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Multiregional transcriptomic profiling
provides improved prognostic insight in
localized non-small cell lung cancer
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Lung Cancer remains the leading cause of cancer deaths in the USA and worldwide. Non-small cell
lung cancer (NSCLC) harbors high transcriptomic intratumor heterogeneity (RNA-ITH) that limits the
reproducibility of expression-based prognostic models. In this study, we usedmultiregional RNA-seq
data (880 tumor samples from 350 individuals) from both public (TRACERx) and internal (MDAMPLC)
cohorts to investigate the effect of RNA-ITH on prognosis in localized NSCLC at the gene, signature,
and tumor microenvironment levels. At the gene level, the maximal expression of hazardous genes
(expression negatively associated with survival) but the minimal expression of protective genes
(expression positively associated with survival) across different regions within a tumor were more
prognostic than the average expression. Following that, we examined whether multiregional
expression profiling can improve the performance of prognostic signatures. We investigated 11 gene
signatures collected from previous publications and one signature developed in this study. For all of
them, the prognostic prediction accuracy can be significantly improved by converting the regional
expression of signature genes into sample-specific expression with a simple function—taking the
maximal expression of hazardous genes and theminimal expression of protective genes. In the tumor
microenvironment, we found a similar rule also seems applicable to immune ITH. We calculated the
infiltration levels of major immune cell types in each region of a sample based on expression
deconvolution. Prognostic analysis indicated that the region with the lowest infiltration level of
protective or highest infiltration level of hazardous immune cells determined the prognosis of NSCLC
patients.Our studyhighlighted the impact of RNA-ITHon theprognostication ofNSCLC,which should
be taken into consideration to optimize the design and application of expression-based prognostic
biomarkers and models. Multiregional assays have the great potential to significantly improve their
applications to prognostic stratification.

Lung cancer is the leading cause of cancer deaths in the USA1 and
worldwide2. Approximately 80% to 85% of lung cancers are non-small cell
lung cancer (NSCLC)3. With the wide implementation of CT-guided lung
cancer screening, there has been a drastic increase in the detection of
localizedNSCLCs4. AlthoughNSCLC is potentially curable if detected early,
even for stage I NSCLC, ~30% of patients still recur and succumb to this

disease after surgical resection with curative intent5. Therefore, there is an
urgent need to accurately predict the recurrence risk and treatment sensi-
tivity to improve personalized adjuvant therapy.

Over the past years,many efforts have beenmade to identifymolecular
features associated with postsurgical recurrence and develop biomarkers to
select high-risk NSCLC patients for adjuvant therapy. Gene expression-
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based signatures have been scrutinized as gene expression may be reliable,
reflecting cancer biology andclinical behavior6–24. Although some signatures
have demonstrated potential clinical applications8,12,18,20–22, they have yet to
be widely adopted in clinical practices due to poor reproducibility when
applied to independent data25–27. One of the major hurdles originates from
the high intratumor heterogeneity (ITH) of the lung cancer samples28–32,
which poses challenges for successful treatment and is associated with an
increased recurrence risk for lung cancer29,33,34. Transcriptomic intratumor
heterogeneity (RNA-ITH) in lung cancer has been reported to impede the
clinical application of gene signatures33,35,36. The majority of existing prog-
nostic signatures were developed based on the expression profiling of a
single tumor sample of each individual. Due to the RNA-ITH, it is arguable
how much a single sample reflects the panoply of the whole tumor char-
acteristics.As evidencedby themultiple-regional transcriptomic studies, the
expression profiles from different regions within the same tumors varied
substantially35,37,38. Applying the same gene signature to assess risk resulted
in discordant risk scores among different regions35.

In this study, we leveraged publicly available and newly generated
multiregional RNA-sequencing data to identify molecular features asso-
ciated with postsurgical recurrence in the context of RNA ITH. Using the
multiregional RNA-seq from the published TRACERx cohort32,39 and our
internal MDAMPLC (MD Anderson Cancer Center Multiregional
Profiling in Lung Cancer) cohort, we first investigated the effect of RNA-
ITH on the prognostic association of individual genes. We revealed the
strong correlation between intratumor and intertumor diversity at the gene
expression level and found that themaximal expression of hazardous genes
(indicative of shorter survival) and minimal expression of protective genes
(indicative of longer survival) was more prognostic than their average
expression in NSCLC. Furthermore, we demonstrated that by considering
RNA-ITH, the prediction accuracy of 11 existing prognostic signatures
could be significantly improved. Based on these findings, we developed a
new gene signature, PACEG (Prognosis-Associated Clonally Expressed
Genes), and proposed to adopt amultiregional assay to boost its prognostic
performance in NSCLC. Besides, we deconvoluted the transcriptomic data
and found that the prognostic impact of the tumor immune micro-
environment ITHwas consistent with thefindings at the gene and signature
levels, namely, the maximal/minimal infiltration of anti-/pro-tumor
immune cells showed the highest prognostic association. In summary, our
analyses indicated that RNA-ITH might provide unique insights into the
development, optimization, and clinical application of gene signatures.

Results
Multiregional RNA-seq reveals transcriptomic intratumor
heterogeneity
To investigate the transcriptomic intratumor heterogeneity (RNA-ITH)
and its effect on patient prognosis inNSCLC,we analyzed themultiregional
RNA-seq data from the TRACERx (TRAcking non-small cell lung Cancer
Evolution through therapy [Rx]) project32,35,39,40. In the pursuit of robust and
meaningful insights from the dataset and considering the data was collected
and published over distinct timeframes, we partitioned the data into three
cohorts, each serving a unique purpose (Fig. 1a, Supplementary Table 1).
The first cohort of TRACERx (TRACERxC1) was released in 2019 (64
patients, 164 samples)35. We studied the RNA-seq data from this cohort,
aiming to explore the intricacies of RNA-ITH and identify how to integrate
RNA-ITH to improve the development and application of transcriptome-
based signatures. Also, our results from this cohort are potentially com-
parable to previous studies, since it iswidely investigated. The second cohort
(TRACERxC2)we analyzedwas published recently in 202340. To ensure it is
an independent validation of our findings, we excluded the TRACERxC1
cohort from the latest dataset (261 patients, 652 samples). To control for
histological subtypes that may confound our analysis, our third group
exclusively focused on lung adenocarcinoma (LUAD) samples, the pre-
dominant histologic subtype in NSCLC and TRACERx project (TRA-
CERxLUAD: 187 patients, 472 samples). To further confirm our findings,
we also generated multiregional RNA sequencing data of 64 tumor regions

from 25 NSCLC patients (MDAMPLC, MD Anderson Cancer Center
Multiregional Profiling in Lung Cancer) (Fig. 1a, Supplementary Table 1).

For each pair of samples, we calculated the transcriptomic hetero-
geneity by comparing their expression profiles. The divergencies for within-
patient region pairs reflect the RNA-ITH of individuals, which are com-
paredwith the intertumor heterogeneity, namely, divergencies for between-
patient sample pairs (seeMethods for details). As expected, the RNA-ITH is
significantly lower than the intertumor heterogeneity in both the TRA-
CERxC1 cohort (Fig. 1b) and the MDAMPLC cohort (Fig. 1c), which is
consistent with the previous report35.

InFig.DandE,wedisplayed thenormalized expressiondivergencies of
all within-patient region pairs for each patient and used the average value
(curve) to quantify the RNA-ITH at the patient level. In both cohorts, we
observed substantial variations in theRNA-ITHamongpatients,whichmay
offer critical information on patient prognosis that was rarely utilized by
previous RNA-seq-based prognostic signatures or models.

Integrating gene-level RNA-ITH may improve biomarker design
Biomarker selection is one of the determinants of the performance of gene
expression-basedmodels. To further investigate theRNA-ITH in individual
gene expression, we decomposed the total expression variance of each gene
into between- and within-patient variances, which reflected its intertumor
and intratumor expression diversity, respectively. As shown in Fig. 2a, the
intratumor variation is highly correlated with the intertumor variation
(R = 0.732, p < 0.001), indicating that genes informative for distinguishing
patients (i.e., potential biomarkers) also tend to have high diversity among
tumor regions within the same tumors, and vice versa indicating that
leveraging RNA-ITH may improve biomarker design.

To investigate the impact of RNA-ITHon the prognostic association at
the gene level, we utilized the average, maximal, and minimal expression of
each gene across all tumor regions within the same tumors to represent a
patient-level expression. The prognostic association of resultant average,
maximal, and minimal expression values was examined using univariate
Cox regressionmodels (Fig. 2b). Based on average expression, we identified
a total of 631 prognostic genes (p < 0.01), including 340 hazardous (Hazard
Ratio, HR > 1 for disease-free survival, DFS) and 291 protective (HR < 1)
genes. The use of the maximal expression was more sensitive to identifying
hazardous genes, resulting in 983 hazardous but only 46 protective genes
(Fig. 2b). It captured the largest number of hazardous genes, including the
majority identified using the average expression approach (Fig. 2c). In
contrast, the use of theminimal expressionwasmore sensitive to identifying
protective genes, resulting in 53 hazardous and 583 protective genes (Fig.
2b). This approach had the advantage of protective gene identification over
than average expression approach (Fig. 2c). Therefore, taking advantage of
multiregional RNA-seq in the context of RNA-ITH may offer more prog-
nostic biomarker candidates and improve the development of prognostic
models.

