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Integrative multi-omics analysis reveals
genetic and heterotic contributions to male
fertility and yield in potato

Dawei Li 1,9, Zedong Geng2,9, Shixuan Xia1,2, Hui Feng2, Xiuhan Jiang1, Hui Du1,
Pei Wang1, Qun Lian1, Yanhui Zhu1, Yuxin Jia3, Yao Zhou 1, Yaoyao Wu4,
Chenglong Huang2, Guangtao Zhu3, Yi Shang3, Huihui Li 5,6, Thomas Städler7,
Wanneng Yang 2 , Sanwen Huang 1,8 & Chunzhi Zhang 1

The genetic analysis of potato is hampered by the complexity of tetrasomic
inheritance. An ongoing effort aims to transform the clonally propagated
tetraploid potato into a seed-propagated diploid crop, which would make
genetic analysesmuch easier owing to disomic inheritance. Here, we construct
and report the large-scale genetic and heterotic characteristics of a diploid F2
potato population derived from the cross of two highly homozygous inbred
lines. We investigate 20,382 traits generated from multi-omics dataset and
identify 25,770 quantitative trait loci (QTLs). Coupled with gene expression
data, we construct a systems-genetics network for gene discovery in potatoes.
Importantly, we explore the genetic basis of heterosis in this population,
especially for yield and male fertility heterosis. We find that positive heterotic
effects of yield-related QTLs and negative heterotic effects ofmetabolite QTLs
(mQTLs) contribute to yield heterosis. Additionally, we identify a PME gene
with a dominance heterotic effect that plays an important role in male fertility
heterosis. This study provides genetic resources for the potato community
and will facilitate the application of heterosis in diploid potato breeding.

Understanding the genetic basis of variation for quantitative traits has
been a long-standing challenge in biology. Forward genetics is the
classical approach in genetics research. In contrast to reverse genetics,
forward genetics progresses from phenotype to genotype, aiming to
identify elements of genetic variation that underlie the corresponding
phenotypes1,2. Association analysis of natural populations and linkage
mapping of biparental segregating populations (F2, recombinant

inbred lines [RILs], etc.) constitute two approaches to map QTLs3. The
efficacy of forward genetics is affected by the density of genetic mar-
kers, the accuracy of scored phenotypes and the size of the mapping
population4. Benefiting from the development of high-throughput
sequencing technology, genotyping by sequencing facilitates the
identification of genetic variation. More and more phenotypes can be
accurately measured using the multi-omics approach, such as
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transcriptomics, metabolomics and phenomics5. This also underlies
and enables genetical genomics or systems genetics approaches that
combine genetics with gene expression analysis to understand com-
plex traits6,7. The concept of systems genetics was proposed in the
early 21st century7–9, and much progress has been made in humans10–12

and plants13–15. The application of systems genetics in crops promises
to facilitate both gene discovery and molecular breeding.

Potato (Solanum tuberosum L.) is the most important tuber crop
and staple food for 1.3 billion people worldwide16. However, the com-
plexity of tetrasomic inheritance has limited genetic studies in potato.
It is challenging to resolve QTLs to the single-gene level using auto-
tetraploid populations (2n = 4x = 48). Genetic analysis at the diploid
level will help to simplify analyses and identify genes associated with
agronomically important traits. By overcoming self‐incompatibility17–20

and inbreeding depression21–23, tremendous efforts have already been
made to reinvent potato as a seed-propagated diploid crop; yet,
compared with othermajor crops, diploid potato breeding is still in its
infancy5,24–26. Several studies have explored the potential to map QTLs
using the diploid populations27–31. However, almost all of the diploid
mapping populations have been derived from two heterozygous par-
ents that contain four segregating alleles, and lack of large-scale
genetic analysis limits their application in potato breeding. In a pre-
vious study, we developed a genome-design approach and created a
diploid hybrid potato based on two inbred parental lines23. The two
parents, coming from two different diploid accessions: S. tuberosum
group Stenotomum and S. tuberosum group Phureja, have significant
diversity in tuber traits, gene expression and metabolite content,
etc.23,32 The segregating F2 population generated from the two lines is
an ideal resource for large-scale genetic analyses of potato, especially
for the genetic dissection of heterosis.

Heterosis refers to the superior performance of hybrids over
their parents33–35, which has been extensively applied for agronomic
purposes in animals and plants. Understanding the genetic
mechanisms underlying heterosis is beneficial for future crop hybrid
breeding. Dominance, overdominance and epistasis are three clas-
sical models causally explaining the phenomenon of heterosis36–38.
Recent reports in rice and maize found that dominance and over-
dominance effects have explanatory power in the different F2
populations39,40. However, mechanisms underlying heterosis in
clonally propagated crops are largely unknown. The diploid hybrid
potato we created exhibits significant heterosis at different devel-
opmental stages23,32, and it constitutes suitable material for the study
of mechanisms underpinning heterosis. Furthermore, genetic dis-
sections of the key loci contributing to heterosis are achievable in the
F2 population, enabling us to evaluate the potential heterotic effects
of each locus.

In this study, we conduct large-scale genetic and heterotic ana-
lyses in a diploid inbred line-based F2 population. Using a multi-omics
dataset, we construct a large database of genetic resources. Impor-
tantly, we reveal the genetic basis of heterosis in this elite hybrid
potato cross and identify a male fertility-related PME gene with dom-
inance heterotic effect. Our findings contribute to the molecular
breeding of diploid potato and provide insights into the under-
standing of heterosis in clonally propagated crops.

