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A fair individualized polysocial risk score for
identifying increased social risk in type 2
diabetes

Yu Huang 1,7, Jingchuan Guo2,7, William T. Donahoo3, Yao An Lee2,
Zhengkang Fan1, Ying Lu2, Wei-Han Chen 2, Huilin Tang2, Lori Bilello4,
AaronA. Saguil5, Eric Rosenberg 6, Elizabeth A. Shenkman 1 & Jiang Bian 1

Racial and ethnicminorities bear a disproportionate burden of type 2 diabetes
(T2D) and its complications, with social determinants of health (SDoH)
recognized as key drivers of these disparities. Implementing efficient and
effective social needsmanagement strategies is crucial.Wepropose amachine
learning analytic pipeline to calculate the individualized polysocial risk score
(iPsRS), which can identify T2D patients at high social risk for hospitalization,
incorporating explainable AI techniques and algorithmic fairness optimiza-
tion. We use electronic health records (EHR) data from T2D patients in the
University of Florida Health Integrated Data Repository, incorporating both
contextual SDoH (e.g., neighborhood deprivation) and person-level SDoH
(e.g., housing instability). After fairness optimization across racial and ethnic
groups, the iPsRS achieved a C statistic of 0.71 in predicting 1-year hospitali-
zation. Our iPsRS can fairly and accurately screen patients with T2Dwho are at
increased social risk for hospitalization.

Diabetes affects 529 million people worldwide and the number is
projected to more than double in the next three decades, reaching 1.3
billion by 20501. Over 90% of diabetes cases are type 2 diabetes (T2D)2.
Existing research has shown that social determinants of health (SDoH)
—“the conditions in the environments where people are born, live, learn,
work, play, worship, and age,”3,4 such as education, income, and access
to healthy food, play a critical role affecting a wide range of health
outcomes, including the development and prognosis of T2D5–7.
Moreover, health disparities in T2D have been widely documented
over the past decades8–10. Racial and ethnic minority groups and indi-
viduals experiencing social disadvantages—often rooted in their SDoH
—bear a disproportionate burden of T2D and its complications11–13. As
such, diabetes is a public crisis that must be managed with sensitivity
to patients’ unmet social needs to improve T2D outcomes and health
equity.

The US healthcare system has begun embracing the need to
address patients’ social needs, including screening for SDoH at the
point of care. For example, the Centers for Medicare & Medicaid Ser-
vices (CMS) have made proposals to require SDoH screening (e.g.,
housing stability, food insecurity, and access to transportation) in
annual beneficiary health risk assessments. Despite this push, only
16–24% of clinics and hospitals provide SDoH screening14, and the
actual utilization rate is very low15. In a national network of community
health centers, only 2% of patients were screened for SDoH, and most
had only one SDoH documented16. The reasons for the low rate of
SDoH screening are multiple17. First, existing screening tools are not
automated, making them difficult to adapt to clinical workflows18,19. In
addition, almost all tools were developed for universal screening but
were not validated to predict specific conditions andoutcomes such as
diabetes20–22. Furthermore, screening for individual SDoH items at the
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point of care is not only inefficient, increasing the provider doc-
umentation burden, but also inadequate given the known complex
interplay among the SDoH23–26. Figueroa et al. called for using a Poly-
social Risk Score (PsRS) approach27, yet existing PsRS studies include
only individual-level SDoH examined in small cohort studies with
limited generalizability28–30. It is essential to consider both contextual
(e.g., neighborhood deprivation) and individual-level SDoH (e.g., if the
individual has unstable housing) in one model given their known
interactions, especially for T2D, as shown by us and others 23,24,26,31.

The increasing availability of real-world data (RWD)32,33—such as
electronic health records (EHRs) and administrative claims —and the
rapid advancement of artificial intelligence (AI), especially machine
learning (ML) techniques to analyze RWD, provides an opportunity to
develop novel personalized tools and generate real-world evidence for
improving not only health outcomes but also health equity by
addressing contextual-level and individual-level SDoH. However, key
data and methodologic barriers exist. For example, RWD lacks inte-
gration with contextual or individual-level SDoH data.Moreover, most
studies that usedMLmodels for clinical applications34 didnot carefully
consider the inherent biases in observational RWD, such as data bias
where patients of low socioeconomic status may not be well-
represented in EHRs due to their limited access to healthcare35. An
MLmodel naively trained on such RWDmay deliver unfair outputs for
racial-ethnic minority groups and socioeconomically disadvantaged
individuals35, leading to increased health disparities and inequity.
Moreover, the black box nature of ML models limits their adoption in
clinical and healthcare applications; and explainable AI (XAI) techni-
ques play a significant role in bridging the gap between complex ML
models and human understanding36–38. Shapley Additive exPlanations
(SHAP)39 is an increasingly used, simple tool for teasing out the con-
tribution of individual factors to a predictive model, nevertheless, it
has a limited ability to explain how factors collectively affect an out-
come, given the complex interactions among factors, such as complex
interplay among individual-level and contextual-level SDoH. Causal
structure learningmethods suchas the classic PC algorithm40 can learn
causal relationships among the factors in the format of a directed
acyclic graph (DAG) fromobservational data, and reveal how these risk
factors interact to influence outcomes, offering valuable insights into
the underlying processes that drive the predictions.