Furthermore, the hazardous genes selected based on average
expression demonstrated higher prognostic association when their
maximal expression was used for survival analysis, as indicated by
higher concordance indices and more significant p-values (Fig. 2d,
Supplementary Fig. 1). In contrast, protective genes identified by
average expression were more prognostic when their minimal
expression was used in the survival analysis (Fig. 2d, Supplementary
Fig. 1). As an example shown in Fig. 2e, f, the maximal expression of
proto-oncogeneMDS241,42 (hazardous gene, HR > 1) and the minimal
expression of the tumor suppressor KAT6B41,42 (protective gene,
HR < 1) achieved the best prognostic stratification of patients. Likely,
the tumor region with the extreme expression of the prognostic gene
represents the most aggressive or resistant (to treatments) region
within the tumor and thus poses the strongest prognostic effects on
patient survival. Taken together, these findings suggest that the
performance of single region-derived signatures may be greatly
improved in the application when integrated with RNA-ITH through
multiregional profiling assays.
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Fig. 1 | Transcriptomic intratumor heterogeneity (RNA-ITH) in NSCLC.
aOverview of the study. Multiregional RNA-seq data from two cohorts were used in
this study. The main findings were identified in the TRACERxC1 cohort and con-
firmed in the TRACERxC2, TRACERxLUAD, andMDAMPLC cohorts. b, cViolin
plot showing that RNA-ITH is lower than intertumor heterogeneity in both

b TRACERxC1 and c MDAMPLC cohorts. d, e Patient-specific RNA-ITH in the
d TRACERxC1 and e MDAMPLC cohorts. Each dot represents the paired tumor
region from the patient. The curve indicates the patient-specific RNA-ITH, calcu-
lated by averaging the RNA-ITH of all region pairs. Significance is determined by the
Wilcoxon Rank-Sum one-sided test.
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Improve performance of prognostic signatures with RNA-ITH
Since gene level- RNA-ITH has demonstrated the potential to improve
prognostic biomarker selection and application, we next examined whether
consideration of RNA-ITH can improve existing prognostic signatures.

To this end, we adopted two methods to calculate patient-level risk
scores from multiregional expression data (Fig. 3a).

Method 1 (M1). Transformed gene expression. For each signature gene,
the expression values across all regions from a patient were combined
using transformation functions to obtain patient-level expression, which
was then used to calculate the risk score of that patient. We tested five
different transformation functions: (1) Average (Avg.), (2) Maximal
(Max.), (3) Minimal (Min.) Function calculated average/maximal/
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minimal gene expression across all regions within each tumor, respec-
tively; (4) Adjusted Function (Adj.) selected the maximal expression of
hazardous genes (positive coefficients) and the minimal expression of
protective genes (negative coefficients) acrossmultiple regions within the
same tumor, which was supposed to achieve the best performance based
on the gene-level results; and (5) Reverse Function (Rev.) calculated
maximal expression of protective genes and minimal expression of
hazardous genes, which was anticipated to get the worst accuracy.

Method 2 (M2). Region-specific risk score. The signature scores were
calculated for each tumor region, and then the transformation function
was applied to gain the patient-level scores based on the region-specific
scores. The transformed functions could be Average (Avg.)/Maximal
(Max.)/Minimal (Min.) Function that calculated average/maximal/
minimal region scores across all regions of each individual, respectively.

ORACLE (outcome risk associated clonal lung expression) signature
was developed in NSCLC from genes with low intra-tumor but high
intertumor diversity using TRACERxC1 multiregional RNA-seq and
TCGA LUAD RNA-seq data35. It was a hazardous signature for which
higher scores denoted higher risks. We first applied the above-mentioned
two methods to this signature to assess whether its prediction accuracy
could be improvedwhenRNA-ITHwas taken into consideration.As shown
in Fig. 3b, the signature score is based on the Adj. and Max. Functions of
Method 1(M1-Adj and M1-Max) achieve the best performance in the
TRACERxC1 cohort, as indicatedby greaterC-Indices andmore significant
p-values. The improved performance of M1-Adj (p-value = 0.012, C-
index = 0.67) is in line with the prognostic results of individual genes,
supporting our hypothesis that integrating RNA-ITH improves the existing
signature application. In addition, the M1-Max achieves a comparable
accuracy as the M1-Adj (p-value = 0.011, C-index = 0.671), presumably
because most of the ORACLE signature genes (19 out of 23) are hazardous,
defined by the positive coefficients. As forMethod 2, the results ofM2-Max
achieve a more significant prognostic association (p-value = 0.03, C-
index = 0.639), while the scores based on M2-Avg and M2-Min are not
significant (Fig. 3b).

To validate our findings, we extended our analysis to the TRACERxC2
cohort, exclusively consisting of independent patients to the TRACERxC1
cohort to ensure the independence of the analysis (Supplementary Fig. 2a).
With a larger cohort size and enhanced statistical power, our investigation
consistently highlighted the superior performance of the M1-Adj (p-
value = 0.0001, C-index = 0.61) and the M2-Max (p-value = 0.0007, C-
index = 0.603).

To control the potential impact of histology on our analysis, we sought
to perform the analysis within the same histology. As the ORACLE sig-
nature was originally developed for lung adenocarcinoma, we conducted
survival analysis within the TRACERxLUAD cohort (Supplementary Fig.
2b). In this context, our results revealed that both the M1-Adj (p-
value = 3 × 10−5, C-index = 0.627) and the M2-Max (p-value = 0.0003, C-
index = 0.616) outperformed the M2-Avg, demonstrating the significant
enhancement in prognostic capabilities achieved by incorporating RNA-
ITH into the ORACLE signature.

We also tested theORACLEsignature integratedwith the twomethods
above in our MDAMPLC cohort. Although the p-value was not significant

due to the small sample size, we observed the same trends that the Max.
Function of Method 1 and 2 enable prediction improvement compared to
Avg. Function (Supplementary Fig. 2c). In summary, even though the
ORACLE signature is selected from genes with low ITH, it can be improved
when considering RNA-ITH in its application. In addition toORACLE, the
finding that integrating RNA-ITH will improve the performance of
expression-based signatures was also supported by nine public hazardous
signatures evaluated in the same way (Table 1, Supplementary Table 2,
Supplementary Table 3).

As ORACLE and the other nine existing signatures only harbored a
small subset of genes, the impact ofRNA-ITH inprognostic signaturemight
not be fully captured. Therefore, we next tested another signature called
whole-transcriptomic gene signature (WTGS), which was a protective sig-
nature (higher score indicating longer survival) using all genes for the
prognostication43. In this signature, each gene was assigned a weight based
on its prognostic significance43. As shown in Fig. 3c, the survival analysis
with the five transformation functions of Method 1 was performed in the
TRACERxC1 cohort. Again, the best performance is achieved by the M1-
Adj (p-value = 0.019, C-index = 0.691). Signature scores based onM1-Avg,
M1-Max, and M1-Min result in weak prognostic associations, while the
score based onM1-Rev is not prognostic (Fig. 3c). UsingMethod 2, the best
performance is obtained by M2-Min (p-value = 0.036, C-index = 0.674) in
line with the fact that WTGS is a protective signature (Fig. 3c).

After validation using the TRACERxC2 cohort, M1-Adj (p-
value = 5 × 10−7., C-index = 0.65) and M2-Min (p-value = 5 × 10−5, C-
index = 0.623) demonstrated great improvements compared to the corre-
spondingAvg. Function (SupplementaryFig. 3a).Whennarrowingdown to
the adenocarcinoma subtype, both M1-Adj (p-value = 3 × 10−7, C-index =
0.687) and M2-Min (p-value = 5 × 10−5, C-index = 0.65) continued to
exhibit superior prognostic value in the TRACERxLUAD cohort (Supple-
mentary Fig. 3b).

Consistently, theM1-Adj and theM2-Min achieve the highest C-index
in our MDAMPLC cohort (Supplementary Fig. 3c). Taken together, these
results indicate that the RNA-ITH has a remarkable impact on the per-
formance of prognostic signatures, and whenmultiregional expression data
is available,M1-Adj achieves the best prognostic performance.

The PACEG gene signature
Biswas et al. utilized stably expressed genes with high intertumor but low
intratumor diversity, as revealed by the TRACERxC1 multiregional
expression data (defined as Q4 genes), and developed the ORACLE
signature35. Although these genes are, in principle, less impacted by RNA-
ITH, we observed improved performance using the Max. and Adj. Func-
tions of Method 1 (Fig. 3B). Considering the high correlation between
intertumor and intratumor variations at the gene level (Fig. 2a), the infor-
mative genes for patient stratification had probably beenmissed by the filter
used in ORACLE. Indeed, only ~6.6% of genes were identified as the Q4
genes for the development of ORACLE, with many prognostic genes likely
excluded35.