Results
The sequencing map of an inbred line-based F2 population
A summary of our sequencingmap and research pipeline is outlined in
Fig. 1. We constructed an immortalized F2 population, including 1064
individuals and conserved by tissue culture, derived from two homo-
zygous diploid inbred lines23: A6-26 and E4-63. We re-sequenced all F2
plants with an average coverage of 3× and constructed a high-density
genotype and genetic map based on 4,794,364 single-nucleotide
polymorphisms (SNPs) for QTL mapping (Supplementary Fig. 1a, b).
We identified two genomic regions with severe segregation distortion

(SD) where the segregation ratios in the F2 population did not agree
with 1:2:1 proportion (Supplementary Fig. 1c). These two SD regions
colocalize with two self-compatibility-related genes: the S-RNase
mutant Ss11 on chromosome 1 (chr01) (derived from the female par-
ent A6-26)17 and the S-locus inhibitor (Sli) on chr12 (derived from the
male parent E4-63)19,20. Only pollen grains harboring either one or both
genes complete the double fertilization, therefore resulting in SD in
the F2 population.

To boost the progress of gene discovery in potato, we developed
a high-throughput phenome detection and analysis system that inte-
grates multi-omics technology and further divided the potato phe-
nome intomacro-phenome andmicro-phenome. Themacro-phenome
includes traits investigated by manual and high-throughput optical
imaging (RGB camera, hyperspectral imaging and structured light
imaging) (Supplementary Fig. 2 and Supplementary Methods 1 and 2).
We thus generated 537 macro-traits including pollen viability, yield-
related traits, tuber structure-related traits, morphology-related traits,
etc. (Supplementary Data 1). The micro-phenome consists of the
transcriptome and the metabolome of tuber. After filtering out low-
quality data,we identified 19,166 expressed genes and 679metabolites
for genetic and heterotic analyses.

QTL mapping of the multi-omics traits
We mapped several qualitative traits to known loci using bulked-
segregant analysis (BSA). For example, genes controlling tuberfleshcolor
and tuber shapemapped to the ends of chr03 and chr10, corresponding
to the Y locus41 and the Ro gene29,42, respectively (Supplementary
Fig. 3a, b). Purple Tuber Bud is located on chr02, corresponding to the
same region as purple flower32 and possibly regulated by DFR
(Dihydroflavonol-4-reductase, D locus)43 (Supplementary Fig. 3c). The
gene associated with yellow leaf was mapped to chr12 (Supplementary
Fig. 3d). The underlying gene yl1 came from parent A6-26 and was also
found in progeny of PG6359 (the parental line of A6-26)21,23.

We applied the composite interval-mapping method to map
quantitative traits, identifying 135 macro-phenome QTLs (pQTLs)
(Fig. 2a, Table 1, Supplementary Data 2). We collected data on pollen
viability (male fertility-related) and flowering time (yield-related) dur-
ing the 2021 trial and obtained data for four other yield-related traits
(plant height, tuber yield, tuber number and tuber size) during the
trials in 2021 and 2023, with three replicates each year (see Methods).
The correlations between five yield traits of the 1064 individuals
revealed that tuber number, tuber size and plant height all positively
contribute to tuber yield in two years, while tuber size and tuber
number are negatively correlated, consistent with abundant observa-
tions to that effect (Fig. 2b and Supplementary Fig. 4). Among the 135
pQTLs, 68 are related to shoot RGB image-based above-ground traits
involving shoot greenness-related traits, shoot morphology-related
traits, etc (Supplementary Methods 1 and 2). Of those, C01G_Bin340
controls seven morphology-related traits (Supplementary Data 2) and
harbors an OVATE transcription factor (St_E4-63_C01G002870). The
OVATE family proteins have been reported to regulate plant
architecture44 and fruitmorphology45. Since the hyperspectral imaging
is primarily used for prediction and has been successfully applied to
predict water content, yield and metabolites in wheat46,47, they are
excluded from genetic mapping. Correlation coefficients of tuber size
and tuber reflectance reveal that tuber size is positively correlatedwith
total reflectance of near-infrared (R > 0.7, p-value < 2.2 × 10−16 for all
wavelengths), but negatively correlated with average reflectance of
visible light (R < −0.4, p-value < 2.2 × 10−16 for all wavelengths) (Fig. 2c).
To further connect the tuber spectroscopic data with tuber-related
traits, we modeled them using stepwise linear regression analysis. We
found that tuber reflectance could be a good indicator of tuber dry
matter and tuber yield, whose direct measurement is labor-intensive
and time-consuming. Through a 10-fold cross-validation, we further
identified the wavelengths that are most effective for predicting dry
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matter and yield (Supplementary Data 3 and 4). The best prediction
accuracyof correlation coefficients (R2) is 0.81 for tuber drymatter and
0.62 for tuber yield (Supplementary Fig. 5), which indicates these tuber

reflectance traits can be used for non-destructive selection of potato
lines with higher dry matter or yield. The same strategy was used to
predict the content of tuber metabolites. We identified 162

1,064 immortalized F  lines

Multi-omics map

Correlation Correlation

Genome

Integration

Genetic network Potato heterosis

PhenomeTranscriptomeMetabolome

Diploid F  hybrid

Strong growth vigor

Good yield performance

High male fertility

Rich in dry matter

...