Therefore, in this study, we aimed to develop an EHR-based ML
pipeline, namely iPsRS, for determining if increased social risk can
predict hospitalization in T2D, with in-depth consideration of model
fairness and explainability. Specifically, we used RWD from the Uni-
versity of Florida Health (UF Health) EHRs and incorporated both
individual-level and contextual-level SDoH for the iPsRS development,
optimized its fairness across racial-ethnic groups, and identified key
causal factors that can be targeted for interventions. With these
algorithms, our long-term goal is to develop an EHR-based individua-
lized social risk management platform that can integrate social risk
management into clinical care, leading to a necessary paradigm shift in
US healthcare delivery.

Results
Descriptive statistics of the study cohort
Our final analysis comprised 10,192 eligible T2D patients in the cohort.
Table 1 highlights the demographics, individual-level SDoH, and key
contextual-level SDoH of the study population by race-ethnicity. The
mean age was 58 (±13) years, and 58%werewomen. Of the cohort, 50%
were NHW, 39%wereNHB, 6%wereHispanic, and 5%were other races/
ethnicities; 41% were enrolled in Medicare, 15% in Medicaid, 31% in
private insurance, and 5.7% were uninsured. Compared with NHW
patients, NHB patients were younger (54.6 vs. 58.5 years, p <0.01) and
more likely to be covered by Medicaid (41% vs. 28%, p < 0.01). We
identified that 20.8%of patients were single, 58.5%weremarried or in a
relationship, and 20.1% were widowed or divorced. Crime rates were

lower in neighborhoods predominantly NHW than neighborhoods
with higher diversity.

iPsRS prediction model of hospitalizations in T2D patients
The best-performing models generated by XGBoost and ridge
regression with three different sets of SDoH (individual-level SDoH
only, contextual-level SDoH only and both combined) are shown in
Fig. 1. Themodels including individual-level SDoH only had reasonably
good prediction utility (AUC 0.70–0.71) and adding contextual-level
SDoH modestly improved the model performance (AUC 0.72),
while contextual-level SDoH by themselves had suboptimal predicting
performance (AUC 0.60–0.62). We also developed and tested the
models without imbalanced data preprocessing (Supplementary
Data 5), and the results indicated that the models performed poorly in
predicting hospitalizations, with very low F1-score, precision, and
recall. Compared to the baselinemodels, our proposed iPsRS shows an
average improvement of 10% in terms of AUROC (Supplemen-
tary Data 6).

In the independent testing set (the 2021 data), we calculated the
one-year hospitalization rates by decile of the XGBoost-generated
iPsRS, showing an excellent utility for capturing individuals at high
hospitalization risk due to SDoH (i.e., one-year hospitalization risk in
the top 10%of iPsRSwas27.1%, ~21 times higher than thebottomdecile,
Fig. 2). In a multiple logistic regression model, after adjusting for
patients’ demographics and clinical characteristics, iPsRS explained
37.7% of the risk of 1-year hospitalization, per decile increase of the
iPsRS, the hospitalization risk increased by 22% (adjusted odds
ratio = 1.24, 95%CI 1.17–1.32).

Explainable AI to identify important SDoH contributing to iPsRS
predicting hospitalization in T2D patients
XGBoost (Fig. 3) and Ridge model (Supplement Fig. S2) identified
similar important features ranked by SHAP values. Housing stability
status emerged as the most predictive feature in both models, fol-
lowed by insurance type, and smoking status. Among these features,
housing stability has a high rate of missingness (57.5%), whereas the
missing rate for smoking status is low (5%), and the other features are
complete.

Figure 4 displays our exploratory analysis with causal structure
learning, applyingMGM-PC-Stablemethod to build the causal DAGs of
the key SDoH (i.e., 21 unique SDoH features by combining the top-15
features from both the XGBoost and ridge regression models),
resulting in a causal graph with 22 nodes (i.e., 21 SDoH and the out-
come) and 75 edges. We identified that insurance type, housing sta-
bility, and the aggravated assault rate in the communities where
patients live are closely, causally related to the hospitalization out-
come (i.e., with having a direct causal connection to hospitalization in
the DAG). Furthermore, the community’s rate of aggravated assault
can be viewed as a common cause of both housing stability and hos-
pitalization, where housing stability and hospitalization are dependent
and causally correlated. This finding aligns with the insights derived
from SHAP values obtained from both XGBoost and rigid leaner
models, which suggests that an individual-level SDoH, housing stabi-
lity, plays a significant role in T2D hospitalization, but this influence is
affected by the contextual-level SDoH, specifically the rate of aggra-
vated assault in our case.