To improve ORACLE and further demonstrate the potential of inte-
grating RNA-ITH in the signature application, we developed a new gene
signature called PACEG (Prognosis-Associated Clonally Expressed Genes)
using a similar procedure asORACLE (see “Methods” for details). A critical

Fig. 2 | Association of regional gene expression with patient survival in the
TRACERxC1 cohort. a Scatter plot showing a strong correlation between tran-
scriptomic intra and intertumor variance at the gene expression level. The Pearson
correlation coefficient (R) and the p-value (p) are shown in the figure with red text.
bVolcano plots demonstrating the survival association of genes when their average,
maximal, or minimal expression across all regions was used to represent its patient-
specific expression level. The hazard ratio and p-value were calculated using the
univariate Cox regression that fitted the expression of each gene as a continuous
variable. c Venn diagram showing the numbers and overlap of survival-associated
genes based on their average, maximal, and minimal expression, respectively.

d Scatter plots comparing the C-index of selected prognostic genes using different
representative expressions. Hazardous (HR > 1, p-value < 0.01) and protective genes
(HR < 1, p-value < 0.01) were selected based on average expression and compared
with results using maximal and minimal expression separately. The text labels the
percentage of genes in that area. e, f Kaplan–Meier curve showing the recurrence-
free survival of patients with high(red) or low(blue) expression of MDS2 (e) or
KAT6B (f) using the median as a cutoff. The maximal expression of the hazardous
gene MDS2 and the minimal expression of the protective gene KAT6B is more
prognostic. The shadow represents the 95% confidence interval. The survival ana-
lysis measures disease-free survival.
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finding of ORACLE is that Q4 genes were more likely to be clonal genes
whose expression was driven by their copy numbers in the dominant clone
ORACLE35. Instead of focusing on Q4 genes, PACEG selected signature
genes from clonal genes identified from paired RNA-seq and copy number
variation (CNV) data of LUAD (see Methods for details). As such, PACEG
was developed fully based on LUAD data, which ensures its independent

andunbiased application in themultiregional cohorts. In total, the signature
contains 26 genes non-overlapped with ORACLE, including sixteen
hazardous and ten protective genes (Supplementary Table 4).

Consistent with the previous 11 signatures, integrating PACEG with
M1-Adj achieves the best performance (Fig. 3d, p-value = 0.006, C-
index = 0.693) in the TRACERxC1 cohort. TheM1-Max results in a slightly

Fig. 3 | Calculation of patient-specific risk scores
usingmultiregionalRNA-seq data. aTwomethods
for calculating patient risk scores based on gene
signatures. Method 1: Transform the expression of
signature genes into patient-specific values and then
compute the risk score of patients based on the
signature. The transformation function calculated
the average(Avg.)/maximal (Max.) (Adj.)/minimal
(Min.) gene expression across all regions of each
individual or summarized the maximal expression
of hazardous genes and the minimal expression of
protective genes (Adjusted, Adj.) or the reverse
calculation (Rev.). Method 2: Apply the gene sig-
nature to all regions of a patient to obtain region-
specific risk scores and then transform them into
individual-level risk scores. The transformation
function calculated the average(Avg.)/maximal
(Max.) (Adj.)/minimal (Min.) region-specific scores
of each individual. b–d Performance of three dif-
ferent prognostic signatures: b ORACLE, cWTGS,
and dPACEG applied with eight functions from two
methods of quantifying patient-specific risk score in
the TRACERxC1 cohort. In the Hazard Ratio col-
umn, a 95% confidence interval was shown as a
dotted line. The survival analysis measures disease-
free survival.
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more significant p-value, but a smaller C-index. Similarly, the M2-Max
demonstrates the highest performance (p-value = 0.012, C-index = 0.661)
compared to M2-Avg and M2-Min (Fig. 3d). Within the TRACERxC2
cohort, it is noteworthy that the M1-Adj (p-value = 5 × 10−5, C-index =
0.614) and the M2-Max (p-value = 0.0002, C-index = 0.603) consistently
exhibit the best performance (Supplementary Fig. 4a). Also confirmed in the
MDAMPLC cohort, M1-Adj and M2-Max show the highest C-index
among all transformation functions in the same methods (Supplementary
Fig. 4b). Of note, when applied to the multiregional data, PACEG has a
much better prediction accuracy than the ORACLE signature, especially
withM1-Adj (Supplementary Table 5), possibly from the inclusion of more
prognostically informative genes (non-Q4 genes).

Considering the signature was originally developed using TCGA
LUAD data, we also assessed its performance within the adenocarcinoma
subtype (TRACERxLUAD). Consistently, M1-Adj (p-value = 3 × 10−6, C-
index = 0.642) andM2-Max (p-value = 8 × 10−5, C-index = 0.621) demon-
strated the best results (Supplementary Fig. 4c). To examine whether
PACEG provides independent prognostic values after considering estab-
lished clinical factors, we performed multivariable Cox regression analysis,
which includes variables such as the PACEG score calculated from theM1-
Adj (PACEG-M1-Adj), smoking status, stage, age, and gender (Supple-
mentary Table 6). As a result, PACEG-M1-Adj turned out to be the
strongest predictor in the model (HR = 1.69, p-value = 0.0008), with a sig-
nificant p-value after adjusting for those clinical factors. This result indicates
that PACEG-M1-Adj offers valuable insights into survival predictions while
complementing those important clinical factors. Integrating the expression-

based signature with multiregional information not only improves the
clinical utility of the signature itself butmay surpass the predictive capability
of several crucial clinical prognostic variables.

The prognostic impact of RNA-ITH in the tumor
microenvironment
The infiltration level of immune cells in the tumor microenvironment has
been reported to be associated with the prognosis of NSCLC patients. Our
previous study has also demonstrated that a higher degree of T cell receptor
(TCR) ITHwas associated with an increased risk of postsurgical recurrence
of NSCLC44. Next, we investigated the prognostic effect of tumor immune
microenvironment ITH by computationally inferring the infiltration of
major immune cell types from the multiregional RNA-seq45–47 (see
“Methods” for details). After obtaining the immune infiltration scores in all
tumor regions,we converted them into patient-specific infiltration scores by
calculating the average, maximal, andminimal values and investigated their
association with prognosis using Cox regression.

As shown in Fig. 4a, based on the average infiltration level, we found
thatNaïveB,MemoryB,CD8+T, andCD4+Tcells are protective immune
cells with higher infiltration associated with longer survival, while Mono-
cytes predominance is hazardous in NSCLC, consistent with previous
studies47. Importantly, for protective immune cells, the more accurate pre-
diction is achieved by using the minimal infiltration scores as indicated by
both the p-values and C-indices, while for the hazardous immune cell,
Monocytes, the best prognostic association is observed when the maximal
infiltration level is used. Consistently in theMDAMPLC cohort, the highest

Table 1 | Nine public signatures improved by multiregional RNA-seq data

Cohort TRACERxC1 MDAMPLC TRACERxC1 MDAMPLC TRACERxC1 MDAMPLC

Method Function HR p-Value C-index C-index HR p-Value C-index C-index HR p-Value C-index C-index

Signature Boutros et al., 2008 (N = 5) Krzystanek et al., 2016 (N = 6) Bianchi et al., 2007 (N = 10)

Transformed
gene
expression
(Method 1)

Avg. 2.588 0.023 0.673 0.481 2.787 0.065 0.627 0.505 1.927 0.178 0.6 0.542

Max. 2.541 0.018 0.693 0.486 2.824 0.05 0.625 0.557 2.293 0.076 0.645 0.58

Min. 2.529 0.037 0.67 0.476 2.419 0.089 0.622 0.495 1.507 0.396 0.578 0.481

Adj. 2.304 0.012 0.706 0.618 1.998 0.018 0.685 0.608 2.071 0.035 0.667 0.575

Rev. 1.549 0.315 0.579 0.439 1.114 0.776 0.537 0.462 0.961 0.923 0.486 0.458

Region-
specific
(Method 2)

Avg. 2.588 0.023 0.673 0.481 2.787 0.065 0.627 0.505 1.927 0.178 0.6 0.542

Max. 2.624 0.008 0.698 0.509 3.021 0.045 0.628 0.524 1.981 0.142 0.62 0.557

Min. 2.289 0.073 0.651 0.448 2.166 0.129 0.617 0.476 1.723 0.254 0.594 0.486

Signature Kratz et al., 2012 (N = 11) Zhu et al., 2010 (N = 15) Garber et al., 2001 (N = 24)

Transformed
gene
expression
(Method 1)

Avg. 1.926 0.14 0.59 0.557 1.638 0.294 0.562 0.547 1.813 0.09 0.638 0.5

Max. 2.012 0.095 0.603 0.599 2.563 0.034 0.641 0.59 2.284 0.011 0.669 0.519

Min. 1.861 0.141 0.613 0.472 0.862 0.734 0.456 0.538 1.281 0.471 0.576 0.434

Adj. 2.031 0.035 0.646 0.608 2.586 0.021 0.657 0.58 2.404 0.004 0.708 0.538

Rev. 1.281 0.558 0.518 0.472 0.756 0.462 0.41 0.538 0.919 0.77 0.492 0.467

Region-
specific score
(Method 2)

Avg. 1.926 0.14 0.59 0.557 1.638 0.294 0.562 0.547 1.813 0.09 0.638 0.5

Max. 2.183 0.054 0.629 0.59 2.231 0.079 0.621 0.594 2.023 0.041 0.646 0.519

Min. 1.587 0.307 0.558 0.467 1.083 0.855 0.496 0.533 1.485 0.243 0.6 0.439

Signature Wistuba et al., 2013 (N = 30) Raz et al., 2008 (N = 54) Beer et al., 2002 (N = 92)

