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GLUT1 overexpression in CAR-T cells induces
metabolic reprogramming and enhances
potency

Justin A. Guerrero 1,12, Dorota D. Klysz 1,12, Yiyun Chen1, Meena Malipatlolla1,
Jameel Lone2, Carley Fowler 1, Lucille Stuani 3, Audre May1, Malek Bashti 1,
Peng Xu1, Jing Huang1, Basil Michael4, Kévin Contrepois4, Shaurya Dhingra 1,
Chris Fisher1, Katrin J. Svensson 2,5,6, Kara L. Davis 1,3, Maya Kasowski7,8,9,10,
Steven A. Feldman 1, Elena Sotillo 1 & Crystal L. Mackall 1,3,10,11

The intensive nutrient requirements needed to sustain T cell activation and
proliferation, combined with competition for nutrients within the tumor
microenvironment, raise theprospect that glucose availabilitymay limit CAR-T
cell function. Here, we seek to test the hypothesis that stable overexpression
(OE) of the glucose transporter GLUT1 in primary human CAR-T cells would
improve their function and antitumor potency. We observe that GLUT1OE in
CAR-T cells increases glucose consumption, glycolysis, glycolytic reserve, and
oxidative phosphorylation, and these effects are associated with decreased T
cell exhaustion and increased Th17 differentiation. GLUT1OE also induces
broad metabolic reprogramming associated with increased glutathione-
mediated resistance to reactive oxygen species, and increased inosine accu-
mulation. When challenged with tumors, GLUT1OE CAR-T cells secrete more
proinflammatory cytokines and show enhanced cytotoxicity in vitro, and
demonstrate superior tumor control and persistence in mouse models. Our
collective findings support a paradigm wherein glucose availability is rate
limiting for effector CAR-T cell function and demonstrate that enhancing
glucose availability via GLUT1OE could augment antitumor immune function.

T cells manifest rapid induction of aerobic glycolysis to meet the
metabolic needs for proliferation and effector function (Teff) fol-
lowing antigen stimulation1–5. This is challenging in the tumor
microenvironment (TME), where T cells compete with tumor cells

that also rely on aerobic glycolysis6,7, creating intense competition for
glucose4, compounded by dysregulation of nitrogen metabolism8,9

and reactive oxygen species (ROS)-mediated TEFF suppression
10,11. To

meet metabolic demand, activated T cells upregulate surface
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expression of nutrient transporters, which can dictate T cell
differentiation12–16. Glucose uptake is regulated in large part through
expression of the SLC2 (GLUT) family of facilitative glucose
transporters17,18, of which there are 14 members, with GLUT1 (SLC2a1)
being the most well-studied.

CAR-T cells are genetically engineered to recognize tumor-
associated antigen(s) of choice. Like non-engineered T cells, CAR-T
cells must sustain the metabolic and energetic needs required for
activation, proliferation, differentiation, and killing by balancing gly-
colysis and oxidative phosphorylation (OXPHOS)19,20 while competing
with tumor cells for nutrients21–23.

In this study, we find that engineered overexpression of GLUT1
(GLUT1OE) increases glycolytic activity and oxidative phosphorylation
in primary human CAR-T cells and induces broad metabolic repro-
gramming associated with increased inosine accumulation and
increased resistance to ROS-mediated immunosuppression. GLUT1OE
in CAR-T cells also increases Th17 differentiation, diminishes features
of exhaustion, and induces greater persistence. When challenged with
tumors, GLUT1OE CAR-T cells manifest increased cytokine secretion
and superior tumor control in vitro and in vivo compared to control
CAR-T cells. Thesedatademonstrate that increasedglucoseavailability
in tumor-reactive T cells induces metabolic, transcriptional, and
functional reprogramming and provides a new approach to enhance
the potency of engineered T cell populations designed for antitumor
targeting.

Results
GLUT1 overexpression enhances glycolysis and oxidative
phosphorylation
We first investigated CAR-T cell dependency on glucose by mon-
itoring the effects of glucose deprivation on expansion of the clini-
cally relevant CD19.28ζ-CAR as well as the high-affinity GD2 targeting
HA.28ζ-CAR, which undergoes antigen-independent tonic signaling
andmanifests hallmark features of T cell exhaustion within 10 days of
in vitro culture24–26. Both CAR-T cells showed significantly reduced
viability and more than 30-fold reduced expansion when grown in
media lacking glucose (Fig. 1A), confirming the essential role for
glucose as a carbon source for CAR-T cell proliferation in vitro. To
determine whether GLUT1OE would increase glucose uptake in CAR-
T cells, we co-transduced a CAR-expressing vector and a bicistronic
construct containing a selectable marker and GLUT1 separated by a
ribosomal skipping site (NGFR-p2a-GLUT1) (Fig. 1B). Compared to
control cells, CAR-T cells overexpressing GLUT1 demonstrated
increased intracellular glucose uptake as measured using the fluor-
escent glucose analog 2-NBDG and deoxy-D-[1,2-3H (N)]-glucose at
baseline. (Fig. 1C, D). Antigen-mediated stimulation of CD19.28ζCAR-
T cells increased the amount of glucose uptake, which was further
enhanced by GLUT1OE. HA.28ζ CAR-T cells showed higher GLUT1
expression and higher 2-NBDG uptake at baseline compared to
CD19.28ζ CAR-T cells, and antigen stimulation of HA.28ζ CAR-T cells
induced a lesser effect on total glucose uptake, consistent with
increased energetic needs at baseline in HA.28ζ CAR-T cells due to
tonic signaling.