Fairness assessment and mitigation
Figure 5 displays the FNR curves across the racial-ethnic groups, where
XGBoost (Fig. 5a) appears to be fairer than the linear model (Fig. 5b).
The linearmodel shows a greater NHB and Hispanic groups than NHW
(Table 2), where the FNR ratios are 1.44 and 1.32 for NHB vs NHW and
Hispanic vs NHW, respectively, suggesting the model is biased against
NHB and Hispanic groups compared to NHW. The overall assessment
of all seven fairness metrics can be found in Supplementary Data 4.
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Table. 1 | Summary of demographic, individual-level SDoH, and key contextual-level SDoH of the study population. Chi-
squared testwasused for categorical variables and T-testwas used for continuous variable. Both the statistical testswere two-
sided and no adjustments for multiple comparisons

Overall (n = 10,192) NHW (n = 5133) NHB (n = 4011) Hispanics (n = 495) Others (n = 553) p-value

Age 58.45 60.19 56.39 55.95 59.42 0.0049

Sex 0.0018

Male 4267 (41.9%) 2470 (48.1%) 1330 (33.2%) 212 (42.8%) 255 (46.1%)

Female 5925 (58.1%) 2663 (51.9%) 2681 (66.8%) 283 (57.2%) 298 (53.9%)

Race/ethnicity <0.001

NHB 4011 (39.4%) 0 (0.0%) 4011 (100.0%) 0 (0.0%) 0 (0.0%)

NHW 5133 (50.4%) 5133 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Hispanics 495 (4.9%) 0 (0.0%) 0 (0.0%) 495 (100.0%) 0 (0.0%)

Others 553 (5.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 553 (100.0%)

Insurance type <0.001

Medicare 4183 (41.0%) 2214 (43.1%) 1610 (40.1%) 170 (34.3%) 189 (34.2%)

Private 3169 (31.1%) 1663 (32.4%) 1144 (28.5%) 148 (29.9%) 214 (38.7%)

Medicaid 1511 (14.8%) 558 (10.9%) 804 (20.0%) 97 (19.6%) 52 (9.4%)

Nopay 579 (5.7%) 228 (4.4%) 285 (7.1%) 38 (7.7%) 28 (5.1%)

Unknown 537 (5.3%) 362 (7.1%) 84 (2.1%) 32 (6.5%) 59 (10.7%)

Others 213 (2.1%) 108 (2.1%) 84 (2.1%) 10 (2.0%) 11 (2.0%)

Marites status <0.001

Single 2116 (20.8%) 743 (14.5%) 1221 (30.4%) 80 (16.2%) 72 (13.0%)

Married or has partner 3570 (35.0%) 2073 (40.4%) 1069 (26.7%) 179 (36.2%) 249 (45.0%)

Widow or divorced 2050 (20.1%) 888 (17.3%) 1052 (26.2%) 65 (13.1%) 45 (8.1%)

Unknown 2456 (24.1%) 1429 (27.8%) 669 (16.7%) 171 (34.5%) 187 (33.8%)

Smoking status <0.001

Ever smokers 4096 (40.2%) 2331 (45.4%) 1473 (36.7%) 149 (30.1%) 143 (25.9%)

Never 5588 (54.8%) 2525 (49.2%) 2380 (59.3%) 321 (64.8%) 362 (65.5%)

Unknown 508 (5.0%) 277 (5.4%) 158 (3.9%) 25 (5.1%) 48 (8.7%)

Alcohol use <0.001

Yes 2631 (25.8%) 1381 (26.9%) 1012 (25.2%) 123 (24.8%) 115 (20.8%)

No 6650 (65.2%) 3223 (62.8%) 2737 (68.2%) 325 (65.7%) 365 (66.0%)

Unknown 911 (9.0%) 529 (10.3%) 262 (6.5%) 47 (9.5%) 73 (13.2%)

Drug abuse <0.001

Yes 500 (4.9%) 225 (4.4%) 253 (6.3%) 16 (3.2%) 6 (1.1%)

No 8487 (83.3%) 4218 (82.2%) 3409 (85.0%) 417 (84.2%) 443 (80.1%)

Unknown 1205 (11.8%) 690 (13.4%) 349 (8.7%) 62(12.5%) 104 (18.8%)

Education level <0.001

College or above 978 (9.6%) 518 (10.1%) 376 (9.4%) 38 (7.7%) 46 (8.3%)

High school or lower 1110 (10.9%) 461 (9.0%) 563 (14.0%) 50 (10.1%) 36 (6.5%)

Unknown 8104 (79.5%) 4154 (80.9%) 3072 (76.6%) 407 (82.2%) 471 (85.2%)

Employment <0.001

Employed 3996 (39.2%) 2078 (40.5%) 1489 (37.1%) 207 (41.8%) 222 (40.1%)

