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Abstract

Objectives—To develop and validate an open-source artificial intelligence (AI) algorithm to 

accurately detect contrast phases in abdominal CT scans.

Materials and methods—Retrospective study aimed to develop an AI algorithm trained on 

739 abdominal CT exams from 2016 to 2021, from 200 unique patients, covering 1545 axial 

series. We performed segmentation of five key anatomic structures—aorta, portal vein, inferior 

vena cava, renal parenchyma, and renal pelvis—using TotalSegmentator, a deep learning-based 

tool for multi-organ segmentation, and a rule-based approach to extract the renal pelvis. Radiomics 

features were extracted from the anatomical structures for use in a gradient-boosting classifier 
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to identify four contrast phases: non-contrast, arterial, venous, and delayed. Internal and external 

validation was performed using the F1 score and other classification metrics, on the external 

dataset “VinDr-Multiphase CT”.

Results—The training dataset consisted of 172 patients (mean age, 70 years ± 8, 22% women), 

and the internal test set included 28 patients (mean age, 68 years ± 8, 14% women). In internal 

validation, the classifier achieved an accuracy of 92.3%, with an average F1 score of 90.7%. 

During external validation, the algorithm maintained an accuracy of 90.1%, with an average F1 

score of 82.6%. Shapley feature attribution analysis indicated that renal and vascular radiodensity 

values were the most important for phase classification.

Conclusion—An open-source and interpretable AI algorithm accurately detects contrast phases 

in abdominal CT scans, with high accuracy and F1 scores in internal and external validation, 

confirming its generalization capability.

Clinical relevance statement—Contrast phase detection in abdominal CT scans is a critical 

step for downstream AI applications, deploying algorithms in the clinical setting, and for 

quantifying imaging biomarkers, ultimately allowing for better diagnostics and increased access to 

diagnostic imaging.
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Introduction

Abdominal computed tomography (CT) scans are commonly utilized to assess internal 

organs and structures. CT exams can be performed by scanning subjects in different phases 

related to the use of intravascular contrast agents, which enhance the radiodensity of blood 

vessels and vascularized internal organs facilitating the radiological differentiation of various 

tissues and structures [1, 2].

Accurate identification of contrast phases in abdominal CT scans is particularly critical for 

various downstream artificial intelligence (AI) applications and the reliable quantification 

of imaging biomarkers. For instance, an algorithm designed to differentiate hepatic lesions 

necessitates awareness of the specific contrast phase or, alternatively, must receive only a 

distinct phase as an input. This is due to the integral role that contrast characteristics play 

in the process of lesion characterization [3, 4]. Kidney tumors provide another prototypical 

example where lesions necessitate the interpretation of contrast phase properties for effective 

discrimination [5, 6]. In the field of opportunistic imaging and radiomics, when extracting 

measurements and biomarkers from organs, the phase of the contrast may significantly affect 

these measurements. For example, it has been demonstrated that measurements of bone and 

muscle attenuations as biomarkers of osteoporosis and sarcopenia are susceptible to the 

presence and phase of the contrast agent [7–10].

Currently, Digital Imaging and Communications in Medicine (DICOM) tags are widely 

used for identifying the contrast phases in abdominal CT scans. However, the contrast 

details can often be incomplete and unreliable due to various factors such as human error, 
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inconsistency in entry, omission, or compatibility issues across different imaging systems. 

These inaccuracies represent a huge limitation for the quantification of imaging biomarkers 

in the field of radiomics and opportunistic imaging. As well as for the development and 

deployment of abdominal AI algorithms in the clinical setting [4, 11–14].

In the last few years, deep learning algorithms have demonstrated success in analyzing 

medical imaging. Especially with techniques such as convolutional neural networks that 

mimic the human ability to discern intricate patterns within images [15]. By making use 

of these algorithms, we can potentially automate the classification of the contrast phase in 

abdominal CT scans, solving the limitations and inaccuracies of DICOM tags.

