ42). The detailed 45 clinical variables are
presented in Supplementary Table 3.

Genetic analyses
Genetic analyses were performed for the WGS data from ADNI and the
imputed genotype data from UKBB [43]. Our quality check protocol is
detailed in Supplementary eMethod 4. This resulted in 1487 participants
and 24,194,338 SNPs in ADNI WGS data. For UKBB, we limited our analysis
to European ancestry participants, resulting in 33,541 participants and
8,469,833 SNPs [44–47].
Using UKBB data, we first estimated the SNP-based heritability using

GCTA-GREML [48], controlling for confounders of age (at imaging), age-
squared, sex, age-sex interaction, age-squared-sex interaction, ICV, and
the first 40 genetic principal components, following a previous pioneer
study [49]. In GWAS, we performed a linear regression for each
neuroanatomical dimension and included the same covariates as in the
heritability estimates. We adopted the genome-wide P-value threshold
(5 ×10−8) in all GWAS. The annotation of genomic loci (displayed by its
top lead SNP) and gene mappings, prioritized gene set enrichment, and
tissue specificity analyses were performed using FUMA (https://
fuma.ctglab.nl/, version: v1.3.8) (Supplementary eMethod 5 and 6). A
two-step procedure (Supplementary eMethod 7) was performed to
determine if an annotated genomic locus or gene was associated with
AD-related clinical traits. We calculated the polygenic risk scores (PRS)
[50] using both ADNI and UKBB genetic data (Supplementary eMethod
8). Finally, we constructed a target-drug-disease network for these
genes associated with R1 and R2 to identify these “druggable genes”
(Supplementary eMethod 9).

RESULTS
Two dominant dimensions of brain atrophy found in MCI and
AD
In MCI/AD patients, the “diffuse-AD” dimension (R1) showed
widespread brain atrophy without an exclusive focus on the
medial temporal lobe (Fig. 1A and Supplementary eTable 1 for p
values and effect sizes). In contrast, the “MTL-AD” dimension (R2)
displayed more focal medial temporal lobe atrophy, prominent in
the bilateral parahippocampal gyrus, hippocampus, and entorh-
inal cortex (Fig. 1A). All results, including p values and effect sizes
(Pearson’s correlation coefficient r), are presented in Supplemen-
tary eTable 1. The atrophy patterns of the two dimensions defined
in the symptomatic MCI/AD population (Fig. 1A) were present in
the asymptomatic populations, albeit with a smaller magnitude of
r (Supplementary eTables 1, 4 and 8). We presented the age
distribution (Supplementary eFig. 5A), as well as the expression of
R1 and R2, along with the population-level difference for the four
populations in Supplementary eFig. 5B–D.
At baseline, the R1-dominant group had 25.72% AD patients

(N= 222 out of 863); the R2-dominant group consisted of 30.10%
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AD patients (202 out of 671). Within a 7-year follow-up period, MCI
participants from both the R1-dominant and R2-dominant groups
progressed to AD, with the R2-dominant group exhibiting a higher
proportion of AD patients (40% vs. 25%) (Supplementary eFig.
6A, B); the two dominant dimensions developed independently
throughout the 7-year follow-up period (Supplementary eFig.
6C, D).

APOE genes are associated with R2 but not with R1 in the MCI/
AD population
In GWAS, the R2 dimension, but not R1, was associated with well-
established AD genomic loci (rs429358, chromosome: 19,
45411941; minor allele: C, p value: 1.05 × 10−11) and genes (APOE,

PVRL2, TOMM40, and APOC1) (Fig. 1B). The details of the identified
genomic locus and annotated genes are presented in Supple-
mentary eTable 2. The PRS of AD showed a slightly stronger
positive association with the R2 dimension [r= 0.11, −log10(p
value)= 3.14] than with the R1 dimension [r= 0.09, −log10(p
value)= 2.31, Supplementary eFig. 7]. The QQ plots of the baseline
GWAS are presented in Supplementary eFig. 8.