Homozygous inbred lines

A6-26            E4-63

F

Inbred-line based F  population

mQTL eQTL pQTL

×

Fig. 1 | Schematic diagram of genetic and heterosis analyses in an inbred line-
based F2 population. The F1 hybrid potato with strong heterosis was selfed to
generate the F2 segregating population. The analyses of genetic network and

potato heterosis were conducted using multi-omics data including genomic, phe-
nomic (macro-phenome), transcriptomic and metabolomic data.
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metabolites that can be well predicted (R2 > 0.5) using hyperspectral
reflectance (Supplementary Data 3 and 4). Tuber structure, including
shape-related traits (length, width and height) and size-related traits
(surface area and volume), was detected by structured light imaging
(Supplementary Methods 1 and 2). The QTLs of these traits are mainly
enriched on chr09 (all five traits) and chr10 (tuber length, tuber width
and tuber height), consistent with the results generated by manual
investigation (Supplementary Data 2). These results indicate that the

high-throughput optical imaging system can be applied for efficient
phenotype detection of potato.

To explore genetic variants involved in gene expression, we
conducted expression QTL (eQTL) mapping using normalized FPKM
values. We identified 24,371 eQTLs associated with 14,835 genes,
accounting for 77.4% of tuber-expressed genes (Fig. 2a, Table 1, Sup-
plementary Data 2). About 43.0% of the genes (6735) are regulated by
more than one eQTL. To better understand the regulatorymechanism
of eQTLs, we further divided them into 7273 local eQTLs and 17,098
distant eQTLs, based on the distance between eQTLs and their corre-
sponding genes. In our dataset, we identified nine distant eQTL hot-
spots (permutation test, p-value < 0.01, distant eQTL number > 223).
These hotspots comprise 3009 correlations and can regulate the
expression of 2876 genes (Fig. 2a).

For the tuber metabolome, we found that different kinds of
metabolites can be separated by their strength of correlation (Fig. 2d).
The similar accumulation patterns of highly correlated abundance of
some metabolites suggests that they might be controlled by the same
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Fig. 2 | Overview of QTLs at the whole genome and correlation of different
traits. a QTL distribution analyzed by sliding windows with 1-Mb window and 100-
kb step sizes. The y-axis of i–iv indicates QTL number. i, pQTLs; ii, mQTLs; iii, local
eQTLs; iv, distant eQTLs; v, the regulatory network of distant eQTL hotspots.
b Correlation of tuber yield-related traits in 2021. c Correlation of tuber size and

tuber reflectance. The first row concerns tuber size, indicated by the arrow.
d Correlation of metabolites. Different kinds of metabolites can be separated by
their levels of correlation (R). The x and y axes indicate different kinds of meta-
bolites. In (b–d), red indicates positive and blue indicates negative correlations.
Source data are provided as a Source Data file.

Table 1 | Numbers of traits and QTLs

Trait Number Traits
with QTLs

QTL
number

Local
eQTLs

Distant
eQTLs

Transcriptome 19,166 14,835 24,371 7273 17,098

Metabolome 679 538 1264

Phenome 537 47* 135

Total 20,382 15,420 25,770
*Note: A total of 488 hyperspectral imaging traits are excluded from genetic mapping.
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regulator or affected by a change in the abundance of upstream
metabolites from a single pathway. We detected 1264 mQTLs for 538
metabolites (Fig. 2a, Table 1, Supplementary Data 2). Among these
metabolites, 69.1% have more than one mQTL. Moreover, we found
that somemetabolites with high correlationweremapped to the same
genetic regions. For example, several steroid alkaloids (also called
solanine in potato) are all regulated by C01G_Bin334–C01G_Bin338.
Some flavonols, mainly glycosylated substances, colocalize in
C01G_Bin210–C01G_Bin222 (Supplementary Data 2). This finding can
help identify potential master regulators of these metabolites.

The systems genetics of the F2 population
Integrating the multi-omics data, we applied a systems-genetics
approach to construct the genetic network of this population (Sup-
plementary Fig. 6a). First, we conducted a weighted correlation net-
work analysis (WGCNA) to identify genes with similar expression
patterns, uncovering 21 modules (referred to as M1–M21) based on
19,166 tuber-expressed genes (Supplementary Fig. 6b). Correlation
analysis between gene expression and tuber-related traits (yield and
metabolites) identified 66,512 correlations (q-value < 0.001) with a
median correlation coefficient of 0.35, associated with 12,824 genes,
376 metabolites and three yield-related traits (Supplementary Data 5).

