TABLE 1.
The comparison of biocompatibility properties of biodegradable metallic materials.
Material Biocompatibility Property |
Iron (Fe) | Zinc (Zn) | Magnesium (Mg) | Molybdenum (Mo) |
---|---|---|---|---|
Physiological response | Essential element important for oxygen transport (Lieu et al., 2001; Vogt et al., 2021) | Essential trace element that affects enzyme functionality (Vallee, 1988), (Coleman, 1998), (Chasapis et al, 2020) | Essential for biochemical processes, bone, and muscle formation (Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, 1999; Fiorentini et al., 2021) | Essential trace element, cofactor for metabolic enzymes (Schwarz et al., 2009; Maia et al., 2024) |
Cell viability | >80% viability after 48 h with 99.95% extract in vitro using Adipose-derived stem cells (ADSCs) (Paim et al., 2020) | <80% viability with pure extract in vitro using SMC and Endothelial cells (Fu et al., 2020) | ≥80% viability with pure extract in vitro using SMC and Endothelial cells (Fu et al., 2020) | Signs of cell death only occurred with 2.5 mM after 48 h (Redlich et al., 2021) |
Inflammatory response | No significant inflammatory response in vivo (Li et al., 2014; Xu et al., 2023) | Moderate inflammatory response, possibly due to slower in vivo degradation (Fu et al., 2020; Oliver et al., 2020; Guillory et al., 2022) | Generally low inflammatory response which decreased after in vivo degradation (Fu et al., 2020) | Limited studies suggest no significant inflammatory response (Schauer et al., 2021) |
Mechanical properties: ultimate tensile strength (MPa) | High, varies with alloying: ∼290 (Moravej et al., 2010; Salama et al., 2022) | Moderate, varies with alloying: ∼120 (Bowen et al., 2016; Cockerill et al., 2021) | Low, varies with alloying: ∼86 (Agarwal et al., 2016; Song et al., 2020) | High, ∼1,400 (Schauer et al., 2021) |
Young’s modulus (GPa) | ∼200 (Song et al., 2014), (Hermawan, 2018) | ∼100 (Hermawan, 2018), (Ledbetter, 1977), (Shi et al., 2020) | ∼45 (Hermawan, 2018) | ∼320 (Schauer et al., 2021) |
Ductility | High (Li et al., 2014; Korei et al., 2022) | Moderate (Fu et al., 2020) | Low, varies with alloying (Li et al., 2014; Song et al., 2020) | High (Sikora-Jasinska et al., 2022) |
Elongation to failure | Up to 40% (Rybalchenko et al., 2022) | Varies with alloying (Guillory et al., 2022) | Varies with alloying (Song et al., 2020) | Up to 50% (Schauer et al., 2021) |
Degradation properties | Uniform (Li et al., 2014) | Uniform (Bowen et al., 2013b; García-Mintegui et al., 2021) | Non uniform (Lee et al., 2009) | Uniform degradation (Sikora-Jasinska et al., 2022; Schauer et al., 2021) |
Estimated degradation Rate | 100 μm/y in vitro (Hermawan, 2018) | 160 μm/y in vitro (Hermawan, 2018) | 4,000–8,000 μm/y in vitro (Hermawan, 2018) | 33.6 μm/y in vitro, 13.5 μm/y in vivo (Schauer et al., 2021) |