Unemployed 1439 (14.1%) 570 (11.1%) 760 (18.9%) 57 (11.5%) 52 (9.4%)

Retired or disabled 1948 (19.1%) 1017 (19.8%) 782 (19.5%) 68 (13.7%) 81 (14.6%)

Unknown 2809 (27.6%) 1468 (28.6%) 980 (24.4%) 163 (32.9%) 198 (35.8%)

Housing stability <0.001

Homeless or shelter 80 (0.8%) 32 (0.6%) 44 (1.1%) 3 (0.6%) 1 (0.2%)

Stable housing 4215 (41.4%) 1971 (38.4%) 1933 (48.2%) 160 (32.3%) 151 (27.3%)

Unknown 5897 (57.9%) 3130 (61%) 2034 (50.7%) 332 (67.1%) 401 (72.5%)

Food security <0.001

Has no food insecurity 7052 (69.2%) 3416 (66.5%) 2982 (74.3%) 300 (60.6%) 354 (64.0%)

Unknown 3140 (30.8%) 1717 (33.5%) 1029 (25.7%) 195 (39.4%) 199 (36.0%)

Financial constraints 0.0092

Has financial constraints 5172 (50.7%) 2386 (46.5%) 2323 (57.9%) 216 (43.6%) 247 (44.7%)

Unknown 5020 (49.3%) 2747 (53.5%) 1688 (42.1%) 279 (56.4%) 306 (55.3%)
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Table 1 (continued) | Summary of demographic, individual-level SDoH, and key contextual-level SDoHof the study population.
Chi-squared test was used for categorical variables and T-test was used for continuous variable. Both the statistical testswere
two-sided and no adjustments for multiple comparisons

Overall (n = 10,192) NHW (n = 5133) NHB (n = 4011) Hispanics (n = 495) Others (n = 553) p-value

Percentage of low-income and low-access population
at 1/2 mile for urban and 10 miles for rural

0.2625 (0.1965) 0.1944 (0.1733) 0.3528 (0.1946) 0.2579 (0.1740) 0.2442 (0.1685) 0.1708

Share of tract population that are seniors beyond 1/2
mile from supermarket

−0.1661 (0.0949) −0.1635 (0.1035) −0.1669 (0.0831) −0.1734 (0.0837) −0.1779 (0.1000) <0.001

Murder rate (per 100 population) 0.0075 (0.0043) 0.0064 (0.0040) 0.0089 (0.0041) 0.0076 (0.0041) 0.0074 (0.0044) <0.001

Aggravated assault rate (per 100 population) 0.3867 (0.1365) 0.3767 (0.1704) 0.3980 (0.0753) 0.3994 (0.1489) 0.3858 (0.1060) <0.001

Motor vehicle theft rate (per 100 population) 0.2348 (0.0882) 0.2042 (0.0921) 0.2718 (0.0684) 0.2420 (0.0785) 0.2440 (0.0794) <0.001

Flag for low access tract at 1 mile for urban areas or 20
miles for rural areas counts

<0.001

Yes 4630 (45.4%) 2091 (40.7%) 2031 (50.6%) 253 (51.1.%) 306 (55.3%)

No 5562 (54.6%) 3042 (59.3%) 1980 (49.4%) 242 (48.9%) 247 (44.7%)

Fig. 1 | Model performance assessment of XGBoost and ridge regression. The receiver operating characteristic curve curves of best-performing models with three
different sets of features (individual-level Social Determinants of Health [SDoH] only, contextual-level SDoH only, and both combined). a XGBoost. b Ridge Regression.

Fig. 2 | The one-year hospitalization risk predicted by iPsRS is divided into deciles.The x-axis represents each of ten equal groups (a decile), while the y-axis shows the
corresponding one-year hospitalization rate for each decile.
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Figure 6 shows the improved status of fairness of the ridgemodel
after employing the different bias mitigation techniques. Overall, DIR
demonstrated an excellent balancing prediction utility (AUCROC=
0.71 vs. 0.72 of the original model) and fairness (FNR ratio decreased
from 1.44 to 1.07) between the NHB vs. NHW. The complete assess-
ment of all models following bias mitigation is available in Supple-
mentary Data 7.

Discussion
In this project, we developed a fair, explainable ML pipeline, namely
iPsRS, for identifying how social risk impacts hospitalizations in
patients with T2D. We used UF Health EHR data, including 10,192 real-
world patients with T2D, and incorporated both individual-level and
contextual-level SDoH. Our results demonstrated that iPSRS is a pro-
mising tool for accurately and fairly detecting patients with a higher

Fig. 3 | Feature importance analysis with SHAP values. SHAP values from the original XGBoost. We removed the features with an “unknown” category.