We next utilized Seahorse analysis to measure glycolytic capacity
in CD19.28ζ and HA.28ζ CARs ± GLUT1OE (CD19.28ζ-GLUT1 and
HA.28ζ-GLUT1). Basal extracellular acidification rate (ECAR) was
unchanged with GLUT1OE in CD19.28ζ, in contrast to the tonically
signaling HA.28ζ CAR-T cells, which demonstrated higher basal ECAR
that was further enhanced by GLUT1OE (Fig. 1E). Both CD19.28ζ and
HA.28ζ CAR T cells manifested increased glycolytic reserve with
GLUT1OE (Fig. 1F), whereas untransduced “Mock” T cells with GLU-
T1OE did not exhibit any of the aforementioned changes when com-
pared to control, illustrating a substantial impactofCARexpression on
GLUT1OE mediated metabolic programming (Supplementary
Fig. 1A, B). Activation-induced T cell effector programming requires

glycolysis which increases glucose demand27, thus we measured gly-
colytic flux ±GLUT1OE following antigen-mediated CAR activation
using anti-idiotype antibodies. GLUT1OE-CD19.28ζ and -HA.28ζ CAR-T
cells manifested a greater deltaECAR (ECARmax during activation
minus ECARmax at baseline) compared to controls (Fig. 1G), although
the deltaECAR in HA.28ζ-GLUT1 cells remained below that observed in
CD19.28ζ ±GLUT1OE.

To further investigate changes in the metabolic state induced by
GLUT1OE, we used Seahorse analysis to quantify mitochondrial
respiration. GLUT1OE increased basal and maximum oxygen con-
sumption rate (OCR) and spare respiratory capacity (SRC) in
CD19.28ζ and HA.28ζ CAR-T cells compared to controls (Fig. 2A),
whereas GLUT1OE in Mock T cells reduced basal OCR (Supplemen-
tary Fig. 1C). Although we observed no change in mitochondrial
mass, GLUT1OE induced significantly higher mitochondrial potential
in HA.28ζ, but not CD19.28ζ (Fig. 2B, C). Together, these data
demonstrate that glucose availability is rate-limiting in CAR-T cells
following antigen-driven activation since GLUT1OE enhances glyco-
lysis and mitochondrial respiration in this setting. They further
demonstrate that the effects of GLUT1OE are more profound in
CD19.28ζ CAR-T cells compared to chronically activated HA.28ζ CAR-
T cells, which we attribute to increased GLUT1 expression at baseline
in response to chronic rate limiting glucose availability in tonic sig-
naling CAR-T cells.

GLUT1 overexpression decreases the transcriptional program
associated with T cell exhaustion and increases Th17

differentiation
To characterize how and to what extent GLUT1OE-induced aug-
mentation of glycolysis and mitochondrial respiration associates
with changes in gene expression, we conducted bulk RNA sequen-
cing (RNAseq) in CD19.28ζ and HA.28ζ CAR-T cells ± GLUT1OE at
baseline and after 4 or 14 h of CAR stimulation. As expected,
activation-induced dominant effects on gene transcription, as
revealed by unbiased PCA clustering, which showed three distinct
populations representing baseline and the two post-activation time
points (Fig. 3A). As we have previously shown25,26, the transcriptional
programs of CD19.28ζ and HA.28ζ CAR-T cells at baseline are very
different, resulting in different starting points upon which the tran-
scriptional reprogramming of GLUT1OE occurred and distinct pat-
terns for each CAR. Nonetheless, focusing on the unstimulated
state, we identified a common set of ~800 genes regulated by GLUT1-
OE in both CAR T cells (Fig. 3B). GSEA analysis of this gene set
showed down-regulation of the NK-like exhaustion signature
(including GNLY and TNFRSF9) in both CAR T cells upon GLUT1OE
(Fig. 3C)28. Consistent with the Seahorse analyses, CD19.28ζ-GLUT1
T cells at rest and following activation demonstrated
increased expression of genes related to glycolysis and OXPHOS
(Fig. 3D) and a shift from a naïve T cell transcriptional signature
towards one associated with memory and effector cells (Fig. 3E). We
also observed induction of genes associated with numerous
metabolic pathways, including arginine, glutamate, glutathione and
fatty acid metabolism among others. Most of these metabolic
changes were more evident at baseline and 4 h after activation
(Fig. 3E, F).

We next sought to determine whether these transcriptional
effects were associated with modulation of T cell differentiation. We
found that CD19.28ζ-GLUT1 CAR-T cells showed upregulation of Th17-
associated cytokines IL17F and IL22 even before activation, and
increased transcription of IL17A and genes associated with Th17 dif-
ferentiation after antigen exposure (Fig. 4A, B). GLUT1OE also
increased protein expression of CCR4+ and CCR6+ in both CD19.28ζ
and HA.28ζ GLUT1OE CAR-T cells at baseline and after idiotype sti-
mulation (Fig. 4C, D) and CD19.28ζ-GLUT1OE T cells secreted higher
levels of IL-17A and IL-17F after stimulation with Nalm6 (Fig. 4E–G).
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Interestingly, although HA.28ζ-GLUT1 cells showed increased surface
expression of CCR4 and CCR6, they secreted increased levels of Th1
and Th2-associated cytokines and IL-22 compared to control cells
following antigen challenge (Fig. 4G, H). Collectively, the data
demonstrate that GLUT1OE reduces the transcriptional signature
associated with exhaustion, induces Th17 differentiation, and pro-
motes metabolic reprogramming associated with increased glyco-
lysis and increased oxidative phosphorylation.