We aimed to develop an AI-based algorithm to automate the detection of the contrast 

phases in abdominal CT scans. We employed an approach of mimicking how radiologists 

visually assess the contrast enhancement patterns by looking at key anatomical structures. 

We evaluated the algorithm on an external dataset to test for generalizability. In addition, we 

aimed to facilitate the integration of this tool into clinical workflows by making it available 

through an easy-to-use AI inference system: https://github.com/StanfordMIMI/Comp2Comp 

[16, 17].

Methods

This retrospective study was approved by the institutional review board and compliant with 

the Health Insurance Portability and Accountability Act.

Data preparation

We obtained 739 abdominal CT exams from Stanford Hospital from 200 unique patients 

undergoing cystectomy between June 2016 and August 2021, yielding a total of 1545 axial 

series. These series were partitioned into two datasets: 1183 series from 172 patients were 

used for training, and the remaining 362 from 28 patients formed the held-out test set. 

We ensured each patient’s data was exclusively assigned to one of these sets to maintain 

patient-wise separation (Fig. 1).

Each series was initially weakly labeled into one of four classes: non-contrast, arterial, 

venous, or delayed. This preliminary classification was accomplished using Regex patterns 

to match words in the “Series Description” DICOM tag that indicated one of the categories, 

such as “arte”, “portal”, “venous”, “nephro”, “non con”, “w/o”, “delay” etc. Despite the 

known limitations of DICOM tags, this provided a useful first-pass labeling that would later 

undergo rigorous confirmation and correction when necessary [18, 19].

A board-certified radiologist with 5 years of experience reviewed each series to confirm 

or correct the initial labels when necessary. To facilitate this process, we segmented the 

organs using TotalSegmentator [20] and exported a JPEG image of two slices of each series 

in two strategic regions of the abdomen. The first was extracted on the level of the right 

adrenal, providing a good assessment of the aorta, inferior vena cava (IVC), portal vein, and 

hepatic artery. The second slice was extracted on the level of the left kidney which allowed 

a good assessment of the renal parenchyma and renal pelvis. The images were assessed 

Reis et al. Page 3

Eur Radiol. Author manuscript; available in PMC 2024 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/StanfordMIMI/Comp2Comp


on a standard monitor, and no special software was utilized to display the images. This 

dual-method process, the automated Regex and the human labeler was selected as a strategy 

to maximize the accuracy and reliability of our labeling (Fig. 2).

Algorithm development

Our study methodology comprises a three-step process for training a contrast phase 

algorithm: segmentation of organs, feature extraction, and classification.

Stage 1—organ segmentation—We isolated the key anatomical structures of the aorta, 

IVC, portal vein, renal parenchyma, and renal pelvis. To perform the segmentation, we used 

our open-source toolbox, which included TotalSegmentator [20], a deep learning-based tool 

for multi-organ segmentation, and a rule-based approach to extract the renal pelvis. We 

apply a 3-pixel erosion to the segmented masks to avoid pixel intensity contamination from 

adjacent structures, such as fat or atherosclerotic calcification that could introduce bias to the 

pixel intensity measurements.

Stage 2—feature extraction—Once the organs were segmented, we computed 48 

quantitative low-level radiomics features that characterize the radiodensity statistics of these 

structures. This process began by applying the segmentation masks from the previous step 

to isolate the organs of interest: aorta, IVC, portal vein, renal parenchyma, and renal pelvis. 

For each isolated organ, we applied binary erosion to refine the segmentation boundaries, 

ensuring precision in our feature extraction process.

Subsequent steps involved calculating radiodensity statistics such as maximum value, 

minimum value, mean, median, standard deviation, and variance of the pixel intensities 

within each organ’s segmented region. Additionally, we employed the SciPy library’s 

ConvexHull function to compute and fill the convex hull of the renal pelvis, enhancing 

our analysis of its radiodensity features. The statistical computations were performed 

using NumPy for basic statistics, and SciPy Multidimensional Image Processing—

“scipy.ndimage”—for more complex spatial measurements. We then calculated the 

comparative radiodensity differences between the vascular structures (aorta, IVC, and portal 

vein). The calculated features were then saved into a NumPy array for subsequent model 

training [21, 22].