Next, according to the results of QTL mapping, we analyzed the
bins regulating both gene expression and tuber-related traits (meta-
bolite content and yield-related traits), defined as so-called triple
relationships. A total of 3499 triple relationships (gene–bin–trait)
emerged, including 2728 genes, 361 metabolites and three yield-
related traits (Fig. 3a, Supplementary Data 6). Solanine content of
potato tubers is a domesticated trait and plays an important role in
tuber quality. Asmentioned above, solanines have a commonmapping
region at C01G_Bin334 (Fig. 3b). Since the identified solanines are
highly correlated, we further conducted QTL mapping using the
dimensionality reduction method48, and the same locus was found on

chr01 (Supplementary Fig. 7a). TheWGCNA data show thatModule 20
(M20) is highly correlated with various types of solanines (Supple-
mentary Fig. 6b). Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis revealed that genes in M20 are significantly enriched in the
“steroid biosynthesis” term (Supplementary Fig. 7b), such as St_ E4-
63_C04G002433 (cycloartenol synthase), St_ E4-63_C01G002910 (sterol
4 α-methyl oxidase), and others. Based on the triple relationships, 19
genes are also regulated by the solanine-common bin C01G_Bin334, of
which three are regulated in a locally acting manner: St_E4-
63_C01G002818, St_E4-63_C01G002829 and St_E4-63_C01G002853,
with only St_E4-63_C01G002818 belonging to M20. The correlation
data of gene expression and metabolites revealed that only St_E4-
63_C01G002818 shows significant correlation (q-value < 0.001) with all
colocalized solanines (Fig. 3c). According to its gene annotation, St_E4-
63_C01G002818 encodes an ethylene-responsive transcription factor
known as GAME9, a master regulator of solanine49,50. We then checked
the expression level of GAME9 and solanine content of the parents’
tubers.We found thatGAME9 ismorehighly expressed inA6-26 than in
E4-63 (p-value < 0.05) (Supplementary Fig. 7c). Additionally, by com-
paring the promoter sequence (2000 bp upstream of the ATG) of
GAME9 in the two parental lines, we identified an activation sequence-1
(as-1) element that can activate gene expression in plants51 and was
disrupted by an 11-bp insertion in E4-63, which may lead to lower
expressionofGAME9 (SupplementaryFig. 7d). Consistentwith this, the
tubers of A6-26 contain markedly more solanines than those of E4-63
(p-value < 0.001) (Supplementary Fig. 7e), which further suggests that
GAME9 is responsible for solanine accumulation in this population.
Interestingly, GAME9 is located at a domestication-selection sweep in
potato52, which is consistent with the domestication of solanines. We
applied the same strategy for colocalized flavonols and identified two
candidate genes (Supplementary Fig. 7f–h). These results demonstrate
the high efficacy of this genetic network and bode well for its use in
gene discovery.
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Fig. 3 | The systems-genetics network. a The triple relationships (gene–bin–trait)
associated with 2728 genes, 245 bins, 361metabolites and three yield-related traits.
b QTLs of different kinds of solanines on chr01. The dotted line shows the LOD
cutoff value (3.5). c The regulatory network of GAME9. C01G_Bin334 regulates the
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vided as a Source Data file.
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Single-locus heterotic effects in the diploid potato hybrid
Heterosis, characterized by the better performance of hybrids com-
pared to their parents, has been extensively applied in crop breeding.
To better understand the mechanisms underlying heterosis in potato,
we estimated the genetic effects of the identified QTLs. By comparing
the heterozygous genotype with both homozygous genotypes, we
used the degree of dominance (d/a) of each QTL to estimate single-
locus heterotic effects.

Male fertility and tuber yield are two key traits for hybrid potato
breeding. Through the analysis, we identified four pollen viability and
24 yield-related QTLs which were identified in both years. For all 28
QTLs, 21 exhibited consistent heterotic patterns in two years (includ-
ing 1-year traits). We found that (partial) dominance constitutes the
main heterotic effect, followed by overdominance (Fig. 4a), similar to
reports in rice39 and maize40. The dominance model of heterosis
implies that the trait value of the heterozygous QTL is the same as that
of the advantageous homozygous genotype. Thus, to further elucidate
the contributors of advantageous alleles in F1 hybrids, we assessed the
trait values of all dominant QTLs. The contributions of better yield and
pollen viability from the two parents are almost equal (Fig. 4b). For

instance, both A6-26 and E4-63 contribute to tuber yield of hybrids
(Supplementary Fig. 8a). Five QTLs (Tuber Yield, TY; Tuber Size, TS)
show dominance effects (TY2, TY4, TY5, TS3 and TS4). In these domi-
nant QTLs, TY4 and TS4 were contributed by E4-63 (Supplementary
Fig. 8b, c), and TY2, TY5 and TS3 were contributed by A6-26 (Supple-
mentary Fig. 8d–f). The complementation of these dominant QTLs in
F1 hybrids results in partial yield heterosis.

Of the overdominant or pseudo-overdominant QTLs, TY1
(C01G_Bin337) showed the largest heterotic effect in both 2021 and
2023 (d/a = 14.35 [2021] and 19.01 [2023]), explaining 6.55% and 4.21%
of the phenotypic variance for 2021 and 2023, respectively (Fig. 4a and
Supplementary Fig. 9a). Trait value analysis of TY1 showed that the
yield of TY1/ty1 was significantly higher than that of TY1/TY1 (E/E,
p-value = 6.9 × 10−7) and ty1/ty1 (A/A, p-value = 1.6 × 10−12), whereas there
was no significant difference between the parents (p-value =0.28)
(Fig. 4c). The same heterotic pattern was found for TY1 in 2023 (Sup-
plementary Fig. 9b). Interestingly, C01G_Bin337 is the common QTL of
three yield-related traits (tuber yield, tuber size and plant height)
(Supplementary Data 2). Consistent with the tuber yield, C01G_Bin337
(TS1 for tuber size) also showed overdominant/pseudo-overdominant
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effect for tuber size in both two years (Fig. 4a and Supplementary
Fig. 9a). Also, there were no negative heterotic effects (recessive or
underdominance) in yield heterosis. All yield QTLs added positive or
additive contributions to yield performance in heterozygous geno-
types, leading to yield heterosis in F1 hybrids. For a deeper under-
standing of yield heterosis, additional efforts are needed to resolve the
identified QTLs to the single-gene level.