GLUT1 overexpression enhances metabolic pathways that favor
resistance to REDOX suppression
GLUT1OE CAR-T cells manifested increased GLUT3 (SLC2A3) and ATP
Synthase (ATP5F1B) expression in CD19.28ζ-GLUT1 post-stimulation
(Supplementary Fig. 2A, B), as well as upregulation of glutathione
synthetase (GSS) and cystathionase (CTH) transcripts, two enzymes
involved in production of the antioxidant glutathione (GSH), which
serves as the cells’ principal defense against ROS imbalance29
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(Fig. 5A, B). Consistent with this, CD19.28ζ-GLUT1 CAR-T cells exhib-
ited increased intracellular GSH, as measured by thiol staining, and
mass spectrometry analysis showed that both CD19.28ζ-GLUT1 and
HA.28ζ-GLUT1 contained less of the oxidized form of GSH, cystei-
neglutathione disulfide (GSSG) (Fig. 5C, D). Intracellular staining also
demonstrated less mitochondrial ROS in CD19.28ζ-GLUT1 cells com-
pared to control post stimulation, and GLUT1OE had the same effect
for HA.28ζ at baseline (Fig. 5E). These findings were validated using
CyTOF single cell proteomic profiling30, which confirmed that GLU-
T1OE CD8+ and CD4+ CAR-T cells expressed increased levels of GSS,
GLUT1 and GLUT3, and increased expression of the OXPHOS-
associated ATP5F1B (a subunit of ATP Synthase) (Supplementary
Fig. 2C). Following stimulation, CD19.28ζ-GLUT1 and HA.28ζ-GLUT1
CAR-T cells continued to express higher levels of GLUT1, GLUT3, and
CD62L compared to controls, while ATP5 and PPP-associated G6PD
were unchanged (Supplementary Fig. 2D).

Glutaminolysis metabolizes glutamine to glutamate, a metabolite
essential to GSH formation in the presence of cysteine. To assess
whether increased glutaminolysis might contribute to increased ROS
in GLUT1OE CAR-T cells, we analyzed our RNAseq dataset and
observed that GLUT1OE CD19.28ζ CAR-T cells expressed higher levels
of genes involved in glutaminolysis, including GOT2, GLUD1, and
GPT2, both at baseline and after antigen stimulation (Fig. 5F). Further
evidence in support of a model wherein GLUT1OE increases glutami-
nolysis emerged from our mass spectrometry data, which showed less
glutamine in CD19.28ζ-GLUT1 CAR-T cells. Together, these data are
consistent with a model wherein GLUT1OE increases glutaminolysis
and antioxidant production (Supplementary Fig. 5G).

Transcriptomic, metabolomic, and proteomic findings suggested
that GLUT1OE may endow resistance to ROS accumulation. To test this
hypothesis, we subjected CD19.28ζ CAR±GLUT1OE to H2O2 prior to
antigen challenge with Nalm6 cells. As a control, we treated cells with
catalase, which rapidly mediates the conversion of H2O2 into O2 and
H2O, immediately before exposure to ROS. Both CD8+ and CD4+

CD19.28ζ-GLUT1 cells were more resistant to H2O2 suppression as
measured by increased IL-2 secretion, and this effect was abrogated in
the presence of L-buthionine-S,R-sulfoximine (BSO), which diminishes
GSH levels by inhibiting the catalytic subunit of glutamate–cysteine
ligase (GCL) and GSH biosynthesis (Fig. 5H–J, Supplementary Fig. 3A, B).
To determinewhether the enhanced cytokine secretion observed in this
assay was dependent on glucose supporting pentose phosphate path-
way (PPP) activity, we challenged CD19.28ζ±GLUT1OE against Nalm6 in
the presence of 6-aminonicotinamide (6-AN), an inhibitor of 6PGD.
CD19.28ζ-GLUT1 continued to secrete more cytokines as compared to
control, with no meaningful suppression in the presence of 6-AN,
demonstrating that the PPPwas not required for these findings (Fig. 5K).
Together, these results demonstrate that GLUT1OE induces antioxidant-

promoting pathways that endow resistance to ROS-induced suppres-
sion, which are predicted to enhance antitumor potency.

GLUT1 overexpression alters arginine and inosine metabolism
Wenext directly examined alterations in themetabolome induced by
GLUT1OE using global mass spectrometry. Consistent with RNAseq
and single cell proteomic analyses, we identified numerous meta-
bolites and pathways that were differentially abundant in CD19.28ζ-
GLUT1 and HA.28ζ-GLUT1 CAR-T cells compared to controls (Fig. 6A,
Supplementary Fig. 4A). Glycine and serine metabolism were among
the most enriched pathways, both of which provide crucial sub-
strates for GSH production and REDOX homeostasis, consistent
with the functional data demonstrating enhanced resistance to
REDOX stress in cells with GLUT1OE31–33. We also found that meta-
bolites involved in the urea cycle were highly enriched,
including homoarginine, dimethylarginine, citrulline, and acet-
ylornithine, although arginine was reduced in GLUT1OE cells com-
pared to controls (Fig. 6B, C). The significant increase in
homoarginine suggested that the decreased arginine levels in GLU-
T1OE cells were likely due to its conversion to homoarginine, and not
due to decreased biosynthesis from citrulline, since two upstream
rate limiting enzymes argininosuccinate synthase 1 (ASS1) and argi-
ninosuccinate lyase (ASL) were increased by GLUT1OE in CD8+

GLUT1OE CARs and CD19.28ζ-GLUT1 respectively, nor from
decreased arginine demand, as transcription of the main arginine
transporter SLC7A1 was significantly upregulated (Fig. 6D, E, Sup-
plementary Fig. 4B, C).

To assess the downstream effects of the observed changes in
urea cycle activity, we analyzed the effect of GLUT1OE on the activity
of MTOR, a master regulator of T cell proliferation, survival, and
metabolism that can be regulated by glycolytic metabolism
and nutrient availability34. As predicted by RNAseq and
metabolomic analysis, flow cytometry confirmed increased phos-
phorylated ribosomal subunit S6 (pS6) in HA.28ζ-GLUT1 cells up
to 24 h after CAR activation (Fig. 6F). To further assess the down-
stream consequences of increased glucose uptake in CD19.28ζ-
GLUT1 CAR-T cells, we utilized [U13C] isotopically labeled glucose for
carbon tracing (Fig. 7). GLUT1OE promoted lactic acid formation, and
glutamate derived from TCA activity. The biosynthesis of inosine,
indirectly formed through the PPP, was also found in significantly
greater abundance in CD19.28ζ-GLUT1, and significantly so after
stimulation. Our data demonstrate GLUT1OE induces extensive
alterations in glucose-derived metabolism spanning carbon
cycling though the PPP, TCA and urea cycles associated with
broad metabolic reprogramming in GLUT1OE CAR-T cells,
rather than narrow effects on one specific metabolic enzyme or
pathway.