Transformed
gene
expression
(Method 1)

Avg. 2.086 0.006 0.696 0.533 1.386 0.15 0.581 0.514 1.163 0.258 0.591 0.524

Max. 2.256 0.003 0.711 0.59 1.622 0.015 0.654 0.58 1.301 0.045 0.63 0.552

Min. 1.838 0.019 0.679 0.481 1.055 0.79 0.502 0.439 1.018 0.876 0.519 0.443

Adj. 1.24 0.013 0.714 0.618 1.245 0.017 0.693 0.594 1.094 0.013 0.711 0.575

Rev. 0.973 0.834 0.481 0.425 0.926 0.415 0.385 0.448 0.943 0.102 0.341 0.462

Region-
specific score
(Method 2)

Avg. 2.086 0.006 0.696 0.533 1.386 0.15 0.581 0.514 1.163 0.258 0.591 0.524

Max. 2.08 0.004 0.7 0.599 1.354 0.127 0.598 0.542 1.286 0.062 0.637 0.533

Min. 1.966 0.013 0.683 0.476 1.209 0.367 0.549 0.472 1.075 0.533 0.564 0.462
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C-indices ofNaïveB,MemoryB,CD8+T, andCD4+Tcells are fromusing
the minimal infiltration regions, while the highest C-index of Monocyte is
obtained with the maximal infiltration regions (Fig. 4b). These results
suggest that the tumor regions with the least favorable immune micro-
environment contribute the most to the overall prognosis of patients.

Prognostic risk variation across different regions and signatures
Herein, we revealed the impact of RNA-ITH at the gene expression level,
gene signature level and tumor microenvironment level (Supplementary
Fig. 5). For both tumor-intrinsic gene signatures (ORACLE, WTGS, and
PACEG) and tumor immune microenvironment signatures (immune cell
infiltration), we have shown that tumor regions with the least favorable
signatures scores (i.e., maximal for hazardous and minimal for protective
signatures) are more informative for prognostication. We next sought to
investigatewhether the same regionswithin each tumorwould be defined as
the least favorable by different signatures. We constructed univariate Cox
regression models for the three tumor-intrinsic prognostic signatures and
five immune cell signatures. Themodels were trainedbased on themaximal
scores from the three hazardous signatures (ORACLE, PACEG, and
Monocyte) and the minimum scores for the five protective signatures
(WTGS,Naïve B,Memory B, CD8+T, andCD4+T cells). Then allmodels

were applied to the expression data of all tumor regions to calculate the
region-specific risk scores. After normalization to make the risk scores
comparable, patients withmore than three tumor regions were included for
further analysis (Supplementary Fig. 6).

As shown in Fig. 5a, overall, the risk scores from the three tumor-
intrinsic gene signatures (ORACLE, PACEG, and WTGS) are highly cor-
related with each other. However, the immune cell signatures fall into two
groups: CD8+ T, CD4+ T, and Monocyte signatures are correlated, while
Memory and Naïve B cell signatures make similar predictions with tumor-
intrinsic signatures. For each gene signature, the predicted prognostic risk
scores from different regions within the same tumors overall are similar,
with someexceptionswhereby substantial variations amongdifferent tumor
regions are observed (e.g., CRUK0035 by the CD8+ T cell signature)
(Supplementary Fig. 6). Of note, theWTGS signature, which uses the whole
transcriptome for risk prediction, is the least influenced by RNA-ITH.

More interestingly, we found that the eight signatures identified the
same tumor regions to carry thehighest risks for recurrence in somepatients
(Fig. 5b, c). When we divided the signatures into intrinsic gene signatures
(ORACLE, PACEG, and WTGS) and the tumor immune microenviron-
ment signatures (Monocyte, Naïve B, Memory B, CD8+ T, and CD4+ T
cells), there was more consistency within the two groups of signatures

Fig. 4 | Association of immune cell infiltration
with patient survival. a Forest plot showing the
survival analysis results of six immune cells in
TRACERxC1 cohort. The average (Avg.), maximal
(Max.), and minimal (Min.) infiltration values of
each immune cell were used to obtain the patient-
level immune infiltration and then were analyzed
with univariate Cox regression. In the Hazard Ratio
column, a 95% confidence interval was shown as a
dotted line. b The bar graph of the C-index evalu-
ating the same immune cells in the MDAMPLC
cohort. The infiltration level of six immune cell types
was calculated in all regions of each patient. The
minimal infiltration level of Naïve B, Memory B,
CD8+ T, and CD4+ T cells (protective) but the
maximal infiltration level of Monocyte (hazardous)
achieves the highest prognostic association. The
survival analysis measures disease-free survival.
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(Supplementary Fig. 6). For the three tumor-intrinsic gene signatures, the
same regions in 75% (21 out of 28) TRACERxC1 cohort and 71% (10 out of
14)MDAMPLCcohort arepredicted as the top twohigh-risk regionswithin
the same tumors (e.g., CRUK0050), which suggests that these regions may
be sensitive to chemotherapy. The five tumor immune microenvironment
signatures identify the same regions as the top two high-risk regions in 43%
(12 out of 28) TRACERxC1 cohort and 86% (12 out of 14) MDAMPLC
cohort (e.g., CRUK0050), which indicates that these regions may be sensi-
tive to immunotherapy.Thesefindings suggest that themost aggressive and/
or the least immune-infiltrated tumor regionsmayhave themostprognostic
impact.

Discussion
The adjuvant therapeutic paradigm for localized NSCLC has sig-
nificantly changed recently by the addition of targeted therapy and
immunotherapy to patients with EGFR mutations or positive PD-L1
expression48,49. However, not all patients benefit from these revolu-
tionary therapies. A considerable proportion of patients still suffer from
inevitable postsurgical recurrence or severe toxicities. In addition, the
associated high cost continues to put additional pressure on the current
health system. Therefore, studies are still needed to understand the

mechanisms underlying postsurgical recurrence and develop reliable
biomarkers for personalized adjuvant therapy.

Extensive efforts have been made to identify molecular features asso-
ciatedwithpostsurgical recurrence.Onepotential risk factor is ITH,namely,
tumors are composed of cancer cells, stromal cells, and immune cells with
distinctmolecular andphenotypic features28–34. InNSCLC, a series of studies
from our group and others have demonstrated ITH that has emerged at
precancerous stages50,51 and continues to evolve along with local
invasion31,38,52, metastatic spread53, and upon treatment54–57 and increased
molecular ITH was associated with impaired T cell response and increased
risk of postsurgical recurrence44.

In line with the profound impact on cancer biology, ITH also has a
significant impact on the performance of prognostic signatures. In this
study,we investigated the impact ofRNA-ITHon theprognostic association
of individual genes, gene signatures, and tumor immune environment using
themultiregionalRNA-seq in localizedNSCLCs.At the gene level,we found
that themaximal expressionof hazardous genesand theminimal expression
of protective genesweremore prognostic than the average expression across
all regions from the same tumors. Though the average expression enables
selecting both hazardous and protective genes, the numbers are smaller,
highlighting the limitation of previous studies in which biomarker design

Fig. 5 | Region-specific risk scores predicted by
different gene signatures. a Heatmap showing the
correlation between risk scores predicted by the
eight signatures. b, c Heatmap displaying the risk
scores of different regions from selected patients in
bTRACERxC1 and cMDAMPLCcohorts predicted
by eight gene signatures. The risk score was nor-
malized by subtracting the median value and scaled
to the (−1, 1) interval“*” represents the highest risk
scores across different regions of the same patients.
“+” shows the second highest risk scores.
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relied on single-sample gene expression. If only one biopsy per tumor is
used, the potential sampling bias may impede the biomarker selection
(lower ability to identify protective genes by maximal expression approach
and lower ability to identify hazardous genes by minimal expression
approach). On the other hand, if the whole tumor is sequenced as a bulk
sample, it may lose valuable biomarker candidates (e.g., the limited prog-
nostic genes identified by average expression). Therefore, taking advantage
of multiregional RNA-seq in the context of RNA-ITH may improve the
biomarker design and prognostic model performance.

Motivated by the observations at the gene level, we then investigated
how to leverage multiregional gene expression data to improve the prog-
nostication capability of existing prognostic signatures. We tested two dif-
ferent strategies. First, region-specific expression of all genes in a signature
was transformed into patient-specific expression by taking transformation
functions (Avg./Max./Min./Adj./Rev.), which were then used to calculate
patient-level risk scores. In Method 1, we found that the best prognostic
performance was achieved by applying the Adj. Function, a combination of
max/min function for hazardous/protective genes, respectively. Second, a
gene signature was applied to all tumor regions, and the maximal, minimal,
and average scoreswere used for patient-specific scores. By this approach, the
maximal scores for hazardous signatures and the minimum scores for pro-
tective signatures achieved thebest performance, consistentwith results at the
gene level. These results were consistently observed in the publicly available
TRACERx dataset for eleven widely studiedNSCLC gene signatures and our
newly developed signature PACEG. Those results were further supported by
multiregional transcriptomicdataof theMDAMPLCcohort, an independent
dataset generated by our group. Although the Cox regression results did not
reach statistical significance in theMDAMPLCcohort, likely due to the small
sample size, the C-indexes demonstrated the same trends.