The expression patterns of genes also contribute to crop het-
erosis. We found that additive effects are the major genetic effects of
gene expression. About 37.7% of eQTLs show additive effects (Sup-
plementary Fig. 10a), indicating that the gene expression level con-
trolled by these eQTLs in heterozygous genotypes is about half the
level of the two (combined) homozygous genotypes. We then focused
on (partial) dominance/overdominance and further identified 1878
genes with positive eQTLs (all eQTLs associated with the expression of
a gene show dominance or overdominance effects) (Supplementary
Data 7). The KEGG analysis found that genes with positive eQTLs are
significantly enriched in some primary metabolic pathway, such as
“citrate cycle” and “biosynthesis of amino acids” (Supplementary
Fig. 10b), which might be associated with the energy metabolism
process in tubers.

We found different patterns when estimating the heterotic effects
of metabolites. In contrast to yield-related traits, the recessive model
(51.5%) represents the principal heterotic effects for metabolites
(Fig. 4d and Supplementary Fig. 10c). Dominance and overdominance
account for only 12.3% and 3.9%, respectively (Fig. 4d). Although the
primary metabolites are associated with more positive mQTLs than
those of secondary metabolites, the overall patterns of primary and
secondary metabolites are consistent with the pattern for the entirety
of metabolites (Supplementary Fig. 10d, e). This implies that most
mQTLs tend to cause the heterozygous genotypes to contain fewer
small-molecule metabolites than the mid-parent value. Our previous
study demonstrated that most metabolites in F1 tubers show negative
mid‐parent heterosis32, consistent with the findings in the F2 popula-
tion. As conjectured for F1 hybrids, this indicates that the energy of
heterozygous-genotype tubers is preferentially used to synthesize dry
matter such as starch and proteins, which cannot be detected by
metabolome technology used in this study. Correlation analysis
showed that 84.0% of metabolites are negatively correlated with dry
matter (p-value < 0.01) (Fig. 4e). We then evaluated the d/a of the
mQTLs using dry matter as the input trait. For the recessive/under-
dominant mQTLs, only 19.0% were also regarded as recessive or
underdominant effects for dry matter, while the dominance/over-
dominance increased to 73.1% (Supplementary Fig. 10f), the opposite
pattern between dry matter and metabolites (more dry matter and
fewer metabolites content in F1 tuber). These results further support
our findings in metabolites heterosis.

A pectin methylesterase contributes to male fertility heterosis
Among the four pollen viability QTLs, the locus on chr07 with the
highest LODvalue (PV1) exhibited a dominanceheterotic effect (Fig. 4a
and Fig. 5a). The trait value analysis revealed that the beneficial allele
comes from the A6-26 parent (Fig. 5b). Although the pollen viability of
A6-26 was inferior to that of E4-6332, A6-26 producedmore seeds than
E4-63. To investigate whether PV1 is associatedwith this phenomenon,
we integrated genomic and transcriptomic data to clone this major-
effect gene governing pollen viability in this population.

Based on the reference genome of E4-63, 21 genes were identified
within the PV1 interval spanning a 310-kb interval. We conducted
anther transcriptome sequencing of E4-63 including four important
developmental stages, encompassing the initial to complete maturity
stages (Supplementary Fig. 11a). Among the 21 genes, 11 were expres-
sed (FPKM> 1.5) in at least one stage (Supplementary Fig. 11b). To
pinpoint the candidate gene, we checked their expression in other
tissues23 and found only St_E4-63_07G001402 and St_E4-63_07G001408

showed lower expression in other tissues but higher expression in
anther (Supplementary Fig. 11b). Notably, these two genes displayed a
rising-then-falling expression pattern in anther, peaking at stage 3
(with FPKMs of 6.32 and 23.72 for St_E4-63_07G001402 and St_E4-
63_07G001408, respectively). Based on gene annotation, St_E4-
63_07G001402 encodes a zinc/iron permease, while St_E4-
63_07G001408 encodes a pectin methylesterase (PME) with a signal
peptide and a predicted PME domain. To our knowledge, zinc/iron
permease is not associated with pollen development, but PME is a
widely distributed cell wall-related enzyme in plants, implicated in
pollen wall synthesis53.