Fig. 1 | GLUT1 overexpression enhances glycolysis. A (TOP) Schematic of
experimental design: CAR-T cells were activated in the presence of glucose and
then cultured inmedia ± glucose starting on day 4. Glucose concentration is 11mM
for all experiments unless otherwise noted. (BOTTOM) Viability and fold expansion
on day 16. Pooled data of n = 2–4 donors. P values determined by paired two-tailed
t-tests. Error bars represent SD. B (TOP) Schema of retroviral vectors expressing
CAR and NGFR-P2A-GLUT1. NGFR is used as a selectable membrane marker of
GLUT1-OE cells. (BOTTOM) Representative flow cytometry histogram of
GLUT1 surface expression using a GLUT1-specific H2RBD-GFP ligand, in control
CD19 and HA CAR T cells ±NGFR-GLUT1 vector (CD19-GLUT1, HA-GLUT1). Analysis
of GLUT1OE CAR T cells performed by gating on CAR+/NGFR+ populations (per-
centage of double-positive >80% for each experiment unless otherwise noted).
FMO Fluorescence minus one control. C 2-NBDG median fluorescence intensity of
(LEFT) CD8+ and (RIGHT) CD4+ control HA and CD19 CAR T cells and double
positive gated NGFR+CAR+ cotransduced CD19-GLUT1, HA-GLUT1 ± 24H idiotype
stimulation (1 µg/mL). Pooled data of n = 4 donors. P values determined by paired

two-tailed t-tests. D Pooled data reflecting glucose uptake in CAR-T cells ± 24h
stimulation with idiotype using deoxy-D-[1,2-3H(N)]-glucose. Data from n = 4
donors. P values determined by paired two-tailed t-tests. E (TOP) Representative
extracellular acidification rate (ECAR) measured using Seahorse for CD19 ±
GLUT1OEonday 14 fromonedonor. (MIDDLE) ECAR forHA±GLUT1OE. (BOTTOM)
Pooled data for basal ECAR. Data are representative of three independent experi-
mentswithn = 6donors. P values determinedbypaired two-tailed t-tests. Error bars
represent SD. F (TOP) Representative ECAR (Glycolytic Stress Test)measured using
Seahorse for CD19±GLUT1OE on day 12 from one donor. (MIDDLE) ECAR for
HA±GLUT1OE. (BOTTOM) Pooled glycolytic reserve data. Data are representative
of one experiment with n = 3 donors. P values determined by paired two-tailed t-
tests. Error bars represent SD.G ECARmeasured at the baseline and 3minutes after
stimulation with 10 µg/ml of anti-idiotype crosslinked with 10 µg/mL of anti-mFAB
on day 16. P values determined by unpaired two-tailed t-tests. Error bars
represent SD.
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GLUT1 overexpression increases potency in response to tumor
challenge
We next sought to determine whether the transcriptional and meta-
bolic reprogramming induced by GLUT1OE would endow them with
enhanced antitumor immunity, and/or predispose CAR-T cells to
exhaustion, as some studies suggested based on glucose uptake
restriction35. Analysis of the expression of canonical exhaustion mar-
kers at baseline by flow cytometry showed no differences or lower
expression upon GLUT1OE in both CD4+ and CD8+ CAR-T cells
(Fig. 8A, Supplementary Fig. 6A). Next, we challenged CD19.28ζ-
GLUT1, HA.28ζ-GLUT1, and their respective controls with CD19+ or
GD2+ Nalm6 leukemia, respectively. Both GLUT1OE CARs demon-
strated marked increases in tumor induced IL-2 and IFNγ secretion
(Fig. 8B). Similar results were seen following challenge with the

CD19+GD2+ osteosarcoma line 143b (Fig. 8C). Accordingly, a greater
proportion of CD19.28ζ-GLUT1 and HA.28ζ-GLUT1 produced IL-2
and TNFα compared to controls, as measured via intracellular stain-
ing, following challenge with Nalm6-GD2 at differing E:T
ratios (Fig. 8D).

We next assessed if GLUT1OE would accelerate the onset of
exhaustion upon tumor rechallenge. CAR-T cells were sequentially
co-cultured at 1:2 E:T ratio with Nalm6-GFP ± GD2, tumor growth was
assayed using Incucyte, and CD39 and PD-1 were measured by flow
cytometry upon tumor clearance (Fig. 8E). Flow cytometry showed
that both CD19.28ζ and HA.28ζ GLUT1OE CARs expressed less CD39
and PD-1 compared to control cells across time points, especially in
the CD4+ compartment (Fig. 8F, Supplementary Fig. 6B). At ~200 h
post initial culture (after 4 stimulations for CD19 cells, and 3 for HA),
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Fig. 2 | GLUT1 overexpression enhances oxidative phosphorylation. A (LEFT)
Representative OCR (Oxygen Consumption Rate) data measured using Seahorse
for CD19 ±GLUT1OE or for HA±GLUT1OE on day 12. (RIGHT) Pool data for Basal
andMaximumOCR and SRC (Spare Respiratory Capacity) from three independent
experiments with n = 6 donors. P values determined by paired two-tailed t-tests.
Error bars represent SD. B (TOP) Mitochondrial mass and (BOTTOM) potential
detected using Mitotracker Green and Deep Red, respectively in HA±GLUT1OE