Fig. 4 | Causal graphgeneratedbyMGM-PC-Stable in the independent testing set.The yellownodespresent demographics, blue nodes stand for contextual-level SDoH
and green nodes mean the individual-level SDoH, and the pink node indicates the outcome.
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social risk for poor outcomes, providing explainable information on
focal targets for future interventions.

Addressing patients’unmet social needs inhealth care settings is a
complex task due to 1) the insufficient SDoH records in EHRs (e.g., lack
of use of Z codes for SDoH-associated diagnosis41, and low utilization
of existing SDoH screening surveys embedded in EHRs16), 2) the con-
cerns about the extra burdenonproviders11,42,43 andpotential harmson
patients19,21,22,44, 3) the potential data bias associated with SDoH that
exists within subpopulations (e.g., racial and ethnicminority groups12),
and 4) the observational natural of real-world EHR data (e.g., con-
founding and selection bias)45. Our EHR-based iPsRS pipeline was
carefully designed to overcome the abovementioned limitations. For
example, our iPsRS considers both contextual SDoH (by spatio-
temporally linking patients’ EHR with the external exposome data
using residential histories31) and individual-level SDoH (via extracting
from clinical notes using our established NLP pipeline46). Our analyses
suggested that adding contextual SDoH improved the prediction of
hospitalization risk in T2D compared to the individual-level SDoH-only
prediction. In addition, we employed ML approaches in EHR data to
develop the iPsRS that can be embedded in EHR systems and auto-
mated for applications to minimize the extra burden of health care
providers.Moreover, ourmodel is designed to generate an initial iPsRS
based on historical EHR data at the beginning of a medical encounter
to guide targeted, in-person conversations between the patient and
provider to collect additional SDoH information and update the iPsRS
as needed, which has been carefully considered for its integration into
existing clinicalworkflow to avoid potential harms topatients imposed
by survey-type SDoH screenings and to promote patient-provider
shared decision making on addressing patients’ unmet social
needs19,21,22,44.

With applications of multiple XAI and causal learning techni-
ques. e.g., SHAP39 values to identify key predictors and causal
structure learning40,47–49 to identify causal pathways, our iPsRS is able
to generate interpretable outputs and has shown its ability to identify
potential focal targets for intervention and policy programs to

address patients’ unmet social needs essential to their health out-
comes. Specifically, our SHAP value and causal structure learning
model consistently identified housing instability as one of the key,
modifiable factors contributing to the increased risk of hospitaliza-
tion in patients with T2D. These results demonstrate a real-world use
case of our iPsRS that can be used to identify SDoH-based inter-
ventions tailored to individual patients’ needs.

Another strength of our study is that we assessed the algorithmic
fairness of the iPsRS and mitigated the identified bias to ensure equi-
table prediction across racial/ethnic groups and other sensitive attri-
butes (i.e., sex). After fairness assessment, we identified that the ridge
regression model is biased against racial and ethnic minority groups.
Its prediction produced a higher FNR for both NHB and Hispanic
groups compared to the NHW group, that is, NHB and Hispanic indi-
vidualswhowere truly at high risk of hospitalizations aremore likely to
be misclassified as low risk, thus more likely to miss the subsequent
intervention opportunities. We applied pre-processing (DIR), in-
processing (ADB), and post-processing (CEP) methods to compre-
hensively evaluate the effect approach to optimize iPsRS fairness. In
our final model, after applying the DIR approach for bias mitigation,
the iPsRS achieved an excellent prediction utility-fairness balance.
That is, the AUROC was comparable (0.71 vs. 0.72 of the original
model), and equal opportunity of FNR between the NHB and NHW
much improved (e.g., FNR ratio decreased from 1.44 to 1.07).

We consider our PsRS pipeline to have important clinical impli-
cations. Our model showed an excellent utility for capturing indivi-
duals at high hospitalization risk due to SDoH (i.e., 1-year
hospitalization risk in the top 10% of iPsRS was 27.1%, ~21 times higher
than the bottomdecile). Our iPsRS explained 37.7% of the risk of 1-year
hospitalization after adjusting for patients’ demographics and clinical
characteristics, suggesting that 37.7% of increased hospitalization risk
in T2D can be attributed to patients’ unmet social needs, and factors
outside patients’ clinical profile. The current US healthcare system
faces critical barriers to addressing patients’ social risks essential to
health50. Existing SDoH screening tools and interventions have limited
efficiency and effectiveness for improving health outcomes and health
equity as most of them are not tailored to address specific conditions
and outcomes (e.g., T2D), and there is insufficient evidence on effec-
tive SDoH interventions, leading to a dearth of actionable knowledge
(e.g., which SDoH should be addressed and prioritized among which
individuals and their effects on T2D outcomes and disparities). RWD and
AI/ML offer the opportunity to develop innovative, digital approaches
to integrate social risk management into T2D care and promote a
learning health community. In this project, we addressed critical
methodologic barriers, including shortcomings in existing RWD
infrastructure for studying SDoH, and the need for an iPsRS approach
for accurate, efficient, fair, and explainable social risk screening. With

Fig. 5 | False negative rate (FNR) curve between different populations. a XGBoost. b Ridge Regression.