Stage 3—algorithm training—Data partitioning was performed initially between the 

development set (train + validation set) and the test set in an 85%/15% proportion on a 

patient level. Subsequently, the development set was split into training and validation sets in 

an 80%/20% proportion (Fig. 1).

Using the extracted radiomic features, we employed extreme gradient boosting (XGBoost) 

to train a classifier to categorize the CT images into the four contrast phases [23]. XGBoost 

is a machine learning technique that uses decision tree ensembles. We designed a multi-class 

classification problem aimed at categorizing the CT images into the four contrast phases. 

The model was trained to learn the distinct radiomic patterns associated with each contrast 

phase from our training dataset. Therefore, the inputs of the model were the 48 selected 

features, and the output was a one-hot-encoding vector representing one of the four classes. 
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We developed the algorithm in Python, utilizing the open-source software “dmlc-XGBoost” 

[23], as well as other popular Python libraries such as Scikit-Learn, Numpy, Pickle, 

Pandas, and Matplotlib during the training process. The model was trained from “scratch”, 

with no special initialization or pre-training. We fit the model XGBoost classifier (class 

“XGBClassifier”) of type “tree-based model”, in the learning objective “multi:softprob”, 

which means multi-class with softmax returning the probability of each class. We performed 

a grid search to optimize the following parameters: n_estimators of 50, max_depth of 5, the 

learning rate of 0.1, and “min_child_weight” = 3. The other parameters were based on their 

demonstrated efficacy in the literature, and therefore set as default in the XGBoost library. 

We didn’t use any ensemble of models or data augmentation.

Evaluation

To ensure the generalizability of our model, we conducted internal and external validation of 

our algorithm with an internal test set and an external validation set from a different country, 

which was never exposed to the model during training.

For internal validation, we utilized our held-out test set of 362 CT scan series from 28 

patients not included in the training. For external validation, we used 864 CT scan series 

from the “VinDr-Multiphase CT” [24] benchmark, which is a public dataset that includes 

non-contrast, arterial, and venous series. Notably, the external dataset includes a fourth 

class labeled “other”, which is distinct from the “delayed” category used in our dataset to 

specifically denote the delayed phase in abdominal CT scans. A radiologist performed an 

assessment of the VinDr dataset to ensure that the categories were compatible with our 

labeling schema, especially to assess if “other” corresponded to “delayed”, and if “venous” 

were free from misclassification of “delayed” cases.

All cases in “other” and a 50-case sample of “venous” were assessed. It was determined 

that most cases (77%) in “other” in fact represented the ‘delayed’ phase, therefore partially 

compatible with our label “delayed”. And almost all the cases in “venous” (96%) were 

correctly categorized, with only two instances (4%) being more fittingly described as 

‘delayed’. We then excluded the incompatible instances of “other” in the VinDr dataset, 

making this category compatible with our “delayed” class. We refer to this category as 

“adjusted other/delayed” throughout the text.

The performance of the model was evaluated using a number of metrics: F1 score as 

the primary metric, accuracy, precision, sensitivity, specificity, and their 95% confidence 

interval [25], as well as the area under the receiver operating characteristic curve (AUROC), 

and area under the precision-recall curve (AUPRC). The overall performance of the 

algorithm was assessed through the F1 score and the other metrics using the macro-averaged 

approach, providing a balanced evaluation across all classes.

We utilized Shapley additive explanations (SHAP) plots to evaluate feature importance 

in our model. SHAP plots offer an interpretable summary of feature influence on model 

prediction for each class.
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Results

Our study population consisted of adult patients with ages ranging from 21 to 90 years. The 

distribution of the contrast phases in our training and test sets was imbalanced (Table 1), 

with a low prevalence of the “arterial” class (4% of the cases in the training set and 6% in 

the test set) and a higher prevalence of the venous class (43% of the cases in the training 

set, and 38% in the test set). The distribution of the external dataset had a reduced number 

of non-contrast, and “adjusted other/delayed” classes, respectively accounting for 13.4% and 

8.9% of the cases, while arterial and venous phases had a prevalence of 35.4% and 42.2%, 

respectively (Table 2).