CAR-Tcells onday9with representative histograms shown.Data fromn = 3donors.
P values determined by paired two-tailed t-tests. Error bars represent SD. C (TOP)
Mitochondrial mass and (BOTTOM) potential detected using Mitotracker Green
and Deep Red, respectively in CD19±GLUT1OE CAR-T cells on day 9 with repre-
sentative histograms shown. Data from n = 3 donors. P values determinedby paired
two-tailed t-tests. Error bars represent SD.
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CD19.28ζ-GLUT1 manifested significantly higher proportions of CD8+

and CD4+ central memory cells and HA.28ζ-GLUT1 CAR-T cells con-
tained more CD4+ effector and central memory cells when compared
to control (Fig. 8G, Supplementary Fig. 6C). HA.28ζ-GLUT1 CAR-T
cells also controlled tumor more efficiently than control cells after

the first challenge but the enhanced potencywas lost after three total
challenges. Based on these findings, we analyzed other stemness-
associatedmarkers in CAR-T cells at baseline and observed that CD8+

HA.28ζ-GLUT1 exhibited significantly higher mean expression of
TCF1, a transcription factor associated with the formation of
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immunological memory36 that is typically reduced in terminally
exhausted cells (Fig. 8H, Supplementary Fig. 6C). Furthermore, TCF1
was increased in GLUT1OE T cells in the absence of any CAR receptor.
We also found significantly elevated expression of memory-
associated CD62L in CD8+ and CD4+ HA.28ζ-GLUT1 cells at levels
comparable to CD19.28ζ (Fig. 8I, Supplementary Fig. 6D). Together
our data provide no evidence that GLUT1OE predisposes T cells to
exhaustion, but rather demonstrate that GLUT1OE is associated with
diminished expression of exhaustion programs, decreased
terminal differentiation, and greater functionality with repetitive
stimulation.

Given the evidence for enhanced potency of CD19.28ζ-GLUT1 and
HA.28ζ-GLUT1 CAR-T cells, we next tested the effect of GLUT1OE on
GPC2.28ζ CAR-T cells which we previously showed were sensitive to
low levels of antigen density37. Using a bicistronic construct (Fig. 9A) as
described above, GPC2.CD28ζ+/− GLUT1 CAR-T cells were co-cultured
with neuroblastoma cell lines expressing ~34,000 (NGP-GPC2) or
6800 (SMS-SAN) molecules of GPC2 on the surface. After 24 h,
GPC2.28ζ-GLUT1 cells secreted significantly more IL17A against SMS-
SAN and more IL-2 and IFNγ against NGP-GPC2 (Fig. 9B, C). In cyto-
toxicity assays, GPC2.28ζ-GLUT1 completely controlled growth of
antigen-low SMS-SAN cells in vitro at a 1:5 E:T ratio, while GPC2.28ζ did
not (Fig. 9D). GPC2.28ζ-GLUT1 also improved tumor clearance of NGP-
GPC2 cells across multiple E:Ts (Fig. 9E). Together, these data provide
convincing evidence that GLUT1OE manifest enhanced antitumor
potency associated with increased cytokine secretion and enhanced
cytotoxic activity against solid tumors in vitro.

GLUT1 overexpression enhances CAR-T cell tumor clearance
in vivo
We next tested the effect of GLUT1OE in a mouse stress test model,
wherein suboptimal doses of CD19.28ζ ± GLUT1OE (0.350 × 106/
mouse) were infused in NSG mice bearing Nalm6 leukemia (Supple-
mentary Figs. 6A, B). Although neither CAR controlled tumor out-
growth, CD19.28ζ-GLUT1 CAR-T cells mediated a significantly greater
delay in tumor growth compared to CD19.28ζ CAR or MOCK
+/−GLUT1 T cells (Fig. 10A), and analysis of total splenocytes at
endpoint revealed a significantly higher proportion of CAR-T cells,
and lower levels of residual Nalm6, in mice treated with CD19.28ζ-
GLUT1 (Fig. 10B, C). We next tested whether GLUT1OE enhanced
antitumor activity of HA.28ζ in vivo by engrafting Nalm6-GD2 cells
into NSG mice (Supplementary Fig. 6C, D). HA.28ζ-GLUT1 demon-
strated long-term tumor control (Fig. 10D) and persistence in the
peripheral blood on day 25 and day 40 (Fig. 10E). On day 52 surviving
mice from the HA.28ζ-GLUT1 CAR-T group were re-challenged with
Nalm6-GD2 and continued to exhibit complete anti-tumor immunity
for 8 days post re-challenge. On day 60 the samemice were split into
two groups for a second rechallenge with antigen positive Nalm6-
GD2 (n = 2) or antigen negative Nalm6 (n = 3). Once again, we
observed antigen specific protection, consistent with immunologic
memory (Fig. 10F). Lastly, we tested the efficacy of GPC2-
28ζ ±GLUT1OE CAR-T cells against the antigen low neuroblastoma
cells SMS-SAN engrafted on the kidney capsule of NSG mice

(Supplementary Fig. 6E, F). In this solid tumor model, we observed
complete control of outgrowth independent of GLUT1OE (Fig. 10G),
however, blood analysis on days 18 and 34 post-tumor engraftment
showed higher levels of circulating human T cells, and TSCM popu-
lations in mice treated with GPC2-28ζ-GLUT1 as compared to mice
administered control CAR-T cells (Fig. 10H). Collectively, these data
demonstrate that GLUT1OE enhances CAR T cell potency and per-
sistence in vivo.

Discussion
The remarkable progress achieved with the use of adoptive cell ther-
apy for B cell and plasma cell malignancies is driving new approaches
to leverage cell engineering to enhance T cell potency. One such
approach involves harnessing our knowledge of metabolism in T cells
to better equip them to sustain the demands of activation, persistence,
high tumor burdens and suppressive TMEs. Activated T cells undergo
significant metabolic shifts that depend on glucose catabolism38–41.
Decreased glucose availability can decrease TEFF proliferation, sup-
press IFNγ secretion19,42 and mTORC1 activity following stimulation
leading to weakened immune responses43. In this study, we sought to
engineer CAR-T cells to bemore competitive in TMEs characterized by
limiting availability of glucose. GLUT1 is a major regulator of
activation-induced glycolysis and transgenic overexpression in mice
increases IL-2 secretion in response to TCR stimuli and increases
proliferation of human T cells3,16,44–46. Based upon these data, we
overexpressed GLUT1 to assess whether glucose availability is rate
limiting for CAR-T cell potency and whether this maneuver could
enhance CAR-T cell potency.