It is alsoworth noting that different prognostic signatures are in overall
agreement when identifying the tumor regions associated with the highest
risks of recurrence within the same tumors, suggesting that certain tumor
regions may carry the most aggressive cancer cell subclones that may have
driven the overall prognosis of that particular patient. These findings are
reminiscent of oncologic knowledge and clinical practice that in patients
with lung cancers of mixed histology, the prognosis and treatment are
usually determined by the most aggressive histology58. Together with pre-
vious studies, our results underscored the importance of ITH in the prog-
nostication of localized NSCLS and suggested that transcriptomic ITH
should be considered when developing gene expression-based prognostic
biomarkers.

ORACLE is a pioneer prognostic signature considering RNA-ITH in
its development for localized NSCLC35. It is developed by selecting genes
with high intertumor heterogeneity but low-ITH (Q4 genes) to overcome
tumor sampling bias. However, the increase in reproducibility across
independent datasets may be at the cost of reduced prognostication per-
formance, as 93.4% of genes, including many prognostic indicators, are
excluded. Based on the findings about clonal transcriptomic biomarkers in
Biswas et al.‘s study, we developed a 26-gene signature, PACEG, by inten-
tionally preserving all clonally expressed prognostic genes, rather than
restricted to the Q4 genes, since we found that the transcriptomic intratu-
mor and intertumor heterogeneity were highly correlated (R = 0.733,
p < 0.001), in order to improve the prognostic performance. Indeed, our
results from the multiregional transcriptomic data demonstrated that the
PACEG signature achieved better prognostic performance than ORACLE
andmany other signatures, especially when using Adj. Function ofMethod
1 or Max. Function of Method 2.

If validated, multiregional transcriptomic profiling followed by the
Adjusted Transformation for recurrence risk evaluation may provide
improved insight for prognostication of patients with localized NSCLC
(Supplementary Fig. 7). For resectedNSCLC,multiregional sampling is not a
barrier. From technology perspective, whole exome sequencing and whole
transcriptomics profiling have already made into clinical practice as CLIA-
certified assays to guide treatment decision59–61. Novel and cheaper tran-
scriptomic technologies are making the cost associated with these tests

acceptable, particularly taking into account the money/resources saved from
resulting in better patient selection for personalized adjuvant therapy. Mul-
tiregional sequencing of small gene panels such as PACEGwill further drive
down the cost. Furthermore, the development of spatial transcriptomic
technologies makes it even more practical for multiregional gene expression
analysis from one single pathologic slide.

The therapeutic landscape of perioperative oncology is rapidly evol-
ving, with an increasing number of patients now receiving neoadjuvant
therapy. In our current study, it is important tonote that noneof thepatients
included had undergone neoadjuvant therapy. As a result, the gene sig-
natures we developed did not account for the potential effects of such
treatments. Neoadjuvant therapy can profoundly influence the tumor
microenvironment and alter the expression levels of various genes within
the tumor. These changes can, in turn, impact the performance and
applicability of our gene signatures. Therefore, for patients who receive
neoadjuvant therapy, it will be necessary to develop new or updated gene
signatures tailored to the specific therapeutic context. Nonetheless, we
believe that the principle of multiregional profiling, which helps to mitigate
sampling bias and improve prognostic performance, would still be relevant
and beneficial in the neoadjuvant setting.

Intratumor heterogeneity is a universal phenomenon across various
cancer types. Our strategic approach, aimed at enhancing the clinical
applicability and precision of expression-based signatures through the
integration of multiregional RNA-seq, theoretically, holds the potential for
broader application in heterogeneous cancer categories. Although we were
unable to validate our concept withinmultiregional RNA-seq datasets from
other cancer types due to limited data availabilities, we fervently aspire to
stimulate further initiatives in multiregional RNA-seq data generation and
exploration within diverse cancer types through our research.

Methods
TRACERx multiregional RNA-seq dataset
TRACERxC1 included tumor samples, and clinical details came from the
first 100 patients enrolled in the TRACERx lung cancer study
(TRACERx100)32. Multiregional RNA-seq data were downloaded as
FASTQ files from the European Genome-phenome Archive
(EGAS00001003458)39. It included 164 samples from 64 patients with
NSCLC (Supplementary Table 1). Out of these patients, 45 of them had
multiregional RNA-seq profiles accounting for a total of 145 tumor regions.
For each patient, 2–6 samples were collected from different regions of the
same tumorof apatient.The cohort had41male and23 femalepatientswith
NSCLC, with amedian age of 67.5. Themajority were localized NSCLC: IA
(n = 12), IB (n = 25), IIA (n = 7), IIB (n = 9), IIIA (n = 10), and IIIB (n = 1).
The subtype of the cohortwas predominantly adenocarcinoma (n = 41) and
squamous cell carcinoma (n = 16). The rest were adenosquamous carci-
noma (n = 3), carcinosarcoma (n = 2), large cell carcinoma (n = 1), and large
cell neuroendocrine carcinoma (n = 1). Forty-four had no adjuvant treat-
ment, and 20 had adjuvant therapy.

TRACERxC2 included tumor samples, and clinical details came from
the first 421 patients enrolled in the TRACERx lung cancer study
(TRACERx421)40. Multiregional RNA-seq data were preprocessed as
described by Martínez-Ruiz et al.40 and downloaded from Zenodo (https://
zenodo.org/record/7819449/). For additional validation, we excluded the
TRACERxC1 cohort from the latest TRACERx421 cohort (TRACERxC2).
TRACERxC2 included 652 samples from 261 patients withNSCLC. Out of
these patients, 208 of them had multiregional RNA-seq profiles accounting
for a total of 599 tumor regions. For eachpatient, 2–8 sampleswere collected
from different regions of the same tumor of a patient. More clinical char-
acteristics were summarized in Supplementary Table 1.

TRACERxLUAD included 472 samples from 187 patients with ade-
nocarcinoma subtype from the TRACERx421 datasets. Out of these
patients, 152 of them had multiregional RNA-seq profiles accounting for a
total of 437 tumor regions. For each patient, 2–8 samples were collected
from different regions of the same tumor of a patient. More clinical char-
acteristics were summarized in Supplementary Table 1.
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MDAMPLC cohorts and samples
Atotal of 64 tumor regions from25patientswere included in this cohort (MD
Anderson Cancer Center Multiregional Profiling in Lung Cancer,
MDAMPLC). For each tumor, 2–3 tumor regionswere subjected toRNA-seq
(Supplementary Table 1). There were 13 male and 12 female patients with a
median age of 62. The cohort was dominatingly localizedNSCLC: IA (n= 2),
IB (n = 9), IIA (n = 6), IIB (n= 4), IIIA (n= 3), and IV (n= 1). The histologic
subtypes include adenocarcinoma (n = 13), squamous cell carcinoma (n= 8),
and neuroendocrine (n= 4).Written informed consent for sample collection
and analysis was obtained from all patients. The study protocols adhered to
the Declaration of Helsinki and were approved by the Institutional Review
Board at theUniversity ofTexasMDAndersonCancerCenter.No individual
person’s data in any form (including any individual details, images, or videos)
was used in this study.

MDAMPLC RNA-seq
Multi-site frozen tumor tissues were collected by Core Needle Biopsy (CNB)
and were trimmed thoroughly away embedded OCT around tissues on dry
ice. Tissues were then transferred to 2ml vials (Qiagen 990381) containing
Bead (Qiagen 69989) precooled at −20 °C. Vials were added with Qiagen
Lysis Buffer QIAzol (Qiagen 79306) and put into the precooled insert of the
Adapter of TissueLyser LT (Qiagen 85600) and followed the manual of
TissueLyser LT for Tissue Disruption & Homogenization. RNA was
extracted following the Qiagen kit Protocol fromAnimal tissue ofmiRNeasy
MiniHandbook (Qiagen 217004). The samples were qualified by theAgilent
Bioanalyzer. RNA was considered high quality if both ribosomal peaks were
present on the Agilent Bioanalyzer trace and had an RIN of greater than 7.5.

Purified double-stranded cDNA was constructed using the NuGEN
Ovation RNA-Seq protocol from total RNA,whichwas amplified using both
3’ poly(A) selection and random priming throughout the transcriptome.
Next, all cDNA was quantified using the Invitrogen Qubit 2.0 DNA quan-
titation assay qualified by the Agilent Bioanalyzer HS-DNA chip, and if
required, sheared using the Covaris S2 focused-ultrasonicator following the
NuGEN Encore NGS Library System 1 protocol.

RNA-seq preprocessing
FASTQ data of TRACERx100 and MDAMPLC RNA-seq underwent
quality control. Against the hg19 reference genome, RSEM(v1.2.3) with the
option “—bowtie2(v2.2.3)” was used to calculate FPKM (Fragments Per
Kilobase of transcript per Million mapped reads) from FASTQ62,63. The
preprocessed RNA-seq data of TRACERx421 was downloaded from
Zenodo and directly used.