In total, 874 labels across all classes underwent manual labeling with the following 

breakdown: 550 “venous”, 200 “non-contrast”, 67 “delayed”, and 57 “arterial” labels 

required manual assignment. Before the manual inspection, the initial automatic labeling 

assigned labels to the 713 series, while the 832 series remained unlabeled. Of the 713 

initially labeled series, 413 were “delayed”, of which 9 needed manual correction; 161 

were “non-contrast” series, none of which required correction; 122 were “venous”, with 

30 requiring correction; and 17 were “arterial”, with 3 requiring correction. In the external 

validation dataset, the assessment of the class “other”, found that 25 instances did not 

correspond to the ‘delayed’ phase and were consequently excluded.

Table 2 provides a detailed breakdown of the performance metrics across both internal 

and external validations, including AUROC, AUPRC, precision, recall, specificity, and their 

95% confidence intervals. In internal validation (held-out test set), the classifier produced 

F1 scores of 96.6% for non-contrast, 78.9% for arterial, 92.2% for venous, and 95.0% for 

the delayed phase, with overall accuracy of 92.3%. Precision ranged from 87.1% to 100%, 

sensitivity from 68.1% to 97.8%, and specificity from 91.0% to 100.0%. The AUROC and 

AUPRC values were consistently high across all phases, contributing to an overall AUROC 

of 98.9% and AUPRC of 94.8%.

For the external validation conducted on the publicly available “VinDr-Multiphase CT” 

dataset, consisting of 864 abdominal CT scan series, the algorithm maintained high 

performance. The classifier achieved F1 scores of 97.0% for non-contrast, 85.8% for arterial, 

75.4% for venous, and 59.9% for “adjusted other/delayed” phases. With an overall accuracy 

of 90.1%. Precision values varied from 43.5% to 96.6%, sensitivity from 75.3% to 97.4%, 

and specificity from 84.1% to 99.8%. The overall AUROC was 92.1 and AUPRC 83.2%.

The feature importance analysis demonstrated that the radiodensity statistics of certain 

anatomical structures played a significant role in the classification of the different classes. 

For the non-contrast phase, the most significant features were the renal parenchyma and 

renal pelvis (Fig. 3a). For the arterial phase, relative radiodensity values between the aorta 

and portal vein and between the aorta and IVC were the most relevant features (Fig. 3b). 

For the venous phase, the portal vein’s radiodensity was the most important feature (Fig. 3c). 

And for the delayed phase, the most significant features were the relative radiodensity values 

between the aorta and IVC and the radiodensity measurements from the kidney pelvis (Fig. 

3d).
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Discussion

Our study addresses the problem of identifying contrast phases in abdominal CT scans. To 

tackle this, we developed an interpretable algorithm that first uses a deep learning-based 

tissue segmentation to extract radiomic radiodensity features, which are passed into an 

XGBoost model to detect the contrast phase for each series. This algorithm demonstrated 

a high F1 score and other performance metrics on internal and external validation sets, 

demonstrating a robust generalizability of our model.

Our algorithm mirrored clinical intuition by prioritizing the radiodensity features of 

anatomical structures that are typically considered most representative of each specific 

contrast phase. For instance, the feature importance plot (Fig. 2) shows that the aorta, and its 

comparison with other vascular structures, were the most important features for the arterial 

phase. Similarly, the portal vein was the most important feature for the venous phase, and 

the renal pelvis was the second most important feature in delayed, while the other five 

high-ranking features were derived from renal structures. Interestingly the most important 

features of the non-contrast phase were dominated primarily by renal structures, accounting 

for the six most important features. Our hypothesis is that it is due to the homogeneity 

of the renal structures on non-contrast versus more heterogeneous after contrast. This 

explainable nature of the algorithm enables this parallelism with clinical knowledge, making 

the algorithm more transparent and easier to be trusted by clinicians, both in success and 

failure modes.