Clinical profiles of the R1 and R2 dimensions in the MCI/AD
population
Clinical association studies correlated the two dimensions with
45 clinical variables and biomarkers. Compared to the R1
dimension, R2 showed associations, to a larger extent than R1,

Fig. 1 The manifestation of the R1 and R2 dimensions of brain atrophy in the MCI/AD population. A Brain association studies reveal two
dominant brain atrophy dimensions. A linear regression model was fit to the 119 GM ROIs at baseline for the R1 and R2 dimensions. The
−log10(p value) of each significant ROI (Bonferroni correction for the number of 119 ROIs: −log10(p value) >3.38) is shown. A negative value
denotes brain atrophy with a negative coefficient in the linear regression model. All the statistics (r, Pearson’s correlation coefficient) are
presented in Supplementary Table 1. The brain maps denote the signed p value, and the range of r for each dimension is also shown. Of note,
the sample size (N) for R1 and R2 is the same for each ROI. B Genome-wide association studies demonstrate that the R2, but not R1, dimension
is associated with variants related to APOE genes (genome-wide p value threshold with the red line: −log10(p value) >7.30). We associated each
common variant with R1 and R2 using the whole-genome sequencing data from ADNI. Gene annotations were performed via positional,
expression quantitative trait loci, and chromatin interaction mappings using FUMA [58]. We then manually queried whether they were
previously associated with AD-related traits in the GWAS Catalog [55]. Red-colored loci/genes indicate variants associated with AD-related
traits in previous literature. C Clinical association studies show that the R2 dimension is associated to a larger extent with AD-specific
biomarkers, including SPARE-AD [41], an imaging surrogate to AD atrophy patterns, and APOE ε4, the well-established risk allele in sporadic
AD. The R1 dimension is associated to a larger extent with aging (e.g., SPARE-BA [42], an imaging surrogate for brain aging) and vascular-
related biomarkers (e.g., WML white matter lesion). The same linear regression model was used to associate the R1 and R2 dimensions with
the 45 clinical variables, including cognitive scores, modifiable risk factors, CSF biomarkers, disease/condition labels, demographic variables,
and imaging-derived phenotypes. The radar plot shows representative clinical variables; results for all 45 clinical variables are presented in
Supplementary eTable 3. The SPARE-AD and SPARE-BA scores are rescaled for visualization purposes. The gray-colored circle lines indicate the
p value threshold in both directions (Bonferroni correction for the 45 variables: −log10(p value) >2.95). A positive/negative −log10(p value)
value indicates a positive/negative correlation (beta). The transparent dots represent the associations that do not pass the Bonferroni
correction; the blue-colored dots and red-colored dots indicate significant associations for the R1 and R2 dimensions, respectively.
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with SPARE-AD and RAVLT. SPARE-AD quantifies the presence of
a typical imaging signature of AD-related brain atrophy, which
has been previously shown to predict clinical progression in
both CU and MCI individuals [41]. RAVLT measures episodic
memory, a reliable neuropsychological phenotype in AD, which
is also correlated with medial temporal lobe atrophy [51, 52].
The R1 dimension was associated to a greater extent with 1)
SPARE-BA, which captures the individualized expression of
advanced brain age from MRI [42]; 2) white matter lesions
(WML), which are commonly associated with vascular risk
factors and cognitive decline [53], and 3) whole-brain uptake of

18F-fluorodeoxyglucose (FDG) PET, which is a biomarker of
brain metabolic function and atrophy. Both dimensions were
positively associated with cerebrospinal fluid (CSF) levels of tau
and p-tau and negatively associated with the CSF level of Aβ42
[54] (Fig. 1C), as well as the whole-brain standardized uptake
value ratio of 18F-AV-45 PET (Supplementary eTable 3). Results
for all 45 clinical variables, including cognitive scores, modifi-
able risk factors, CSF biomarkers, disease/condition labels,
demographic variables, and imaging-derived phenotypes, are
presented in Supplementary eTable 3 for p values and effect
sizes (i.e., beta coefficients).

J. Wen et al.

5

Translational Psychiatry          (2024) 14:420 



Clinical profiles of the R1 and R2 dimensions in the general
population
Brain association studies confirmed the presence of the two
atrophy patterns in the general population (Fig. 2A and
Supplementary eTable 4 for p values and effect sizes). In clinical
association studies, the R1 dimension was significantly associated,
to a larger extent than R2, with cardiovascular (e.g., triglycerides)
and diabetes factors (e.g., Hba1c and glucose), executive function
(TMT-B), intelligence, physical measures (e.g., diastolic blood
pressure), SPARE-BA [−log10(p value)= 236.89 for R1 and −46.35
for R2] and WML [−log10(p value)= 120.24 for R1 and 2.06 for R2].
In contrast, the R2 dimension was more significantly associated
with SPARE-AD [−log10(p value)= 136.01 for R1 and 250.41 for R2]
and prospective memory (Fig. 2B). Results for all 61 clinical
variables, including cardiovascular factors, diabetic blood markers,
social demographics, lifestyle, physical measures, cognitive scores,
and imaging-derived phenotypes, are presented in Supplemen-
tary eTable 5 for p values and effect sizes.