Table. 2 | Statistical parity (equal opportunity) by different
models on various feature sets

Black & White Full SDoH Individual-level SDoH Contextual-level SDoH

Xgboost 1.03 0.98 1.24

Ridge regression 1.44 1.18 1.45

Hispanic & White Full SDoH Individual-level SDoH Contextual-level SDoH

Xgboost 1.22 1.00 1.63

Ridge regression 1.32 1.73 2.12
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these algorithms, our next step is to co-design with diverse stake-
holders an EHR-based individualized social risk management platform
that can integrate social risk management into clinical care, leading to
a necessary paradigm shift in US healthcare delivery. This tool also
provides amethod of consolidatingmultiple components of assessing
SDoH into a single, comparable score which would likely increase the
likelihood of utilization by clinicians at the point of care.

Our study is subject to several limitations. First, the analysis
conducted in our study was based on a cohort of patients with T2D in
the state of Florida. This limited geographical scope may impact the
generalizability of our findings to populations from other regions.
However, our real-world T2D patients from Floridawere highly diverse
(e.g., 39% of Black individuals) with a mixture of rural and urban
populations, reflecting the demographic changes occurring across the
US. Nevertheless, future research should aim to broaden the general-
izability of our iPsRS through federated learning and data from dif-
ferent geographic regions51. Second, to ensure the automated feature,
we only integrated individual-level SDoH variables that were already
included in the NLP extracting SDoH pipeline (SODA46) and thus some
of the important diabetes-related factors were missing, such as stress.
We will continue developing NLP pipelines for expanding the list of
SDoH extraction and updating our iPsRS model. Third, we acknowl-
edge concerns about incomplete or biased SDoH information (e.g.,
high sensitivity while low specificity) in EHR notes. In a separate study,
we compared T2D patient characteristics between those who had

SDoHmeasures extracted from clinical notes viaNLP vs. thosewhodid
not and found that SDoH documented in EHRs was more complete in
disadvantaged populations–the very populations our iPsRS model is
designed to target. Fourth, we based on ML practices to select and
tune the proposed iPsRS, hence the searching space of models and
hyperparameters is constrained. We plan to utilize AutoML pipelines
to enhance model accuracy and reliability, while simultaneously
minimizing the time and resources required to develop the next-
generation model.

In this project, we developed an ML-based analytic pipeline,
namely iPsRS, for identifying the increased social risk of hospitaliza-
tions in real-world patients with T2D. Our iPsRS has been shown as a
promising tool to accurately and fairly identify patients’ unmet social
needs essential to adverse health outcomes. The iPsRS have the great
potential to be integrated into EHR systems and clinical workflow and
eventually augment current screening programs for SDoH to provide
physicians with an efficient and effective tool to address SDoH in
clinical settings.

Methods
Data
We conducted a retrospective cohort study using 2015–2021 EHR data
from the UF Health Integrated Data Repository, an enterprise data
warehouse integrating different patient information systems across
the UF Health system. UF Health provides care to more than 1 million
patients with over 3 million inpatient and outpatient visits each year
with hospitals in Gainesville (Alachua County), Jacksonville (Duval
County), and satellite clinics in other Florida counties. This study was
approved as exempt by the University of Florida Institution Review
Board (IRB) under IRB202201196.

Study design and population
In the current study, we included patients who were (1) aged 18 and
older, (2) had a T2D diagnosis, identified as having at least one inpa-
tient or outpatient T2Ddiagnosis (using ICD-9 codes 250.x0 or 250.x2,
or ICD-10 code E11) and ≥ 1 glucose-lowering drug prescription in
(a case-finding algorithm previously validated in EHRs with a positive
predictive value [PPV] > 94%)52, and (3) had at least one encounter
duringbothbaselineperiod and the follow-up year. The indexdatewas
defined as the first recorded T2D diagnosis in the UFHealth Integrated
Data Repository. We traced back 3 years prior to the index date as the
baseline period to collect predictor information and followed up for 1
year to collect outcome (i.e., hospitalization) information (Fig. 7).

Study outcome
The study outcomewas all-cause hospitalization within 1 year after the
index date, identified using the first occurrence of an inpatient
encounter during the follow-up year (Fig. 7).

Covariates
Demographics and clinical characteristics. We collected patient
demographics (age, sex, and race-ethnicity) and clinical information
(comorbidities, co-medications, lab values, and clinical observations)
for the baseline period. Race-ethnicity included four categories,
including non-Hispanic White (NHW), non-Hispanic Black (NHB), His-
panic, and 5% were other races/ethnicities. The zip codes of patient
residences were collected during the baseline period for contextual-
level SDoH linkage.