GLUT1 overexpression enhanced both glycolysis and oxidative
phosphorylation, most notably following T cell activation, illustrating
the degree to which glucose availability tunes the magnitude of
immune responses in CAR T cells. Alterations in metabolism can also
skew T cell differentiation lineages and phenotype47. Consistent with
this, we observed that GLUT1OE drove greater differentiation into Th17
cells. Although novel, this finding aligns with previous evidence that
aerobic glycolysis is indispensable for Th17 differentiation48,49, and
GLUT1 expression is elevated in Th17 T cells3.

Enhanced glycolysis induced by GLUT1OE could predispose to T
cell exhaustion50, especially for CAR-T cells which undergo tonic sig-
naling.We sought to address this here by evaluatingwhether GLUT1OE
led to features typically associated with exhaustion, and we found no
evidence for such. Indeed, our evidence demonstrates that GLUT1OE
CAR-T cells show decreased expression of transcriptional profiles
associated with exhaustion, delayed exhaustion marker expression,
increased memory differentiation after repeated tumor challenge and
increased persistence in vivo. Furthermore, tumor rechallenge of ani-
mals following control by GLUT1OE T cells was associated with sus-
tained antitumor efficacy providing evidence for long term
functionality in murine models. These results align with recent studies
showing thatGLUT1OE is associatedwith increasedmemory formation
in CAR T cells and enhanced antitumor potency in mouse models of
acute lymphoblastic leukemia (ALL), renal cell carcinoma (RCC), and
glioblastoma (GBM)51. Similarly, enforced GLUT3 expression in OT1

Fig. 3 | GLUT1 overexpression induces transcriptional reprogramming.
A Unbiased principal component analysis of bulk RNA derived from day 16 CD19
and HA±GLUT1OE± 1 µg / mL anti-idiotype stimulation collected at two different
time points. Cotransduced cells were magnetically enriched for greater than 95%
double positive prior to experiment. Pooled data from two experiments (stimu-
lated and unstimulated) with total n = 6 donors. B UpSets plots showing intersec-
tion of genes differentially upregulated (TOP) or downregulated (BOTTOM) upon
GLUT1OE in HA-CAR and CD19-CAR T cells unstimulated or at 4 h and 14 h post
stimulation. Red boxes highlight shared changes between CD19-CAR and HA-CAR
T cells as a consequenceof GLUT1OEat baseline. RNAseq data fromn = 6donors on
day 16. C GSEA analysis of the NK-like exhaustion signature in unstimulated (LEFT)

CD19 and (RIGHT) HA-CAR-T cells, comparing GLUT1OE versus control. D GSEA
analysis of (LEFT) glycolysis and (RIGHT) OXPHOS for CD19 ±GLUT1OE after 4 h of
anti-idiotype stimulation (1 µg/mL). E (TOP) GSEA analysis of RNA-seq comparing
CD19 GLUT1OE vs CD19 showing enrichment of memory and effector T cell sig-
natures over naïve in CD4 and CD8 at every timepoint analyzed (unstimulated, 4 h
or 14h post-stimulation). (BOTTOM) Similar GSEA analysis using as referenceKEGG
pathways dataset showing wide metabolic reprogramming. The size of the dots
correlates with −log10(P-value) by GSEA analysis, with the smallest dots repre-
senting non-significant pathways. F Heatmap representing differentially expressed
genes with annotations for those significantly upregulated in CD19-GLUT1 ± 4 h of
anti-idiotype stimulation.
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T cells promoted a sustained memory phenotype after repeated anti-
gen stimulation in vitro and enhanced protection after tumor rechal-
lenge in vivo52.

Beyond the expected enhancement in glycolysis and oxidative
phosphorylation induced by GLUT1OE CAR-T cells, we also observed
global transcriptional and metabolic reprogramming including

upregulation of ALDH4A1, GOT1, CTH, RETSAT, and VDAC3, transcripts
implicated in REDOX biology53–57 and resistance to REDOX stress,
results that are predicted to enhance antitumor potency, as previously
shown by engineering catalase overexpressing CAR-T cells58. The
metabolic pathways responsible for enhanced resistance to REDOX
stress with GLUT1OE remain unclear. Reversible cycling of the
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antioxidant GSH to GSSG is the primarymechanism of REDOX balance
of superoxide-derived hydrogen peroxide (H2O2). Previous data has
demonstrated that glucose consumption cycling via the pentose
phosphate pathway (PPP) can alter the GSH:GSSG ratio in favor of
antitumor activity59. However, we found that inhibition of PPP activity
using 6-AN did not alter CD19.28ζ-GLUT1’s advantage in cytokine
secretion when compared to control. Glutamate, produced through
glutaminolysis and/or TCA, can also contribute to biosynthesis of
GSH60,61. Although we were not able to definitively implicate glutami-
nolysis in resistance to REDOX stress, we did observe evidence for
increased glutaminolysis in GLUT1OE CAR T cells, suggesting that this
pathway could be involved in increasingGSH levels in CD19.28ζ-GLUT1
CAR-T cells.

In summary, the field is developing an army of next-generation
CARs utilizing rapidly developing technologies aimed at increasing
potency and safety62. In this report we offer a metabolic approach
utilizing a glucose transporter already found in nature to improve
upon the current standard of CARs. The data further provide funda-
mental insights into the crosstalk between nutrient signaling and
metabolic and transcriptional programming in human T cells.

Methods
Human CAR T cell production
Healthy donor buffy coats were purchased from the Stanford Blood
Center under an IRB-exempt protocol. Primary human T cells were
isolated using the RosetteSep Human T cell Enrichment kit (Stem Cell
Technologies) according to the manufacturer’s protocol. Isolated
T cellswere cryopreserved inCryoStorCS10 cryopreservationmedium
(Stem Cell Technologies).