Twenty-four genomic loci and 77 genes unrelated to APOE are
associated with the R1 and R2 dimensions in the general
population
GWAS identified 24 genomic loci, 14 of which are newly identified
(not previously associated with any traits in GWAS Catalog), and
77 positionally and functionally mapped genes unrelated to APOE
associated with R1 or R2. In particular, the R1 dimension was
significantly associated with 11 genomic loci and 49 genes. Eight
genes (blue-colored genes in Fig. 2D) were previously associated
with AD-related traits; 12 newly identified loci/genes have not
been previously associated with any clinical traits. The R2
dimension was significantly associated with 13 genomic loci and
40 annotated genes. 13 genes (red-colored genes in Fig. 2D) were
associated with AD-related traits; 8 loci/genes were newly
identified (Fig. 2C and Supplementary eTable 6). These genomic
loci and genes were also associated with many clinical traits in the
literature from the GWAS Catalog [55]. These included hormones
(e.g., sex hormone-binding globulin measurement vs. CCKN2C),
inflammatory factors (e.g., macrophage inflammatory protein 1b
measurement vs. CDC25A), imaging-derived phenotypes (e.g.,
cerebellar volume measurement from MRIs vs. DMRTA2), and

psychiatric disorders (e.g., unipolar depression vs. ASTN2) (Fig. 2D).
Details of the GWAS Catalog results are presented in Supplemen-
tary eFile 1. The Manhatton and QQ plots of the baseline GWAS
are presented in Supplementary eFig. 9. The LDSC [56] intercept of
the two GWASs was close to 1, indicating no substantial genomic
inflation (R1= 1.0032 ± 0.0084; R2= 1.023 ± 0.0084). Furthermore,
our main GWASs using European ancestry were robust in three
sensitivity check analyses: split-sample, sex-stratified, and mixed-
effect [57] linear model analyses. Detailed results are presented in
Supplementary eText 1 and Supplementary eFile 2–4.
The two dimensions were significantly heritable in the general

population based on the SNP-based heritability estimates (R1:
h2= 0.49 ± 0.02; R2: h2= 0.55 ± 0.02). The PRS of AD showed a
marginally positive association with the R2 dimension [−log10(p
value)= 1.42], but not with the R1 dimension [−log10(p
value)= 0.47 < 1.31] in this population.

Genes associated with the R1 and R2 dimensions are
overrepresented in organs beyond the brain in the general
population
Tissue specificity analyses test whether the mapped genes are
overrepresented in differentially expressed gene sets (DEG) in one
organ/tissue compared to all other organs/tissues using different
gene expression data [58]. The genes associated with the R1
dimension were overrepresented in the caudate, hippocampus,
putamen, amygdala, substantia nigra, liver, heart, and pancreas;
the genes associated with the R2 dimension were overrepre-
sented in the caudate, hippocampus, putamen, amygdala, anterior
cingulate, pituitary, liver, muscle, kidney, and pancreas (Fig. 3A
and Supplementary eFig. 10). Genes in DEG over-expressed in the
heart were only associated with R1, while those in DEG over-
expressed in the pituitary gland, muscle, and kidney were unique
in R2. The expression values of every single gene for all tissues are
presented in Supplementary eFig. 11.

Genes associated with the R1 and R2 dimensions are enriched
in key biological pathways in the general population
Genes associated with the two dimensions were enriched in
different biological pathways. Genes associated with the two
dimensions were implicated in several types of cancer, including