Individual-level SDoH via natural language processing. We
employed a natural language processing53,54 pipeline that was devel-
oped by our group46 to extract individual-level SDoH information from
clinical notes in the baseline period, including education level (i.e.,
college or above, high school or lower, and unknown), employment
(i.e., employed, unemployed, retired or disabled, and unknown),

Fig. 6 | NHB (protected group) vs. NHW (privileged group) and Hispanic vs.
NHW, respectively. The ideally fair line is represented by the blue line, while the
range of statistically fair is shown by the red dots. the ridge regression model
initially fell outside the range of statistically fair but became fairer when we
employed the fairness issue mitigation methods CEP, DIR, and ADB, resulting in
equal opportunity regarding FNR ratio. a Mitigation results on the NHB vs NHW.
CEP had the best fairness issue mitigation ability but led to a drastic decrease in
model performance from 0.722 to 0.550, measured by AUROC, which is unac-
ceptable. DIR and ADB resulted in an acceptable decrease in prediction perfor-
mance, particularly with DIR’s AUROC decreasing from0.722 to 0.710.bMitigation
results on the Hispanic vs NHW. DIR and ADB struggled to handle the fairness issue
mitigation. These methods turned to favoritism towards the protected group
(Hispanic), resulting in biased predictions for the NHW group.
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financial constraints (i.e., has financial constraints and unknown),
housing stability (i.e., homeless or shelter, stable housing, and
unknown), food security (i.e., having food insecurity and unknown),
marital status (i.e., single, married or has partner, widow or divorced,
and unknown), smoking status (i.e., ever smokers, never, and
unknown), alcohol use (i.e., yes, no, and unknown), and drug abuse
(i.e., yes, no and unknown). We also obtained insurance information
(i.e., private insurance, Medicare, Medicaid, No-pay, unknown, and
others) from structured data.

Contextual-level SDoH through spatiotemporal linkage with the
external exposome data. To obtain the contextual-level SDoH, we
extracted the built and social environment measures (n = 114 vari-
ables) including information on food access, walkability, vacant land,
neighborhood disadvantage, social capital, and crime and safety,
from six well-validated sources with different spatiotemporal scales
(Supplementary Data 1) built upon our prior work55,56. We spatio-
temporally linked these measures to each patient based on their

baseline residential address (i.e., patients’ 9-digit zip codes). Area-
weighted averages were first calculated using a 250-mile buffer
around the centroid of each 9-digit ZIP code. Time-weighted avera-
ges were then calculated, accounting for each individual’s residential
address.

Development of ML pipeline for iPsRS. Figure 8 shows our overall
analytics pipeline. First, we imputed missing data and then adopted
balance processing techniques (Step 1. Preprocessing). After that, we
trained a set of machine learning models by using grid search cross-
validation to identify the best hyperparameters (Step 2. MLModeling).
Next, we evaluated the model prediction performance (Step 3. Per-
formance Assessment) and utilized XAI and causal structure learning
techniques to identify important causal SDoH contributing to the
hospitalization outcome (Step 4. Explanation). Finally, we assessed the
algorithmic fairness (Step 5. Fairness Assessment) and implemented a
range of fairness issue mitigation algorithms to address the identified
bias (Step 6. Potential Bias Mitigation).

Fig. 8 | Data analytics pipeline for iPsRS. This pipeline contains six steps: pre-
processing, machine learning modeling, performance assessment, explanation,
fairness assessment, and potential bias mitigation. Attribution: the icons for gear,
graph, and brain were originally designedby Freepik (www.freepik.com). The other
icons were designed by Vecteezy, including: <a href=https://www.vecteezy.com/
free-vector/magnifying-glass>Magnifying Glass Vectors by Vecteezy </a>, <a
href = “https://www.vecteezy.com/vector-art/45358325-a-set-of-icons-that-include-

books-law-and-other-items”>a set of icons that include books, law, and other items
Vectors by Vecteezy </a>, <a href = “https://www.vecteezy.com/vector-art/680841-
set-of-health-checkup-thin-line-and-pixel-perfect-icons-for-any-web-and-app-
project”>Set of Health Checkup thin line and pixel perfect icons for any web and
app project. Vectors by Vecteezy </a>, <a href=https://www.vecteezy.com/free-
vector/heart-rate>Heart Rate Vectors by Vecteezy </a>.

Fig. 7 | Processingworkflowof theUniversity of Florida integrateddata repository type2diabetes (T2D) cohort and thepatient timeline. aT2Dcohort construction
process. b Patient timeline. Attribution: the man icon was designed by Freepik (www.freepik.com).
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Data preprocessing. We imputedmissing values using the “unknown”
label for categorical variables and themean for continuous variables to
ensure the ML models can work smoothly. Next, we proceeded
to create dummy variables for the categorical variables for the models
to understand and applied min-max normalization to the continuous
variables for improving the performance of regularization models
(e.g., Lasso). Then, we employed random over-sampling (ROS), ran-
dom under-sampling (RUS), and under-sampling by matching on
Charlson Comorbidity Index (CCI)57 to address data imbalance before
model training. ROS randomly duplicates the minority samples and
RUS aims to randomly remove samples in the majority class. CCI is a
method of classifying the comorbidities of patients and can be a clin-
ical factor for predicting hospitalization and mortality58. We used CCI
to match a pair of majority and minority samples and created a
balanced dataset for modeling training.