Non-tissue culture treated 12-well plateswere coatedovernight
at 4 °Cwith 1 ml Retronectin (Takara) at 25 μg/ml in PBS. Plateswere
washed with PBS and blocked with 2% BSA for 15 min. Thawed or
fresh retroviral supernatant was added at approximately 1 ml per
well and centrifuged for 2 h at 32 °C at 2400 × g before the addition
of cells. Primary human T cells were thawed and activated with
Human T-Expander CD3/CD28 Dynabeads (Gibco) at a 3:1 bead:cell
ratio in complete medium (RPMI 1640 supplemented with 10% fetal
bovine serum, 10mM N-2-hydroxyethylpiperazine-N9-2-ethane-
sulfonic acid, 2 mM GLUTaMAX, 100 U/mL penicillin (Gibco), and
100 U/mL of IL-2 (Peprotech). T cells were transduced with retro-
viral vector on day 2 post-activation. Beads were taken off at day 4
post-activation.

Mice
Immunodeficient NSG mice (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJl) were
bred in house. Mice used for in vivo experiments were between 6
and 10 weeks old, and the ratio of male to female mice was
matched in experimental and control groups. All animal studies
were carried out according to Stanford University Animal Care
and Use Committee–approved protocols in a barrier facility.
Facilities contained standard day/light cycles with ambient
temperature and humidity. Maximum tumor burden was

determined by bioluminescent flux values at or greater than
1 × 109 photons per second. End point euthanasia performed by
exposure to CO2.

Nalm6 Challenge: Female mice were inoculated with 1 × 106

Nalm6-GL leukemia via intravenous injections. All CAR T cells were
injected intravenously at day 14 post-activation. Bioluminescence
imagingwas performed using a Spectrum IVIS instrument. Values were
analyzedusing Living Image software.Micewerehumanely euthanized
when an IACUC-approved end-point whenmice demonstrated signs of
morbidity and/or hind-limb paralysis (leukemia). Mice were rando-
mized to ensure equal pre-treatment tumor burden before CAR T cell
treatment.

Circulating CAR T cells were identified using anti-human CD45
(BD Biosciences) and CountBright beads (Thermo Fisher).

Seahorse assays for ECAR and OCR
Metabolic analyses were carried out using Seahorse Bioscience
Analyzer XFe96. Briefly, 0.2 × 106 cells were resuspended in extra-
cellular flux (XF) assay media supplemented with 25mM glucose,
2mM glutamine, and 1mM sodium pyruvate and plated on a Cell-Tak
(Corning)–coated microplate allowing the adhesion of CAR T cells.
Mitochondrial activity and glycolytic parameters were measured by
the oxygen consumption rate (OCR) (pmol/min) and extracellular
acidification rate (ECAR) (mpH/min), respectively, with use of real-
time injections of oligomycin (1.5mM), carbonyl cyanide ptri-
fluoromethoxyphenylhydrazone (FCCP; 0.5mM), and rotenone and
antimycin (both at 0.5mM). In-Seahorse activation was performed at
day 16 post-activation, using 5mg/mL of idiotype crosslinked with
10mg/mL of mouse anti-F(ab’)2 (Jackson ImmunoResearch).
Respiratory parameters were calculated according to manufacturer’s
instructions (Seahorse Bioscience). All chemicals were purchased
from Agilent unless stated otherwise.

Bulk RNAseq
For bulk RNA isolation, healthy donor T cells were prepared as
described above. On days 14–16 control cells or GLUT1 over-
expressing CAR-T cells were collected and total mRNA was isolated
using Qiagen RNEasy Plus mini isolation kit. Bulk RNAseq was per-
formed by Novogene using the NovaSeq platform. The raw RNA
sequencing data was mapped to human reference genome hg38
using the STAR aligner63, and genes annotated in Gencode v3664 was
quantified using featurecounts in the subread package65. The differ-
ential gene expression analysis was conducted in the DESeq2
package66. Gene set enrichment analysis was performed with Gene
Set Enrichment Analysis67. Data visualization is generated using
python. Significantly different genes were identified by DESeq2 using
Wald test. DAVID gene annotation enrichment analysis was per-
formed using KEGG pathways and GO terms (biological process,
cellular component, and molecular function). Functional annotation
clustering was performed and terms with p < 0.05 (Benjamini cor-
rected) are shown. Redundant terms were manually removed for
visualization.

Fig. 4 | GLUT1 overexpression induces Th17 differentiation. A Bubble plot
highlighting the changes in cytokine expression for CD19 and HA±GLUT1OE
CAR-T cells, ± idiotype stimulation. The color of the bubble represents the fold-
change of expression, while the size represents statistical significance assessed by
Wilcox’s rank-sum test. B GSEA analysis of Th17 signatures in CD19-CAR T cells
with GLUT1OE versus control, at 14 h post-stimulation. C Pooled data of CD4+

CCR4+ CCR6+ Mock and CAR-T cells on day 17 (baseline) and after 20 h idiotype
stimulation. Data from n = 4 donors. P values determined by paired two-tailed t-
tests. Error bars represent SEM. D Representative flow cytometry of CD4+

gated CD19 ± GLUT1OE CAR-T cells showing Th17 phenotype. E Bubble plot
highlighting the changes in cytokine secretion for CD19 andHA±GLUT1OE CAR-T

cells, ±Nalm6 challenge as captured by Luminex. The color of the bubble repre-
sents the fold-change of expression, while the size represents statistical sig-
nificance assessed byWilcox’s rank-sum test. F Boxplots of Th17-related cytokines
in CD19-CAR and HA-CAR T cells ± GLUT1OE after 24 h stimulation with Nalm6 as
captured using Luminex. Data points from the matched donors are connected
with lines. G The log2(fold-change) in IL17A, IL17F, and IL22 expression in sti-
mulated versus unstimulated state in each CAR-T cell. H Boxplots of Th17-
related cytokines in stimulated versus unstimulated CD19-CAR and HA-CAR-T
cells, with and without GLUT1-OE. Data points from the matched donors are
connected with lines.
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Mass cytometry
1 × 106 cells were washed with two times with PBS and then resus-
pended in 1ml of 250 nM cisplatin and PBS (Fluidigm) for assessing
cell viability. Cells were incubated for 3min at RT and washed with
cell staining medium (CSM, 1X PBS with 0.05% BSA, 0.02% sodium