To verify the function of the PME gene in potato,we constructed a
CRISPR/Cas9 system targeting the first exon to knock out the PME
gene in the diploid potato clone 01-58. Although carrying different
mutant types, the two alleles of PME gene in three PME-knockout
(PMEKO) plants were mutational in the transgenic T0 plants (Fig. 5c).
Pollen viability in PMEKO plants (34–45%) was significantly reduced
compared to that in wild-type (WT) plants (~80%) (Fig. 5d, e). Scanning
electron microscopy revealed that some pollen grains of the PMEKO

plants exhibited aberrant morphology (Supplementary Fig. 11c, d). As
pectin plays a vital role in pollen hydration, the lack of PME could
impair pectin demethylation, affecting pollen tube germination54. The
germination assays in vitro revealed a reduced number of germinated
pollens in PMEKO plants compared to WT plants (Fig. 5f). Consistent
with this phenotype, when selfing, the PMEKO plants produced fewer
seeds per fruit, with the average seed number in WT plants exceeding
that of PMEKO plants by over threefold (Fig. 5g, h). To further confirm
these results and avoid the possible off-target effect, we conducted
deep whole-genome sequencing (~60×) of 01-58 and three PMEKO

plants. According to a reported method55, we identified 131 possible
off-target sites (Supplementary Data 8) and detected no off-target
effects at any of the possible 131 sites in three PMEKO plants. These
results indicated that the phenotypes of PMEKO plants are caused by
mutation of PME gene. In summary, the PME gene with the dominance
heterotic effect confers superior pollen viability and enhanced pollen
tube germination, leading to male fertility heterosis in hybrids.

Discussion
Mining functional genes is a critical part of plant biology and crop
breeding. Based on genetic manipulations of functionally important
genes, researchers have achieved de novo domestication breeding of
wild tomato56 and rice57. A quantitative genomics map of rice was
generated by utilizing mapped QTLs/genes to guide breeding58.
Unlike these well-researched crops, progress in mapping of func-
tional QTLs/genes in potato has been hampered by the complexities
of tetrasomic inheritance. Potato is going through a green revolution
via efforts to transform it into a seed-propagated diploid crop23,59,
promising to greatly simplify genetic analyses. In this study, we
conducted the large-scale genetic analysis of an inbred line-based F2
population comprising 1064 individuals. The parents A6-26 and E4-
63 were derived from different lineages of S. tuberosum, with many
traits segregating in the F2 population. Thanks to the advancements
in omics technologies, we can now more quickly and accurately
identify plant phenotypes at different levels compared to traditional
manual surveys. In this study, we identified 20,382 traits and 25,770
QTLs using transcriptomics, metabolomics and phenomics (includ-
ing RGB imaging, structured light imaging and hyperspectral ima-
ging) technologies (Fig. 2a, Table 1, Supplementary Data 1, 2). Several
phenotypes were mapped to previously reported loci, such as tuber
shape29,42 and tuber flesh color41 (Supplementary Fig. 3), suggesting
the reliability of our database. This QTL database will provide useful
genetic markers for molecular breeding and gene discovery in
potato.

Systems genetics combines genetics with gene expression analy-
sis to explain complex traits7. In this study, we integrated multi-omics
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analyses to explore potato traits using the F2 population. Considering
that any changes in gene expression would lead to later changes in the
accumulation and composition of metabolites in tubers at a final
mature stage, we advanced the sampling time for the transcriptome
analysis to better correlate gene expression with the final metabolite
content (see Methods). This approach has been proven effective15,60.
Combined with QTL results, we constructed a systems-genetics net-
work in this F2 population. Based on this network, we efficiently
identified the master regulator GAME9 controlling solanine accumu-
lation. Although the systems-genetics network can help to narrow
down the suite of candidate genes, the traits affected by variations on
protein function require further study (fine mapping, etc.). However,
since the F2 population has experienced only one round of recombi-
nation, the average resolution of QTLs is ~190 kb in this study, making

it difficult to directly identify candidate genes. Additionally, the high
genomic and phenotypic diversity in this F2 population leads to many
minorQTLs, hampering the identification ofmajor QTLs. For example,
we identified seven tuber yield QTLs in this study. TY1with the highest
LOD value explains only 6.55% and 4.21% of the phenotypic variance in
2021 and 2023, while the total explanation of all seven QTLs is 25.4%
and 24.4%, respectively. Thus, a near-isogenic line population based on
backcrosses is necessary to further fine-map promising genes and
reduce the genetic variance to elevate the genetic effect of targeted
QTLs. The genome information of the parental lines enables us to track
the source of advantageous alleles and select themore suitable parent
for backcrossing. Combined with genetic markers and whole-genome
resequencing, this will turn complex quantitative traits into simple
qualitative traits.
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Heterosis has been extensively applied in hybrid crop breeding,
particularly in maize and rice38,61. However, heterosis of clonally pro-
pagated crops has rarely been analyzed. Using the parental lines and
their F1 hybrids, our previous study revealed the multi-omics basis of
potato heterosis32. Here, we further explored the genetic basis of
heterosis of the elite potato hybrid. The dominance, recessive and
additive effects are the principal single-locus heterotic effects of yield-
related traits,metabolites andgene expression, respectively (Fig. 4 and
Supplementary Fig. 10). We found that hybrid tubers containmore dry
matter and fewer metabolites content and over 60% of mQTLs show
negative heterotic effects (Fig. 4d). This phenomenon might be
explained by a trade-off theory between dry matter and small-
molecule metabolites. As an energy sink of potato, tubers are sto-
rage compartments for dry matter62 that serves as the nutrition pro-
vider for asexual reproduction. In heterozygous-genotype tubers, the
distribution of energy or resource utilization seemsmore rational, and
energy or resources might preferentially flow to fuel the synthesis of
dry matter leading to a relatively lower small-molecule metabolites in
hybrids. Similar results were also found in maize63 and Arabidopsis64.
Moreover, we identified a PME gene with a dominance heterotic effect
involved in male fertility in potato. The advantageous allele comes
from A6-26 and confers better pollen viability and more seeds for
hybrids, potentially explaining the dominant effect.