Machine learning model development for iPsRS. We developed the
iPsRS model for predicting hospitalizations in patients with T2D using
three sets of input features: (1) individual-level SDoH only, (2)
contextual-level SDoH only, and (3) individual- and contextual-level
SDoH combined. Two classes of commonly usedML approaches, linear
and tree-based models, were employed. For the linear models, we
included a range of hyperparameters and penalty functions that can be
utilized in constructing differentmodels, including logistic regression59,
lasso regression60, ridge regression61, and ElasticNet62. For the tree-
based models, we selected Extreme Gradient Boosting (XGBoost),
which is widely recognized as one of the best-in-class algorithms for
decision-tree-based models and has shown remarkable prediction per-
formance in a wide range of studies63–68. Following ML best practices,
the study data set was split into a modeling set that includes 2015 to
2020 data, and an independent testing set that covers data in 2021. In
the modeling set, we further split the samples into training, validation,
and testing sets with a ratio of 7:1:2. A five-fold cross-validation grid
search was executed on the training set to optimize the model para-
meters, and early stopping was adopted and performed on the valida-
tion set to avoid overfitting. We trained models using demographics
(e.g., age, race/ethnicity, and sex) and clinical factors (e.g., CCI) to be
baselines for evaluating the performance of predictive models with
SDoH information. The performance of each model was evaluated by
area under the receiver operating characteristic curve (AUROC), F1
score, precision, recall, and specificity.

Weacquiredandassignedahospitalization risk scoreusing the iPsRS
foreachpatient.We thendivided the ranked risk scores into 11 riskgroups
(top 1–5th percentile, top 6–10th percentile, and following deciles),
enabling us to examine the one-year hospitalization rate by risk group69.

Explainable AI and causal estimates. We first utilized SHAP39—a
commonly used XAI technique—to identify important SDoH features
contributing to iPsRS predicting hospitalizations in T2D patients. Fur-
ther, we used a causal structure learning model—the Mixed Graphical
Models with PC-Stable (MGM-PC-Stable)40,47–49—to learn causal struc-
tures in directed acyclic graph (DAG) format explaining the potential
causal relationships on how collectively the identified important SDoH
features impact the hospitalization outcome in T2D patients.

Algorithmic fairness optimization. To assess the model fairness of
iPsRS, we adopted seven popular algorithmic fairness metrics35,70,
including predictive parity, predictive equality (false positive rate [FPR]
balance), equalized odds, conditional use accuracy equality, treatment
equality, equality of opportunity (falsenegative rate [FNR]balance), and
overall accuracy equality, detailed in Supplement S1. We primarily
focused on balancing the FNR (those whom themodel deemed low risk
but indeed are at high risk) across racial-ethnic groups, particularlyNHB
and Hispanic vs. NHW, because hospitalization is an adverse health
outcome. In terms of fairness, we wanted to ensure iPsRS did not have

higher FNR in thedisadvantaged groups (i.e., Hispanic andNHBgroups)
compared to the reference group (i.e., NHW). As there is no universally
accepted cut-off value of fairness, we considered the parity measure of
0.80–1.25 as statistically fair and highlighted values outside this range71.

Decreasing the FNR of iPsRS means minimizing the false negative
errors (i.e., those whom the model deemed low risk but indeed are at
high risk) in the early detection of social risks that can lead to hospi-
talization. We then employed different bias mitigation techniques to
optimize the algorithmic fairness of iPsRS, including pre-process
(Disparate Impact Remover72 [DIR]), in-process (Adversarial
Debiasing73 [ADB]), and post-process (Calibrated Equalized Odds
Postprocessing74 [CEP]) approaches. We goal was to identify the final
model with a good balance between prediction utility and fairness.

Python version 3.7 with the Python libraries Sciki-learn75,
Imbalanced-learn76, and statsmodels77 were used for data processing,
modeling, and result analysis tasks, AI Fairness 36078 formodel fairness
issue mitigation tasks, and Tetrad79 for causal structure learning.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from UF Health IDR can be requested through https://idr.
ufhealth.org/research-services/data-request-form/. Since the UF
Health data is a HIPAA-limited data set, a data use agreement needs to
be establishedwith the UFHealth IDR research team. The relevant data
for each figure is provided in the Source Data file. Source data are
provided with this paper.

Code availability
We have created a GitHub repository for the current study (https://
github.com/uf-hobi-informatics-lab/iPsRS_Public) where we have uploa-
ded our Python code. The repository is publicly available for access.
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