Fig. 2 The expression of the R1 and R2 dimensions in the general population. A Brain association studies confirm the presence of the two
dimensions in the general population: the R1 dimension shows widespread brain atrophy, whereas the R2 dimension displays focal medial
temporal lobe atrophy. p value and effect sizes (r, Pearson’s correlation coefficient) are presented in Supplementary eTable 4. The brain maps
denote the signed p value, and the range of r for each dimension is also shown. Of note, the sample size (N) for R1 and R2 is the same for each
ROI. B Clinical association studies further show that the R2 dimension is associated with prospective memory, and the R1 dimension is
associated with several cognitive dysfunctions, cardiovascular risk factors (e.g., triglycerides), and diabetes (e.g., HbA1c). The same linear
regression models were used to associate the R1 and R2 dimensions with the 61 clinical variables, including cardiovascular factors, diabetic
blood markers, social demographics, lifestyle, physical measures, cognitive scores, and imaging-derived phenotypes. The radar plot shows
representative clinical variables; all other results are presented in Supplementary eTable 5. The gray circle lines indicate the p value threshold
in both directions (Bonferroni correction for the 61 variables: −log10(p value) >3.08). A positive/negative −log10(p value) value indicates a
positive/negative correlation (beta). Transparent dots represent the associations that do not pass the Bonferroni correction; the blue-colored
dots and red-colored dots indicate significant associations for the R1 and R2 dimensions, respectively. C Genome-wide association studies
demonstrate that the R2 dimension is associated to a larger extent with genomic loci and genes previously associated with AD-related traits in
the literature (genome-wide p value threshold with the red line: −log10(p value) >7.30). Each genomic locus is represented by its top lead SNP.
The R1 dimension identified 8 (blue-colored in bold) out of the 49 mapped genes associated with AD-related traits. The R2 dimension
identified 13 (red-colored in bold) out of 40 mapped genes associated with AD-related traits. Gene annotations were performed via positional,
expression quantitative trait loci, and chromatin interaction mappings using FUMA (Supplementary eTable 6 for all mapped genes) [58]. The
genomic loci and mapped genes were manually queried in the GWAS Catalog [55] to determine whether they were previously associated with
AD (newly identified or not). * denotes that the genomic locus is newly identified. D Besides AD-related traits, the genes and genomic loci in
the two dimensions were also associated with other clinical traits, including inflammation, neurohormones, and imaging-derived phenotypes,
as shown in the literature from the GWAS Catalog [55]. The flowchart first maps the genomic loci and genes (left) identified in the two
dimensions onto the human genome (middle). It then links these variants to any clinical traits identified in previous literature from the GWAS
Catalog (right). In the middle of the human genome, we show chromosomes 1 to 22 (above to below); the blue and red-colored genes are AD-
related for the R1 and R2 dimensions, respectively. The black-colored genes (C) are not annotated. INF inflammation, PD psychiatric disorder,
PM physical measure; “New” (corresponding to the newly identified loci/genes in C) indicates that the locus or gene was not associated with
any traits in the literature. DSST Digit Symbol Substitution Test, TMT Trail Making Test, CRP C-reactive protein, AD Alzheimer’s disease, PD
Parkinson’s disease, INF inflammation, IDP imaging-derived phenotype.
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up-regulation of fibroblast, breast cancer, and neuroblastoma
tumors (Fig. 3B), which indicate a certain extent of genetic
overlaps and shared pathways that may explain the intriguing
inverse relationship between AD and cancer [59]. Genes
associated with the R1 dimension were implicated in pathways

involved in the down-regulation of macrophages (Fig. 3B), which
are involved in the initiation and progression of various
inflammatory processes, including neuroinflammation and AD
[13]. Inflammation is also known to be associated with vascular
compromise and dysfunction. This further concurs with the
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stronger cardiovascular profile of R1, especially with increased
WML and predominant SPARE-BA increases. Genes associated
with the R2 dimensions were enriched in pathways involved in AD
onset, hippocampus-related brain volumes, and dendritic cells
(Fig. 3B). In particular, dendritic cells may regulate amyloid-
β-specific T-cell entry into the brain [60], as well as the
inflammatory status of the brain [61]. The gene set enrichment
analysis results are presented in Supplementary eTable 7.

Genes associated with the R1 and R2 dimensions show
potential for drug discovery and repurposing
We queried whether these 77 genes associated with R1 and R2
are “druggable genes” from the constructed target-drug-
disease network—the target genes express proteins to bind
drug-like molecules, and the drug is at any stage of the clinical
trial. For the 49 R1-annotated genes, 9 genes were targets for 15
drugs and drug-like molecules, treating various cancer, inflam-
mation, and cardiovascular dysfunctions. For the 40 R2-
annotated genes, 6 genes were targets for 7 drugs developed
for diseases of the nervous system, such as Parkinson’s (Fig. 3C).
The pharmacological mechanisms targeted by these identified
drugs are largely related to the pathogenesis of AD in previous
literature. For example, FDA-approved Niacin [R1; target gene:
NNMT; Anatomical Therapeutic Chemical (ATC) code: C10AD02]
is a B vitamin used to treat various deficiencies and diseases in
the cardiovascular system, including myocardial infarctions [62],
hyperlipidemia [63], and coronary artery disease [64]. Interest-
ingly, a recent study [65] showed that Niacin detained AD
progression in a 5xFAD mice model. The niacin receptor HCAR2
modulates microglial response to amyloid deposition, ulti-
mately alleviating neuronal loss and cognitive decline. Other
drugs for potential drug repurposing of AD are the FDA-
approved Docetaxel (R1; target gene: MAP4; ATC: L01CD02) and
Paclitaxel (R1; target gene: MAP4; ATC: L01CD01), which both
target various cancers, including breast cancer and metastatic
prostate cancer. The intriguing inverse relationship between AD
and cancer has long been established, but the underlying
shared etiology remains unclear [43]. One hypothesis was that
microtubule-associated protein tau—a pathological biomarker
of AD—was associated with resistance to Docetaxel in certain
cancer treatments [66]. In addition, Docetaxel impacted the
blood-brain barrier function of breast cancer brain metastases
[67]. Another drug called KM-819 (R2; target gene: FAF1) is
currently in Phase 1 for a clinical trial of Parkinson’s disease [68],
which aims to suppress α-synuclein-induced mitochondrial