TCGA LUAD RNAseq and CNV data
The Cancer GenomeAtlas (TCGA) clinical information, RNA-seq data, and
Copy Number Variation (CNV) segment files for lung adenocarcinoma
(LUAD) were downloaded from Firehose (https://gdac.broadinstitute.org/).
This RNA-seq dataset consisted of RSEM-normalized gene expression data
for 20,501 genes. The details of the preprocessing of the CNV segment files
have been previously described64. The CNV of genes was determined based
onmapping the gene to the significant CNV segments provided in the CNV
segment files. If a gene was mapped to multiple consecutive segments, the
weighted mean was used, where the weight was calculated based on the
fraction mapped to the corresponding segment.

Calculation of transcriptomic heterogeneity
After filtering out expression genes and performing log transformation, we
calculated the Euclidean Distance of gene expression for each pair of tumor
regions to quantify the transcriptomic heterogeneity based on the multi-
regionalRNA-seq. Specifically, the transcriptomicdivergence between tumor
regions i and j (DRNA

i;j ) was quantified as:

DRNA
i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm

k¼1
ðek;i � ek;jÞ2

q

ð1Þ

Where ek,· is the expression value of gene k, and m is the total number
of genes.

If tumor regions i and jwere fromdifferent tumors, thedivergencies for
between-patient sample pairs represented intertumor heterogeneity. If
tumor regions i and j were from the same tumors, the divergencies for
within-patient sample pairs reflected the RNA-ITH in individuals. The
average value of all within-tumor region pairs (�D) was calculated to
represent the RNA-ITH of the patient.

Calculation of ORACLE signature scores
TheORACLE (outcome risk associated clonal lung expression) signature is a
23-gene signature defined by Biswas et al.35. This signature was developed by
selecting clonally expressed prognostic genes with low intratumor but high
intertumorheterogeneity.Given theRNA-seqprofile of a lungcancer sample,
the ORACLE risk score was calculated as the weighted sum of the log2
expression values of the 23 signature genes. The weights of signature genes
were downloaded from the ref. 35.

Calculation of nine public signature scores
Nine NSCLC signatures were selected from the literature because they
are hazardous signatures composed of no less than five genes. The sig-
nature genes were collected from their publications6,7,11–13,15,18,21,24. Given
that the weights were unavailable in most signatures, the coefficients of
each signature were trained in the TCGA LUAD RNA-seq data as
weights, respectively, through the multivariate Cox regression, to make
it comparable among all signatures mentioned in this study. The risk
score was calculated as the weighted sum of the log2 expression values of
genes of each signature.

Calculation of WTGS signature scores
TheWTGS signature scores of lung cancer sampleswere calculated using the
statistical framework called WTSPP (whole transcriptome signatures for
prognostic prediction)43. Instead of selecting a small set of prognostic genes,
WTSPP used all genes for prognostic prediction by assigning a weight for
eachgenebasedon itsprognostic association in trainingdata. In this study,we
used the published signature previously defined based on the TCGA LUAD
data43. This signature was applied to the multiregional RNA-seq data to
calculate the risk scores of samples based on a rank-based function provided
by the WTSPP framework.

The development of the PACEG signature and calculation of
risk scores
The PACEG (Prognosis-Associated Clonally Expressed Genes) sig-
nature was defined by using the TCGA LUAD RNA-seq data, CNV
data, and clinical information in the following steps. First, from all
genes, we selected 10,250 genes with expression levels above the
median expression. Lowly expressed genes were generally associated
with a low signal/noise ratio due to technical reasons and, therefore,
were excluded at this step. Second, genes associated with overall
patient survival (false discovery rate <0.01 in Univariate Cox
regression models) were selected, resulting in a set of 736 genes.
Third, from them, we further selected 124 genes with clonal expres-
sion in lung cancer—genes with expression correlated with their copy
numbers (Pearson correlation coefficient >0.5). The expression of
these genes was largely driven by their copy numbers and therefore,
they were more likely to be clonally expressed compared to randomly
selected genes. Finally, we applied a Cox regression model with L1
regularization (LASSO) and selected 26 genes (out of the 124 genes)
to form the PACEG signature. In contrast to the procedure to define
the ORACLE signature, we did not restrict genes to Q4 genes (genes
with high intertumor but low intratumor diversity)35, which excludes
nearly 93.4% of genes, including most prognostic genes.

For a lung cancer sample, the PACEG signature was applied to cal-
culate the risk score as a linear combination of signature gene expression
values, weighted by the model coefficients fitted in the TCGA cohort.
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Inference of immune cell infiltration
We applied our previously developed binding association with sorted
expression (BASE) algorithm to infer immune cell infiltration based on
tumor gene expression profiles45–47. Full details on the BASE algorithm45 and
the weight profile calculation of six immune cell types (Naïve B, Memory B,
CD8+ T, CD4+ T, NK cells, and monocyte)46 have been described pre-
viously.Given the lung cancer gene expression data andpre-defined immune
cell-specific reference profiles, the method outputs the inferred infiltration
scores of different immune cells in each of the samples. The effectiveness of
computational inference for these cell types has been validated by comparing
themwithflowcytometrydata inbothhumanperipheral bloodmononuclear
cells (PBMC) and lung tumor samples47.

Prediction of region-specific risk scores
First, we constructed univariate Cox regression models for eight
prognostic signatures, respectively. The models were trained based on
the maximal scores for the three hazardous signatures (ORACLE,
PACEG, and Monocyte) and the minimum scores for the five pro-
tective signatures (WTGS, Naïve B, Memory B, CD8+ T, and CD4+
T cells). Second, all models were applied to the expression data of all
tumor regions to calculate the region-specific risk scores. Third, the
risk scores obtained from each signature were normalized by sub-
tracting the median of scores and rescaled to the [0,1] interval by
dividing the difference between maximum and minimum. Last, the
patients with at least three regions were displayed, and the top two
highest-risk scores of each tumor were highlighted.

Statistical analyses
Statistical analyses were performed with the R platform (v4.1.0) and
visualized with ggplot2 R package (v3.3.5)65, ggpubr R package
(v0.4.0)66, ggvenn R package (v0.1.9)67, forestplot R package
(v1.10.1)68, ComplexHeatmap R package (v2.10.0)69, and circlize R
package (v0.4.13)70. Survival analyses, specifically measuring disease-
free survival, were performed using survival R package (v3.2-11)71.
Specifically, The “coxph” and “survreg” functions were applied to
build univariate and multivariate Cox regression models for evaluat-
ing the association of signature scores with patient overall or relapse-
free survival. The “survdiff” function was used to compare the survival
time between two patient groups. The “survfit” function was used to
create Kaplan–Meier survival curves which were visualized by surv-
miner R package (v0.4.9)72. Other survival analyses such as log-rank
tests were also performed using functions included in the survival and
survminer R packages. The glmnet R package (v4.1-2)73,74 was used to
implement multivariate Cox regression models with L1 regularization
(LASSO). The Student t-test and Wilcoxon Rank-Sum test were used
to compare the interestedmetrics between two sample groups with the
R function “t.test” and “wilcox.test”, respectively. Correlation analysis
between two variables was conducted by using the R functton “cor.t-
est”. For all analyses, if applicable, the p-values from statistical tests
and models were adjusted by the Benjamini–Hochberg method to
correct for multiple testing.

Data availability
The TRACERx100 RNA-seq data (EGAS00001003458), TRACERx421
RNA-seq (https://zenodo.org/record/7819449/) and the TCGALUADdata
(https://gdac.broadinstitute.org/) are publicly available. The preprocessed
RNA-seq and de-identified clinical information of the MDAMPLC cohort
are deposited on GitHub: https://github.com/CSkylarL/MSofRNAITH.

Code availability
All codes and intermediate results in this study are deposited on GitHub:
https://github.com/CSkylarL/MSofRNAITH.

Received: 24 April 2024; Accepted: 26 August 2024;

References
1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics,

2022. CA Cancer J. Clin. 72, 7–33 (2022).
2. Sung,H. et al.Global cancer statistics2020:GLOBOCANestimatesof

incidence andmortalityworldwide for 36 cancers in 185 countries.CA
Cancer J. Clin. 71, 209–249 (2021).

3. Araujo, L. H. et al. in Abeloff’s Clinical Oncology 1108–1158.e1116
(Elsevier, 2020).

4. Flores, R., Patel, P., Alpert, N., Pyenson, B. & Taioli, E. Association of
stage shift and population mortality among patients with non–small
cell lung cancer. JAMA Netw. Open 4, e2137508 (2021).

5. Uramoto, H. & Tanaka, F. Recurrence after surgery in patients with
NSCLC. Transl. Lung Cancer Res. 3, 242–249 (2014).

6. Beer, D. G. et al. Gene-expression profiles predict survival of patients
with lung adenocarcinoma. Nat. Med. 8, 816–824 (2002).

7. Bianchi, F. et al. Survival prediction of stage I lung adenocarcinomas
by expression of 10 genes. J. Clin. Investig. 117, 3436–3444 (2007).

8. Bueno, R. et al. Validation of a molecular and pathological model for
five-year mortality risk in patients with early stage lung
adenocarcinoma. J. Thorac. Oncol. 10, 67–73 (2015).

9. Chen, H.-Y. et al. A five-gene signature and clinical outcome in
non–small-cell lung cancer. N. Engl. J. Med. 356, 11–20 (2007).