However,wedid not identify epistatic interactions between the 24
yield-relatedQTLs in both years. To further identify the interactions on
the whole genome-wide (all markers involved), backcross populations
can be developed to reduce the genetic diversity within the popula-
tion, because the interactions in the F2 population are complex and
hard to be detected accurately65. This process can be carried out
simultaneouslywith the construction of introgression lines. Therefore,
we believe that for genetic studies on this population, F2-derived
populations should be primarily constructed. This approach not only
focuses on cloning genes associated with agronomically important
traits but also aims to utilize key genetic loci for improvement of
diploid inbred lines.

Overall, molecular breeding and functional genomics study in
diploid potatoes are still in its infancy. This study provides valuable
genetic and phenotypic resources for the potato community. By
integrating multi-omics data to construct a systems genetics network,
along with studies on heterosis, our findings in this work contribute to
gene discovery and enhance our understanding of the genetic basis of
heterosis in potatoes.

Methods
Plant materials
The parents and their F1 hybrid (A6-26 × E4-63) were developed in a
previous study23. The homozygosity of the parents is 98.16% and
98.52% for A6-26 and E4-63, respectively. The F2 population was gen-
erated through selfing the F1 hybrid. The 1064 F2 individuals were
randomly selected. Each F2 individual was planted on MS medium for
permanent preservation by tissue culture.

Construction of the genotype map and genetic map
Genomic DNA of the 1064 lines was extracted from fresh leaves by the
CTAB method. Whole-genome sequencing was conducted on the
DNBSEQ platform at Annoroad Gene Technology company (Beijing,
China). For each line, ~2 Gb clean data with 150-bp read length were
generated. The clean reads were aligned against the E4-63 reference
genome23 using BWA (0.7.5a-r405)66. GATK (v4.2.1.0) was used tomark
duplicated reads67.We used SAMtools (v.1.9)68 and BCFtools (v.1.9)66 to
extract SNPs. The SNPs between two parents were identified based on
50×DNA resequencing data32. The SNPs were further filteredwith base
quality ≥ 40,mapping quality ≥ 30 and 20 ≤ depth ≤ 100, and only “1/1”
genotype was reserved. Then, these filtered SNPs were used to con-
struct a parent SNP database. Only SNPs of F2 individuals in this

database were reserved for subsequent analyses (use BCFtools para-
meter -R). The genotype map was constructed by calculating the
genotype of each bin21,69. A total of 2475 bins were identified in the
genotype map of 1064 individuals. For genetic map construction, we
fed the bins of the genotype map to QTL IciMapping (v4.2)70.

Segregation distortion analysis
In the F2 population, the expected segregation ratios of zygotes and
gametes are 1:2:1 and 1:1, respectively. The χ2 test was applied to
determine the significance between the observed segregation ratio
and the expected segregation ratio with a cutoff value of P =0.001.

Collection of phenome data
Individuals used for collecting different traits are listed in Supple-
mentary Data 1. In 2021 and 2023, the 1064 individuals were cultivated
with three replicates inKunming, China. Plant height, tuber yield, tuber
number, and tuber size were assessed in both years, while flowering
time and pollen viability were investigated in 2021. Yield-related traits
(plant height, flowering time, tuber yield, tuber size and tuber number)
and the qualitative traits (Supplementary Fig. 3) were measured
manually. The individuals used for BSA are listed in Supplementary
Data 1. For BSA, 20–50 individuals according to the different traits
were selected as a pool (Supplementary Data 1). Using our previously
developed high-throughput phenotyping facility71, 38 aboveground
traits were identified with an RGB camera using two photo angles
(from the top and from the sides) at 60 days after transplanting
(Supplementary Data 1). With the RGB imaging device, six side-view
images and one top-view image of each plant were taken from a fixed
horizontal projection of equal angles. Using near-infrared hyperspec-
tral imaging (1000–1700 nm, Headwall Hyperspec Starter Kit-VNIR,
USA) and a visible-light hyperspectral imaging (400–1000nm, Head-
wall VNIR A-Series, USA), the mature tubers were scanned, and 488
hyperspectral traits were analyzed using hyperspectral image-analysis
pipeline72,73 (Supplementary Method 1). Mature tubers were scanned
using the structured light imaging (Reeyee Pro, WIIBOOX, China), and
five tuber traits were analyzed using structured light image analysis
pipeline74 (SupplementaryMethod 1). Potato image processing, image
trait extraction and definition of the macro-phenomics traits are
explained in Supplementary Methods 1 and 2. For each F2 individual,
three replicates were phenotyped in our experiment. The average
values of all traits were used for the further genetic analyses.

To determine the elements regulating gene expression, we con-
ducted transcriptome sequencing of developing tubers of 204 F2
individuals (80 days after transplanting) that were randomly selected.
To ensure the accuracy of subsequent analyses, genes with low
expression level (FPKM< 1) in over 90% of the 204 samples were fil-
tered out. Finally, 19,166 expressed genes remained after our filtering
steps, accounting for 40.4% of all annotated genes.

We applied an ultra-performance liquid chromatography-tandem
mass spectrometry (UPLC-MS/MS) approach to detect metabolite
content in mature tubers of 215 F2 individuals (120 days after trans-
planting), of which 191 are shared with the transcriptome dataset. The
other 24 samples were selected randomly. We thus identified 679
metabolites. The individuals used for detecting transcriptomes and
metabolomes were selected randomly. The metabolome and tran-
scriptome data of parents sampled at the same stage have been
reported32.