dysfunction [69], consistent with the mitochondrial hypothesis
[70] of AD. To sum up, R1 and R2 show distinct landscapes of
the “druggable genome” [71] on drug discovery and repurpos-
ing [72] for future clinical translation.

The longitudinal rate of change in the R2 dimension, but not
R1, is marginally associated with the APOE ε4 allele, tau in
cognitively unimpaired individuals
Using cognitively unimpaired participants from ADNI and BLSA,
longitudinal brain association studies showed that the rate of
change in the R1 dimension was associated with the change of
brain volume in widespread brain regions. In contrast, the rate of
change in the R2 dimension was associated with the change of
brain volume in the focal medial temporal lobe (Fig. 4A and
Supplementary eTable 8 for p values and effect sizes). This further
indicates that the two dominant patterns discovered cross-
sectionally also progress in consistent directions longitudinally.
The two dimensions were not associated with CSF biomarkers
(Aβ42, tau, and p-tau) and the APOE ε4 allele (rs429358) at baseline
[−log10(p value) < 1.31)]. The rate of change of the R2 dimension,
but not R1, was marginally [nominal threshold: −log10(p value)
>1.31] associated with the APOE ε4 allele, the CSF level of tau, and
p-tau (Fig. 4B and Supplementary eTable 9 for p values and effect
sizes), but they did not survive the Bonferroni correction [−log10(p
value)= 2.95]. The longitudinal rate of change of both dimensions
was negatively associated [−log10(p value) >2.95] with the total
CSF level of Aβ42.
We tested these associations using cognitively unimpaired

individuals with a high risk of AD based on their family history
from the PREVENT-AD cohort. Similarly, at baseline, the two
dimensions were not associated with CSF biomarkers or the APOE
ε4 allele (rs429358). The longitudinal rate of change in the R2
dimension, but not R1, was marginally [nominal threshold:
−log10(p value) >1.31] associated with the APOE ε4 allele [−log10(p
value)= 1.92], the CSF level of tau [−log10(p value)= 1.65], and
p-tau [−log10(p value)= 1.66].
Longitudinal brain association studies also confirmed the

longitudinal progression of the two dimensions in the MCI/AD
population (Supplementary eFig. 12A). The rates of change in the
two dimensions were both associated with APOE ε4 [−log10(p
value)= 12.54 for R1 and 9.05 for R2] in GWAS (Supplementary
eFig. 12B), and related to CSF levels of tau [−log10(p value)= 16.47
for R1 and 9.73 for R2], p-tau [−log10(p value)= 19.13 for R1 and
10.81 for R2], and Aβ42 [−log10(p value)= 13.64 for R1 and 13.55
for R2] (Supplementary eFig. 12C).