Our results revealed that the algorithm’s performance in identifying the arterial phase 

improved during external validation, reinforcing the generalization capability. The success 

in generalizing implies that the model has learned the underlying patterns associated with 

the different contrast phases, including the arterial phase, despite the limited number of 

examples on the training set. In contrast, we observed a decrease in performance for the 

venous and “adjusted other/delayed” classes.

The limitations of the study encompass the labeling discrepancy between our label 

“delayed” and the external dataset label “other”. To address labeling discrepancies, we 

conducted a thorough review of the “other” and “venous” categories. This ensured 

the dataset’s appropriateness for testing our algorithm by confirming the “venous” 

category was free from incorrectly labeled “delayed” cases. We also adjusted the “other” 

category to exclusively include “delayed” cases, what we called “adjusted other/delayed”. 

When selecting the external validation dataset, we focused on its accessibility and 

representativeness, opting for the ‘VinDr-Multiphase CT’ due to its size, multiphase nature, 

and public availability, enabling independent verification and benchmarking by the research 

community. Future work includes expanding the algorithm to other anatomical regions, once 

the same underlying method carries the potential to be trained in other modalities and body 

parts. The algorithm’s availability through the Comp2Comp Inference Pipeline is intended 

to facilitate this expansion by the broader research community.

In summary, the presented algorithm offers an effective and precise method for identifying 

contrast phases in abdominal CT scans, independent of the analysis of the DICOM tags. The 
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accurate identification of the contrast phase in abdominal CT scans holds substantial utility 

for downstream AI applications, particularly those algorithms trained to function on specific 

series. By automating and standardizing the detection process, it reduces the potential for 

human error, and speeds up workflow. We hope that by supporting the integration of AI 

algorithms in the clinical setting and the consistent quantification of imaging biomarkers this 

algorithm can ultimately contribute to better and faster patient care, and broader access to 

diagnostic imaging. The algorithm’s public availability through the Comp2Comp Inference 

Pipeline, hosted on the GitHub repository “https://github.com/StanfordMIMI/Comp2Comp”, 

encourages broader use and exploration of this AI tool.
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Key Points

• Digital Imaging and Communications in Medicine labels are inaccurate for 

determining the abdominal CT scan phase.

• AI provides great help in accurately discriminating the contrast phase.

• Accurate contrast phase determination aids downstream AI applications and 

biomarker quantification.
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Fig. 1. 
Flowchart depicting the included dataset and data partitioning for the algorithm development
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Fig. 2. 
Example abdominal CT images at the anatomical level of the right adrenal gland and the 

left kidney, representing each of the four classes. Observe the variations in pixel intensity 

across the phases in the key structures: aorta (red arrows), portal vein (yellow arrows), renal 

parenchyma (blue arrows), renal pelvis (green arrows), and IVC (purple arrows)
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Fig. 3. 
SHAP importance plot for the four contrast phases. This plot shows the top eight most 

influential features for each contrast phase: non-contrast (a), arterial (b), venous (c), and 

delayed (d). Each dot represents a feature instance. Features are arranged on the y-axis, 

while their impact on the model’s output is displayed along the x-axis. Dots on the 

right of the 0-line increase the model’s output, while those on the left decrease it. Color 

intensity represents the feature value: high values in red and low values in blue. The plot 

elucidates how each feature instance affects the model’s prediction, providing insights into 

the decision-making process across different contrast phases
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Table 1

Patient characteristics for the internal training and test sets, and the external validation set

Characteristic Training set Internal test set External validation

No. of patients 172 28 -

No. of scans 364 87 209

No. of series 1183 362 864

Female patients 22% 14% 23.7%

Age (y)

 Mean ± SD 70 ± 8 68 ± 8 –

 Range 21−85 44–90 –
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