Metabolite detection
For each sample, three mature tubers in 2021 were freeze-dried and
mixed. The tuber extracts were analyzed using a UPLC-MS/MS system.
TheUPLCwas equippedwith a 1.8 µm, 2.1mm * 100mmAgilent SB-C18
column. The mobile phase included pure water with 0.1% formic acid
(solvent A) and acetonitrile with 0.1% formic acid (solvent B). The
column temperature was set to 40 °C and the injection volume was
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4μL. Metabolites were quantified by multiple reaction monitoring
mode (MRM) of MS/MS with collision gas (nitrogen) set to medium.
According to the metabolites eluted, a specific set of MRM transitions
wasmonitored for each period. Analyst (v1.6.3) software (https://sciex.
com/products/software/analyst-software) was used to assess and
quantify the MS data.

Transcriptome profiling
Total RNA was extracted from three developmental tubers (mixed
together) collected at 80 days after transplanting in 2021 and
sequenced on the DNBSEQ platform at the China National GeneBank
(Shenzhen, China). The raw data were filtered to remove low‐quality
reads and adapters using SOAPnuke (v1.5.6)75. Then, the ~4Gb clean
reads for each sample were mapped to the E4-63 reference genome
using HISAT2 (v2.1.0)76. Gene expression levels were quantified using
FPKM values, calculated using StringTie (v2.1.1)77.

QTL mapping
QTL mapping was carried out by R/qtl using the composite interval-
mapping method78. Bins with LOD values > 3.5 were selected. Con-
secutive QTLs (LOD> 3.5) were merged and considered as one QTL.
Gene expression levels were normalized with quantile–quantile
normalization.

eQTL analysis
The eQTLs were divided into local and distant eQTLs based on their
distance from the corresponding genes. To identify local eQTLs, we
selected the flanking bins of the peak-containing bin as the eQTL
borders. If the distance of the interval of flanking bins is within 100 kb
with the regulated gene, the eQTL was defined as a local eQTL;
otherwise, it was considered adistant eQTL. Thedistant eQTLhotspots
were identified by 10,000 permutation tests. In each permutation, all
distant eQTLs were randomly assigned to each 1-Mb genomic interval.
Then, numbers of distant eQTLs in each interval were counted to
determine hotspots with a cutoff p-value < 0.01.

Correlation analysis
Pearson’s correlation coefficients and p-values were calculated using
the R package ‘Hmisc’ using the ‘rcorr’ function79. The R package
‘corrplot’ was used to visualize the results79.

Construction of the systems-genetics network
First, WGCNA was performed to identify gene modules using the R
package WGCNA80. The soft-thresholding power b was set to 16. We
identified 21 genemodules. The online tool (https://cloud.metware.cn)
was used to conduct GO and KEGG analyses. The “corPvalueStudent”
function of WGCNA was used to analyze relationships of gene mod-
ules/genes and traits. The triple relationships were linked by QTLs. To
ensure the reliability of results, only QTLs with LOD values > 5.0 were
considered for triple-relationship analysis. We selected QTLs asso-
ciated with both classes of traits (i.e. metabolites and yield-related
traits, data from 2021) and gene expression, andwe thenmergedQTLs
within 30 kb. The triple relationships were visualized with Cytoscape
software81. The WGCNA data coupled with the triple relationships
comprise the systems-genetics network.

Evaluation of single-locus effects
The degree of dominance for each QTL was estimated by the ratio of
dominant effect/additive effect (d/a). The dominant effect (d) rests on
the difference between the heterozygous genotypes and mid-parent
values. The additive effect (a) is determined by half the difference
between the two homozygous genotypes. The genetic model was
further partitioned into five types using the following standards40: (1)
overdominance: d/a ≥ 1.25; (2) dominance (including partial dom-
inance): 0.25 ≤ d/a < 1.25; (3) additive effect: −0.25 ≤ d/a <0.25; (4)

recessive effect (including partial recessive effect): −1.25 < d/a < −0.25;
(5) underdominance: d/a ≤ −1.25.

Detection of pollen viability and pollen tube germination assay
The mature pollen grains were collected from freshly opened flowers.
Then, the pollen grains were stained using 0.4% 2,3,5-triphenylte-
trazolium chloride (Sangon Biotech) at 37 °C for 20min. After staining,
the pollen solution was dispensed onto a glass slide and the red pollen
grains (good viability) were observed under the microscope.

Ca2+ and boric acid are necessary substances for the in vitro ger-
mination of potato pollen. In this study, we used amedium containing
17% sucrose, 0.05%CaCl2, 0.01% boric acid and 0.05 % agar. The pollen
grains were incubated inmedium at 28 °C in the dark for 20 hours, and
the pollen tube germination was observed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The metabolome data have been deposited at the potato multi-omics
database [http://solomics.agis.org.cn/potato/ftp/Metabolomics_of_
potato_tuber/]. The macro-phenome data are available in Supple-
mentary Data 1. The whole-genome sequencing and transcriptome
data have been deposited at the National Center for Biotechnology
Information with BioProject accession number PRJNA878602. Source
data are provided with this paper.
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