10. Eguchi, T. et al. Cell cycle progression score is a marker for five-year
lung cancer-specific mortality risk in patients with resected stage I
lung adenocarcinoma. Oncotarget 7, 35241 (2016).

11. Garber,M. E. et al. Diversity of gene expression in adenocarcinoma of
the lung. Proc. Natl Acad. Sci. USA 98, 13784–13789 (2001).

12. Kratz, J. R. et al. A practical molecular assay to predict survival in
resected non-squamous, non-small-cell lung cancer: development
and international validation studies. Lancet 379, 823–832 (2012).

13. Krzystanek, M., Moldvay, J., Szüts, D., Szallasi, Z. & Eklund, A. C. A
robust prognostic gene expression signature for early stage lung
adenocarcinoma. Biomark. Res. 4, 1–7 (2016).

14. Li, B., Cui, Y., Diehn, M. & Li, R. Development and validation of an
individualized immune prognostic signature in early-stage
nonsquamous non–small cell lung cancer. JAMA Oncol. 3,
1529–1537 (2017).

15. Raz, D. J. et al. A multigene assay is prognostic of survival in patients
with early-stage lung adenocarcinoma. Clin. Cancer Res. 14,
5565–5570 (2008).

16. Shukla, S. et al. Development of a RNA-Seq based prognostic
signature in lung adenocarcinoma. J. Natl Cancer Inst. 109,
djw200 (2017).

17. Suzuki, K. et al. Prognostic immune markers in non-small cell lung
cancer. Clin. Cancer Res. 17, 5247–5256 (2011).

18. Wistuba, I. I. et al. Validation of a proliferation-based expression
signature as prognostic marker in early stage lung adenocarcinoma.
Clin. Cancer Res. 19, 6261–6271 (2013).

19. Tang, H. et al. A 12-gene set predicts survival benefits from adjuvant
chemotherapy in non–small cell lung cancer patients. Clin. Cancer
Res. 19, 1577–1586 (2013).

20. Van Laar, R. K. Genomic signatures for predicting survival and
adjuvant chemotherapy benefit in patients with non-small-cell lung
cancer. BMC Med. Genomics 5, 30 (2012).

21. Zhu,C.-Q. et al. Prognostic andpredictive gene signature for adjuvant
chemotherapy in resected non–small-cell lung cancer. J. Clin. Oncol.
28, 4417 (2010).

22. Director’s Challenge Consortium for the Molecular Classification of
Lung, A. et al. Gene expression-based survival prediction in lung
adenocarcinoma: a multi-site, blinded validation study.Nat. Med. 14,
822–827 (2008).

23. Lau, S. K. et al. Three-gene prognostic classifier for early-stage
non–small-cell lung cancer. J. Clin. Oncol. 25, 5562–5569 (2007).

24. Boutros, P. C. et al. Prognostic gene signatures for non-small-cell
lung cancer. Proc. Natl Acad. Sci. USA 106, 2824–2828 (2009).

https://doi.org/10.1038/s41698-024-00680-0 Article

npj Precision Oncology |           (2024) 8:225 12

https://egaarchive.org/studies/EGAS00001003458
https://zenodo.org/record/7819449/
https://gdac.broadinstitute.org/
https://github.com/CSkylarL/MSofRNAITH
https://github.com/CSkylarL/MSofRNAITH
www.nature.com/npjprecisiononcology


25. Subramanian, J. & Simon, R. Gene expression–based prognostic
signatures in lung cancer: ready for clinical use? J. Natl Cancer Inst.
102, 464–474 (2010).

26. Vargas, A. J. & Harris, C. C. Biomarker development in the precision
medicine era: lung cancer as a case study. Nat. Rev. Cancer 16,
525–537 (2016).

27. Zhu, C. Q. & Tsao, M. S. Prognostic markers in lung cancer: is it ready
for prime time? Transl. Lung Cancer Res. 3, 149–158 (2014).

28. de Sousa, V. M. L. & Carvalho, L. Heterogeneity in lung cancer.
Pathobiology 85, 96–107 (2018).

29. Marino, F. Z. et al. Molecular heterogeneity in lung cancer: from
mechanisms of origin to clinical implications. Int. J. Med. Sci. 16,
981 (2019).

30. Senosain, M.-F. & Massion, P. P. Intratumor heterogeneity in early
lung adenocarcinoma. Front. Oncol. 10, 349 (2020).

31. Zhang, J. et al. Intratumor heterogeneity in localized lung
adenocarcinomas delineated by multiregion sequencing. Science
346, 256–259 (2014).

32. Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung
cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

33. Ramón y Cajal, S. et al. Clinical implications of intratumor
heterogeneity: challenges and opportunities. J. Mol. Med. 98,
161–177 (2020).

34. Jamal-Hanjani, M., Quezada, S. A., Larkin, J. & Swanton, C.
Translational implications of tumor heterogeneity. Clin. Cancer Res.
21, 1258–1266 (2015).

35. Biswas, D. et al. A clonal expression biomarker associates with lung
cancer mortality. Nat. Med. 25, 1540–1548 (2019).

36. Diaz-Cano, S. J. Tumor heterogeneity: mechanisms and bases for a
reliable application of molecular marker design. Int. J. Mol. Sci. 13,
1951–2011 (2012).

37. Gyanchandani, R. et al. Intratumor heterogeneity affects gene
expression profile test prognostic risk stratification in early breast
cancerintratumor heterogeneity in GEP test risk stratification. Clin.
Cancer Res. 22, 5362–5369 (2016).

38. Lee, W.-C. et al. Multiregion gene expression profiling reveals
heterogeneity in molecular subtypes and immunotherapy response
signatures in lung cancer.Mod. Pathol. 31, 947–955 (2018).

39. Rosenthal, R. et al. Neoantigen-directed immune escape in lung
cancer evolution. Nature 567, 479–485 (2019).

40. Martínez-Ruiz, C. et al. Genomic–transcriptomic evolution in lung
cancer and metastasis. Nature 616, 1–10 (2023).

41. Consortium, A. P. G. et al. AACR Project GENIE: powering precision
medicine through an international consortium. Cancer Discov. 7,
818–831 (2017).

42. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing
genetic dysfunction across all human cancers. Nat. Rev. Cancer 18,
696–705 (2018).

43. Schaafsma, E. et al. Whole transcriptome signature for prognostic
prediction (WTSPP): application of whole transcriptome signature for
prognostic prediction in cancer.Lab. Investig.100, 1356–1366 (2020).

44. Reuben, A. et al. TCR repertoire intratumor heterogeneity in localized
lung adenocarcinomas: an association with predicted neoantigen
heterogeneity and postsurgical recurrenceTCR intratumor
heterogeneity and relapse in lung cancer. Cancer Discov. 7,
1088–1097 (2017).

45. Varn, F. S., Andrews, E. H., Mullins, D. W. & Cheng, C. Integrative
analysis of breast cancer reveals prognostic haematopoietic activity
and patient-specific immune response profiles. Nat. Commun. 7,
10248 (2016).

46. Varn, F. S., Wang, Y., Mullins, D. W., Fiering, S. & Cheng, C.
Systematic pan-cancer analysis reveals immune cell interactions in
the tumor microenvironment. Cancer Res. 77, 1271–1282 (2017).

47. Varn, F. S., Tafe, L. J., Amos, C. I. & Cheng, C. Computational immune
profiling in lung adenocarcinoma reveals reproducible prognostic

associations with implications for immunotherapy.Oncoimmunology
7, e1431084 (2018).

48. Wu, Y. L. et al. Osimertinib in resected EGFR-mutated non-small-cell
lung cancer. N. Engl. J. Med. 383, 1711–1723 (2020).

49. Felip, E. et al. Adjuvant atezolizumab after adjuvant chemotherapy in
resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a
randomised, multicentre, open-label, phase 3 trial. Lancet 398,
1344–1357 (2021).

50. Hu, X. et al. Multi-region exome sequencing reveals genomic
evolution from preneoplasia to lung adenocarcinoma. Nat. Commun.
10, 1–10 (2019).

51. Hu,X. et al. EvolutionofDNAmethylome fromprecancerous lesions to
invasive lung adenocarcinomas. Nat. Commun. 12, 1–13 (2021).

52. Quek, K. et al. DNA methylation intratumor heterogeneity in localized
lung adenocarcinomas. Oncotarget 8, 21994 (2017).

53. Lee, W.-C. et al. Multiomics profiling of primary lung cancers and
distant metastases reveals immunosuppression as a common
characteristic of tumor cells with metastatic plasticity. Genome Biol.
21, 1–21 (2020).

54. Nong, J. et al. Circulating tumor DNA analysis depicts subclonal
architecture and genomic evolution of small cell lung cancer. Nat.
Commun. 9, 1–8 (2018).

55. Le, X. et al. Landscape of EGFR-dependent and-independent
resistance mechanisms to osimertinib and continuation therapy
beyond progression in EGFR-mutant NSCLCOsimertinib resistance
landscape. Clin. Cancer Res. 24, 6195–6203 (2018).

56. Jin, Y. et al. Distinct co-acquired alterations and genomic evolution
during TKI treatment in non-small-cell lung cancer patients with or
without acquired T790M mutation. Oncogene 39, 1846–1859 (2020).