Fig. 3 Tissue specificity and biological pathway enrichment analysis of the R1 and R2 dimensions in the general population. A Tissue
specificity analyses show that genes associated with the two dimensions of neurodegeneration are overrepresented in organs/tissues beyond
the human brain (R1 and R2). The unique overrepresentation of genes in differentially expressed gene sets (DEG) in the heart (R1) and the
pituitary gland, muscle, and kidney (R2) may imply the involvement of inflammation [12, 75, 76] and neurohormone dysfunction [15–17],
respectively. The GENE2FUNC [58] pipeline from FUMA was performed to examine the overrepresentation of prioritized genes (Fig. 2C) in pre-
defined DEGs (up-regulated, down-regulated, and both-side DEGs) from different gene expression data. The input genes (Fig. 2C) were tested
against each DEG using the hypergeometric test. We present only the organs/tissues that passed the Bonferroni correction for multiple
comparisons. B Gene set enrichment analysis shows that genes associated with the two dimensions are enriched in different biological
pathways. For example, genes associated with the R1 dimension are implicated in down-regulated macrophage functions, which have been
shown to be associated with inflammation [13]. In contrast, the R2 dimension is enriched in AD hallmarks (e.g., hippocampus), AD-related
gene sets, and the pathway involved in dendritic cells, which may regulate amyloid-β-specific T-cell entry into the brain [60]. Both dimensions
are enriched in gene sets involved in cancer, which may indicate overlapped genetic underpinnings between AD and cancer [59]. The
GENE2FUNC [58] pipeline from FUMA was performed to examine the enrichment of prioritized genes (Fig. 2C) in pre-defined gene sets.
Hypergeometric tests were performed to test whether the input genes were overrepresented in any pre-defined gene sets. Gene sets were
obtained from different sources, including MsigDB [95] and GWAS Catalog [55]. We show the significant results from gene sets defined in the
GWAS Catalog, curated gene sets, and immunologic signature gene sets. All results are shown in Supplementary eTable 7). C The target-drug-
disease network for R1 and R2-associated genes provides great potential for drug discovery and repurposing. R1-annotated “druggable
genes” were developed for cardiovascular diseases, various cancers, and inflammation, whereas R2-annotated “druggable genes” were
developed for diseases of the nervous system (e.g., Parkinson’s disease). For the target-drug-disease network, the 5th level of the Anatomical
Therapeutic Chemical (ATC) code is displayed for the DrugBank database [96], and the disease name defined by the International Classification
of Diseases (ICD-11) code is showed for the Therapeutic Target Database [97]. The human anatomy was created with https://
www.biorender.com/.
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DISCUSSION
The current study leveraged a deep semi-supervised representa-
tion learning method to establish two predominant dimensions in
the symptomatic MCI/AD population, which were independently
found to be expressed, to a lesser degree, in three asymptomatic
populations. In particular, the R1 dimension represented a
“diffuse-AD” atrophy pattern: varying degrees of brain atrophy
throughout the entire brain. In contrast, the R2 dimension showed
an “MTL-AD” atrophy pattern: brain atrophy predominantly
concentrated in the medial temporal lobe (Fig. 1A). Importantly,
only R2 was found to be significantly associated with genetic
variants of the APOE genes in MCI/AD patients. Furthermore, our
study examined early manifestations of the R1 and R2 dimensions
in asymptomatic populations with varying levels of AD risks and
their associations with genetics, amyloid plaques and tau tangles,
biological pathways, and body organs. We identified that 24
genomic loci, 14 of which are GWAS identified 24 genomic loci, 14
of which are newly identified, and 77 annotated genes contribute
to early manifestations of the two dimensions. Functional analyses
showed that genes unrelated to APOE were overrepresented in
DEG sets in organs beyond the brain (R1 and R2), including the
heart (R1) and the pituitary gland (R2), and enriched in several
biological pathways involved in dendritic cells (R2), macrophage
functions (R1), and cancer (R1 and R2). Several of these genes
were “druggable genes” for cancer (R1), inflammation (R1),
cardiovascular diseases (R1), and diseases of the nervous system
(R2). Longitudinal findings in the cognitively unimpaired popula-
tions showed that the rate of change of the R2 dimension, but not
R1, was marginally associated with the APOE ε4 allele, the CSF level
of tau, and Aβ42 (R1 and R2). Our findings suggested that diverse
pathologic processes, including cardiovascular risk factors, neuro-
hormone dysfunction, and inflammation, might occur in the early
asymptomatic stages, supporting and expanding the current
amyloid cascade (Fig. 5) [7, 8].

AD has been regarded as a CNS disorder. However, increasing
evidence has indicated that the origins or facilitators of the
pathogenesis of AD might involve processes outside the brain [6].
For example, recent findings revealed that gut microbiota
disturbances might influence the brain through the immune
and endocrine system and the bacteria-derived metabolites [73,
74]. Our findings support the view that multiple pathological
processes might contribute to early AD pathogenesis and identify
non-APOE genes in the two dimensions overrepresented in tissues
beyond the brain (e.g., the heart, pituitary gland, muscle, and
kidney). Pathological processes may be involved in different cells,
molecular functions, and biological pathways, exaggerating
amyloid plaque and tau tangle accumulation and leading to the
downstream manifestation of neurodegeneration and cognitive
decline.
The genetic and clinical underpinnings of the R1 dimension

support inflammation, as well as cardiovascular diseases, as a core
pathology contributing to AD [12, 75, 76]. Genes associated with
the R1 dimension were previously associated with various
inflammation-related clinical traits (Fig. 2D), and enriched in
biological pathways involved in immunological response (e.g., up-
regulation in macrophages [77], Fig. 3B). In addition, genes in this
dimension were overrepresented in DEG sets in the heart (Fig. 3A).
Previous literature indicated that inflammation is likely an early
step that initiates the amyloidogenic pathway—the expression of
inflammatory cytokines leads to the production of β-amyloid
plaques [13]. Several markers of inflammation are also present in
serum and CSF before any indications of Aβ or tau tangles [78]. For
example, clusterin, a glycoprotein involved in many processes and
conditions (e.g., inflammation, proliferation, and AD) induced by
tumor necrosis factor (TNF), was present ten years earlier than Aβ
deposition [79]. In addition, the R1 dimension was also strongly
associated with cardiovascular and diabetes biomarkers (Fig. 2B).
Inflammatory processes have been critical, well-established risk

