Skip to main content
. 2024 Sep 23;12:1457553. doi: 10.3389/fbioe.2024.1457553

TABLE 1.

The comparison of biocompatibility properties of biodegradable metallic materials.

Material
Biocompatibility
Property
Iron (Fe) Zinc (Zn) Magnesium (Mg) Molybdenum (Mo)
Physiological response Essential element important for oxygen transport (Lieu et al., 2001; Vogt et al., 2021) Essential trace element that affects enzyme functionality (Vallee, 1988), (Coleman, 1998), (Chasapis et al, 2020) Essential for biochemical processes, bone, and muscle formation (Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, 1999; Fiorentini et al., 2021) Essential trace element, cofactor for metabolic enzymes (Schwarz et al., 2009; Maia et al., 2024)
Cell viability >80% viability after 48 h with 99.95% extract in vitro using Adipose-derived stem cells (ADSCs) (Paim et al., 2020) <80% viability with pure extract in vitro using SMC and Endothelial cells (Fu et al., 2020) ≥80% viability with pure extract in vitro using SMC and Endothelial cells (Fu et al., 2020) Signs of cell death only occurred with 2.5 mM after 48 h (Redlich et al., 2021)
Inflammatory response No significant inflammatory response in vivo (Li et al., 2014; Xu et al., 2023) Moderate inflammatory response, possibly due to slower in vivo degradation (Fu et al., 2020; Oliver et al., 2020; Guillory et al., 2022) Generally low inflammatory response which decreased after in vivo degradation (Fu et al., 2020) Limited studies suggest no significant inflammatory response (Schauer et al., 2021)
Mechanical properties: ultimate tensile strength (MPa) High, varies with alloying: ∼290 (Moravej et al., 2010; Salama et al., 2022) Moderate, varies with alloying: ∼120 (Bowen et al., 2016; Cockerill et al., 2021) Low, varies with alloying: ∼86 (Agarwal et al., 2016; Song et al., 2020) High, ∼1,400 (Schauer et al., 2021)
Young’s modulus (GPa) ∼200 (Song et al., 2014), (Hermawan, 2018) ∼100 (Hermawan, 2018), (Ledbetter, 1977), (Shi et al., 2020) ∼45 (Hermawan, 2018) ∼320 (Schauer et al., 2021)
Ductility High (Li et al., 2014; Korei et al., 2022) Moderate (Fu et al., 2020) Low, varies with alloying (Li et al., 2014; Song et al., 2020) High (Sikora-Jasinska et al., 2022)
Elongation to failure Up to 40% (Rybalchenko et al., 2022) Varies with alloying (Guillory et al., 2022) Varies with alloying (Song et al., 2020) Up to 50% (Schauer et al., 2021)
Degradation properties Uniform (Li et al., 2014) Uniform (Bowen et al., 2013b; García-Mintegui et al., 2021) Non uniform (Lee et al., 2009) Uniform degradation (Sikora-Jasinska et al., 2022; Schauer et al., 2021)
Estimated degradation Rate 100 μm/y in vitro (Hermawan, 2018) 160 μm/y in vitro (Hermawan, 2018) 4,000–8,000 μm/y in vitro (Hermawan, 2018) 33.6 μm/y in vitro, 13.5 μm/y in vivo (Schauer et al., 2021)