57. Chen, R. et al. Evolution of genomic and T-cell repertoire
heterogeneity of malignant pleural mesothelioma under dasatinib
treatmentImmunogenomic ITH evolution of MPM. Clin. Cancer Res.
26, 5477–5486 (2020).

58. Ruffini, E. et al. Lung tumors with mixed histologic pattern. Clinico-
pathologic characteristics and prognostic significance. Eur. J.
Cardiothorac. Surg. 22, 701–707 (2002).

59. Cuppen,E. et al. Implementationofwhole-genomeand transcriptome
sequencing into clinical cancer care. JCO Precis. Oncol. 6,
e2200245 (2022).

60. George, B. et al. Transcriptomic-based microenvironment
classification reveals precision medicine strategies for PDAC.
Gastroenterology 166, 859–871.e3 (2024).

61. Heeke, S. et al. Tumor-and circulating-freeDNAmethylation identifies
clinically relevant small cell lung cancer subtypes. Cancer Cell 42,
225–237. e225 (2024).

62. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinforma.
12, 1–16 (2011).

63. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
Bowtie 2. Nat. Methods 9, 357–359 (2012).

64. Zhang, B., Yao, K., Zhou, E., Zhang, L. & Cheng, C. Chr20q
amplification defines a distinct molecular subtype of microsatellite
stable colorectal cancer. Cancer Res. 81, 1977–1987 (2021).

65. Wickham, H. Package ‘ggplot2’: elegant graphics for data analysis.
Springe -Verl. N. Y. doi 10, 978–970 (2016).

66. Kassambara, A. ggpubr:“ggplot2” based publication ready plots.
(2020).

67. Yan, L. ggvenn: Draw Venn Diagram by ‘ggplot2’. R Package Version
19 (2021).

68. Gordon, M., Lumley, T. & Gordon, M. M. Package ‘forestplot’.
Advanced forest plot using ‘grid’graphics. The Comprehensive R
Archive Network, Vienna (2019).

69. Gu, Z., Eils, R. &Schlesner,M.Complex heatmaps reveal patternsand
correlations in multidimensional genomic data. Bioinformatics 32,
2847–2849 (2016).

https://doi.org/10.1038/s41698-024-00680-0 Article

npj Precision Oncology |           (2024) 8:225 13

www.nature.com/npjprecisiononcology


70. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements
and enhancescircular visualization inR.Bioinformatics30, 2811–2812
(2014).

71. Therneau, T. M. Survival Analysis [R package survival version 2.42-
6]. (2015).

72. Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Survminer:
Drawing Survival Curves Using Ggplot2. https://CRAN.R-project.org/
package=survminer. R package version 0.4 9 (2021).

73. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33,
1 (2010).

74. Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization
paths for Cox’s proportional hazardsmodel via coordinate descent. J.
Stat. Softw. 39, 1 (2011).

Acknowledgements
This study was supported by the National Cancer Institute of the
National Institute of Health Research Project Grant (R01CA269764 to
C. Cheng, R01CA234629 to Jianjun Zhang), the AACR-Johnson &
Johnson Lung Cancer Innovation Science Grant (18-90-52-ZHAN to
Jianjun Zhang), the MD Anderson Lung Cancer Moon Shot Program,
the Cancer Prevention and Research Institute of Texas Multi-
Investigator Research Award grant (RP160668 to Jianjun Zhang) and
the UT Lung Specialized Programs of Research Excellence Grant
(P50CA70907 to Jianjun Zhang), Rydin Family Research Fund (Jianjun
Zhang) and the Cancer Prevention Research Institute of Texas (CPRIT)
(RR180061 to C. Cheng). C. Cheng is a CPRIT Scholar in Cancer
Research. This study used the data generated by The TRAcking Non-
small Cell Lung Cancer Evolution Through Therapy (Rx) (TRACERx)
Consortium and provided by the UCL Cancer Institute and The Francis
Crick Institute. The TRACERx study is sponsored by University College
London, funded by Cancer Research UK, and coordinated through the
Cancer Research UK and UCL Cancer Trials Center. The authors would
like to acknowledge the support of the High-Performance Computing
for Research facility at the University of Texas MD Anderson Cancer
Center for providing computational resources that have contributed to
the research results reported in this paper. Figure 1a, Fig. 3a, and
Supplementary Fig. 7 were created with BioRender.com.

Author contributions
Conceptualization: C. Li and C. Cheng; Methodology: C. Li and C.
Cheng; Software: C. Li and C. Cheng; Validation: C. Li; Formal Analysis:
C. Li and C. Cheng; Investigation, C. Li, C. Cheng, and T. T. Nguyen;
Resources: Jianjun Zhang, I. I. Wistuba, and A. P. Futreal; Data
Curation: C. Li, J. Li, X. Song, S. M. Hubert, C. B. Chow, J. Fujimoto, L.
Little, C. Gumb, and Jianhua Zhang; Writing—Original Draft: C. Li;
Writing—Review & Editing: C. Cheng, Jianjun Zhang, C. B. Chow, J.
Fujimoto, L. Little, C. Gumb, C. I. Amos, J. Wu, T. T. Nguyen, J. Li, X.
Song, S. M. Hubert, J. V. Heymach and Jianhua Zhang, I. Wistuba, and
A.P. Futreal; Visualization, C. Li; Supervision: Jianjun Zhang and C.
Cheng; Funding Acquisition: Jianjun Zhang and C. Cheng.

Competing interests
Jianjun Zhang reports grants fromMerck, grants and personal fees from
Johnson and Johnson and Novartis, and personal fees from Bristol Myers
Squibb, AstraZeneca,GenePlus, Innovent, andHengrui outside the submitted
work. Ignacio Wistuba has provided consulting or advisory roles for
AstraZeneca/MedImmune, Bayer, Bristol-Myers Squibb, Genentech/Roche,
GlaxoSmithKline, Guardant Health, HTGMolecular Diagnostics, Merck, MSD
Oncology,OncoCyte, Jansen,Novartis, Flame Inc,Regeneron, andPfizer; has
received grants and personal fees from Genentech/Roche, Bristol Myers
Squibb, AstraZeneca/MedImmune, HTGMolecular, Merck, and Guardant
Health; has received personal fees from GlaxoSmithKline and Oncocyte,
Daiichi-Sankyo, Roche, Astra Zeneca, Regeneron, Sanofi, Pfizer, and Bayer;
has received research funding to his institution from 4DMolecular Ther-
apeutics, Adaptimmune, Adaptive Biotechnologies, Akoya Biosciences,
Amgen, Bayer, EMD Serono, Genentech, Guardant Health, HTGMolecular
Diagnostics, Iovance Biotherapeutics, Johnson & Johnson, Karus Ther-
apeutics, MedImmune, Merck, Novartis, OncoPlex Diagnostics, Pfizer,
Takeda, and Novartis. The remaining authors declare no potential conflicts of
interest.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41698-024-00680-0.

Correspondence and requests for materials should be addressed to
Jianjun Zhang or Chao Cheng.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

1Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 2Graduate School of Biomedical Sciences, The
UniversityofTexasMDAndersonCancerCenterUTHealthHouston,Houston,TX77030,USA. 3DepartmentofMedicine,BaylorCollegeofMedicine,Houston,TX77030,
USA. 4Department of TranslationalMolecular Pathology, TheUniversity of TexasMDAndersonCancerCenter,Houston, TX77030,USA. 5Department of Thoracic/Head
and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 6Department of Imaging Physics, Division of Diagnostic
Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 7Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine,
Houston, TX77030,USA. 8The Institute forClinical andTranslationalResearch,BaylorCollegeofMedicine,Houston,TX77030,USA. 9LungCancerGenomicsProgram,
The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 10Lung Cancer Interception Program, The University of Texas MD Anderson Cancer
Center, Houston, TX 77030, USA. 11These authors jointly supervised this work: Jianjun Zhang, Chao Cheng. JZhang20@mdanderson.org; Chao.Cheng@bcm.edu

https://doi.org/10.1038/s41698-024-00680-0 Article

npj Precision Oncology |           (2024) 8:225 14

https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://doi.org/10.1038/s41698-024-00680-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:JZhang20@mdanderson.org
mailto:Chao.Cheng@bcm.edu
www.nature.com/npjprecisiononcology

	Multiregional transcriptomic profiling provides improved prognostic insight in localized non-small cell lung cancer
	Results
	Multiregional RNA-seq reveals transcriptomic intratumor heterogeneity
	Integrating gene-level RNA-ITH may improve biomarker design
	Improve performance of prognostic signatures with RNA-ITH
	Method 1 (M1)
	Method 2 (M2)

	The PACEG gene signature
	The prognostic impact of RNA-ITH in the tumor microenvironment
	Prognostic risk variation across different regions and signatures

	Discussion
	Methods
	TRACERx multiregional RNA-seq dataset
	MDAMPLC cohorts and samples
	MDAMPLC RNA-seq
	RNA-seq preprocessing
	TCGA LUAD RNAseq and CNV data
	Calculation of transcriptomic heterogeneity
	Calculation of ORACLE signature scores
	Calculation of nine public signature scores
	Calculation of WTGS signature scores
	The development of the PACEG signature and calculation of risk scores
	Inference of immune cell infiltration
	Prediction of region-specific risk scores
	Statistical analyses

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