Fig. 4 The longitudinal rate of change in R1 and R2 in the cognitively unimpaired population. A Longitudinal brain association studies
show that the R1 dimension exhibits longitudinal brain volume decrease in widespread brain regions, whereas the R2 dimension displays
longitudinal brain volume decrease in the focal medial temporal lobe. We first derived the rate of change of the 119 GM ROIs and the R1 and
R2 dimensions using a linear mixed effect model; a linear regression model was then fit to the rate of change of the ROIs, R1, and R2 to derive
the beta coefficient value of each ROI. A negative value denotes longitudinal brain changes with a negative coefficient of the rate of change in
the linear regression model. p value and effect sizes (r, Pearson’s correlation coefficient) are presented in Supplementary eTable 8. The brain
maps denote the signed p value, and the range of r for each dimension is also shown. Of note, the sample size (N) for R1 and R2 is the same for
each ROI. B The rate of change, not the baseline measurement, in the two dimensions is negatively associated with the CSF level of Aβ42
(Bonferroni correction for the 45 variables: −log10(p value) >2.95). The rate of change in the R2 dimension, not the R1 dimension, was
marginally (−log10(p value) >1.31) associated with the CSF level of tau and p-tau, and APOE ε4. All other clinical associations are presented in
Supplementary eTable 9. The gray-colored circle lines indicate different p value thresholds in both directions (Bonferroni correction for the 45
variables: −log10(p value) >2.95 and the nominal p value threshold: −log10(p value) >1.31). A positive/negative −log10(p value) value indicates
a positive/negative correlation (beta). Transparent dots represent the associations that do not pass the nominal p value threshold [log10(p
value)= 1.31]; the blue-colored dots and red-colored dots indicate significant associations [log10(p value) >1.31] for the R1 and R2 dimensions,
respectively.
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factors for compromised cardiovascular function [80], such as
coronary artery disease and the breakdown of the blood-brain
barrier. Our results corroborated the close relationships between
AD, cardiovascular diseases, and inflammation.
The genetic and clinical underpinnings of the R2 dimension

support that neuroendocrine dysfunction might be an early event
contributing to the pathogenesis of AD [16, 17]. Genes in the R2
dimension were previously associated with different hormone and
pancreas-related traits from GWAS Catalog (Fig. 2D); they were
also overrepresented in DEG in the pituitary and pancreas glands,
muscle and kidney (Fig. 3A), which are master glands or key
organs in the endocrine system [81]. Previous literature suggested
that neuroendocrine dysfunction might contribute to AD devel-
opment by secreting neurohormonal analogs and affecting CNS
function [16]. For example, luteinizing hormone-releasing hor-
mone and follicle-stimulating hormone in serum or neurons were
associated with the accumulation of Aβ plaques in the brain
[17, 82, 83]. However, early experimental studies on antagonists of

Luteinizing hormone-releasing hormone and growth hormone-
releasing hormone in animal models of AD have shown promising
but not entirely convincing evidence [16]. Taken together,
neurodegeneration in the R2 dimension represents an AD-
specific phenotype that might be driven by hormonal dysfunction,
leading to rapid accumulation of amyloid plaques, and was
potentially accelerated by the APOE ε4 allele—the rate of change
in R2, but not R1, was associated with the APOE ε4 allele in
cognitively unimpaired individuals (Fig. 4B).
The hypothesized implications above of the R1 and R2

dimensions on inflammation, cardiovascular functions, and
neuroendocrine dysfunctions are not mutually exclusive and
may collectively contribute to AD pathogenesis. It has been shown
that dysregulation of the hypothalamic-pituitary-gonadal axis is
associated with dyotic signaling, modulating the expression of
TNF and related cytokines in systemic inflammation, and
the induction of downstream neurodegenerative cascades within
the brain [84, 85]. These studies hypothesized that the

Fig. 5 Genes unrelated to APOE influence early manifestations of R1 and R2. Genes unrelated to APOE and overrepresented in organs
beyond the human brain are associated with early manifestations of the R1 (diffuse-AD) and R2 (MTL-AD) dimensions, which capture the
heterogeneity of AD-related brain atrophy. For visualization purposes, we display the two genes with the highest expression values in the
tissue specificity analyses for each organ/tissue. The black arrow line emulates the longitudinal progression trajectory along these two
dimensions. The positions of beta-amyloid, tau, and APOE (increasing APOE-mediated progression) indicate the time point when they are
associated with the two dimensions. The blue/red gradient-color background indicates a higher influence of APOE-related genes (left to right;
early to late stages). The brain atrophy patterns are presented in the 3D view. In early asymptomatic stages, the R1-related genes are
implicated in cardiovascular diseases and inflammation; the R2-related genes are involved in hormone-related dysfunction. Critically,
longitudinal progression of the dimension demonstrates an impact of the APOE genes in early asymptomatic stages in R2, but this
longitudinal effect occurs only in late symptomatic stages in R1. These results suggest that comorbidities (e.g., cardiovascular conditions) or
normal aging in R1 may alter or delay the trajectory of neurodegeneration in early asymptomatic stages; APOE-related genes may play a
pronounced role in the acceleration and progression in late symptomatic stages for both dimensions. Of note, the underlying pathological
processes that initiate and drive the progression of the two dimensions are not mutually exclusive. Hence, both R1 and R2 can be co-
expressed in the same individual. In addition, the two dimensions can also be affected by other AD hypotheses, such as the mitochondrial
hypothesis [70] and the metabolic hypothesis [86]. MTL medial temporal lobe. The human anatomy was created with https://
www.biorender.com/.
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neuroendocrine dysfunction and the inflammation mechanism
might be the upstream and downstream neuropathological
processes along the disease course of AD [16]. That is, the loss
of sex steroids and the elevation of gonadotropins might lead to a
higher level of inflammatory factors in the brain. Finally, other
competing hypotheses may also play a role in developing AD in
early asymptomatic stages, including the mitochondrial hypoth-
esis [70], the metabolic hypothesis [86], and the tau hypothesis [3].
The NIA-AA framework [87] claims that AD is a continuum in

which AD pathogenesis is initiated in early asymptomatic
cognitively unimpaired stages and progresses to amyloid-
positive and tau-positive (A+T+) in late symptomatic stages
[87]. Our findings are consistent with this framework and elucidate
the cross-sectional and longitudinal associations of the two
dimensions with genetic and clinical markers from early asympto-
matic to late symptomatic stages. In early asymptomatic stages,
the rates of change in the two dimensions are both associated
with amyloid. However, only the R2 dimension, not R1, is
marginally associated with the APOE ε4 allele and the CSF level
of tau (Fig. 4B). In contrast, in late symptomatic stages, the rates of
change in the two dimensions are both associated with the APOE
ε4 allele, CSF levels of tau, p-tau, and amyloid. Our findings
suggest that comorbidities or normal aging in R1 may alter the
rate or trajectory of neurodegeneration at early asymptomatic
stages, but APOE-related genes might play a more pronounced
role in the acceleration and progression during late symptomatic
stages for both dimensions (Fig. 5).
Several recent studies [88–92], as detailed in an insightful

overview by Luo et al., collectively provide a comprehensive
transcriptomics and epigenomics atlas depicting AD progression
at the single-cell level [93]. Similarly, researchers have also
proposed a new theory suggesting that Alzheimer’s disease may
not only be a brain disorder but could also be considered an
autoimmune disease [94]. These studies highlight the involvement
of microglia-related inflammation, lipid metabolism, and mito-
chondrial dysfunction. This substantiates the primary hypothesis
in our study: the two dimensions are linked to diverse pathological
mechanisms, encompassing cardiovascular diseases, inflamma-
tion, and hormonal dysfunction, potentially driven by genes
beyond APOE.

Limitations
This study has several limitations. Firstly, there is a need for
longitudinal data from the general population, as exemplified by
the UK Biobank, to provide further validation for the hypotheses
proposed to cover the entire AD spectrum in the same population.
Secondly, it is essential to extend the generalization of the current
GWAS findings to include underrepresented ethnic groups, going
beyond the European ancestry populations.

Outlook
In conclusion, the current study used a novel deep semi-
supervised representation learning method to establish two AD
dimensions. Our findings support that those diverse pathological
mechanisms, including cardiovascular diseases, inflammation,
hormonal dysfunction, and involving multiple organs, collectively
affect AD pathogenesis in asymptomatic stages. These novel
biomarkers may serve as instrumental variables to guide future
treatments in the early asymptomatic stages of AD, targeting
multi-organ dysfunction beyond the brain.
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