azide). Cells were fixed with 1.6% paraformaldehyde diluted in PBS
for 10min at RT, then washed with PBS. Samples were subsequently
frozen using CryoStor-10 (Thermo Fisher Scientific) for further use.
Upon thawing and washing in CSM, barcoding was performed and
samples were pooled68. A master mix of titrated surface antibodies
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was prepared and filtered (0.1mm) then added to pooled and bar-
coded sample for 30min at RT. Following surface staining, samples
were washed twice in CSM and permeabilized with ice cold methanol
for 10min on ice, then washed again twice in CSM. Samples were
stained with titered intracellular antibodies for 45min on ice fol-
lowed by 2 subsequent washes with CSM. Finally, samples were
resuspended in DNA intercalator (Fluidigm, 1:5000 191Ir/193Ir and 1%
PFA in 1X PBS) and incubated overnight at 4 °C for next day acqui-
sition (Helios). On day of acquisition, samples were washed once in
CSM and twice in filtered ddH2O. Cells were then resuspended at
1 × 106 cells/ml in ddH2O with 1x EQ four-element beads (Fluidigm
Corporation, no. 201078). Cells were acquired on a Fluidigm Helios
mass cytometer.

Data was analyzed using OMIQ software.

Untargeted metabolomics by LC-MS
Metabolites were extracted from CAR-T cells and analyzed using a
broad spectrum LC–MS platform as previously described (Contrepois
et al., MCP 2015, Contrepois et al., Cell 2020).

A solvent mixture of 80:20 methanol/water (500 μl) con-
taining seven internal standards was used to resuspend the pel-
lets that were composed of 2–4 × 106 cells. Cell suspensions were
vortexed for 30 s, sonicated in a water bath (30 s sonication, 30 s
on ice, repeated 3 times), vortexed for 30 s and incubated for 2 h
at −20 °C to allow protein precipitation. The supernatant was
collected after centrifugation at 10,000 r.p.m. for 10min at 4 °C
and evaporated to dryness under nitrogen. The dry extracts were
then reconstituted with 100 μl of 50:50 methanol/water before
analysis.

Polar metabolites were analyzed using HILIC separation in both
positive and negative ionization modes. HILIC experiments were
performed using a ZIC-HILIC column (2.1 × 100mm, 3.5 μm, 200Å;
Merck Millipore) and mobile phase solvents consisting of 10mM
ammonium acetate in 50:50 acetonitrile:water (A) and 10mM
ammonium acetate in 95:5 acetonitrile:water (B). Data were
acquired on a Q Exactive HF Hybrid Quadrupole-Orbitrap mass
spectrometer equipped with a HESI-II probe and operated in full MS
scan mode. MS/MS data were acquired on a pool sample. Data
quality was ensured by (1) sample randomization for
metabolite extraction and data acquisition, (2) injection of 12 pool
samples to equilibrate the LC–MS system before running the
sequence, (3) injection of pool samples every 10 injections to control

for signal deviation with time, and (4) checking mass accuracy,
retention time, and peak shape of internal standards in every
samples.

Data were processed using Progenesis QI software (v2.3) (Non-
linear Dynamics, Durham, NC). Metabolic features from blanks and
those that did not show sufficient linearity upon dilution in QC
samples (r < 0.6) were discarded. Only metabolic features present in
>2/3 of the samples were kept for further analysis. Metabolite
abundances were normalized using total protein content as mea-
sured by BCA Protein Assay Kit on the protein pellet (Pierce). Missing
values were imputed by drawing from a random distribution of low
values in the corresponding sample. Data from each ionization mode
were merged and metabolites were annotated using authentic stan-
dards and publicly available MS2 databases. We used the Metabo-
lomics Standards Initiative (MSI) level of confidence to grade
metabolite annotation confidence and reported metabolites with
levels 1 and 2.

Flow cytometry
All flow analysis was performed at day 14/15 post-T cell activation,
unless differently indicated in the text. The anti-CD19 CAR idio-
type antibody was provided by B. Jena and L.Cooper. The 1A7 anti-
14G2a idiotype antibody was obtained from NCI Frederick and
University of Texas M.D. Anderson Cancer Center. The anti-
idiotype antibodies and Fc-fusion protein were conjugated in
house with Dylight650 antibody labeling kits (Thermo Fisher).
Surface GLUT1 expression was monitored as a function of binding
to its ligand, the envelope glycoprotein of the human T lympho-
trophic virus (HTLV). A recombinant HTLV envelope receptor
binding domain (HRBD) fused to the EGFP coding sequence was
used as previously described (Manel et al., 2003; Montel-Hagen
et al., 2008b).

Analysis of GLUT1OECART cells performed by gating onCAR and
NGFR double positive populations (percentage of double positive
>80% for each experiment unless otherwise noted).

T cell phenotype was assessed using the following antibodies at
1:50 dilution unless otherwise noted:

FromMETAFORA: GLUT1-specific H2RBD-GFP ligand (anti-GLUT1
ligand) (1:100).

From BioLegend: CD4-APC-Cy7 (clone OKT4), CD8-PerCp-Cy5.5
(clone SK1), TIM-3-BV510 (clone F38-2E2), CD39-FITC, PE or APC-Cy7
(clone A1), IL-2-PE/Cy7 (cloneMQ1-17H12), CD62L-BV605 (clone DREG-

Fig. 5 | GLUT1 overexpression enhances metabolic pathways that favor resis-
tance to REDOX suppression. A (LEFT) Transcripts Per Million (TPMs) of GSS
(Glutathione Synthetase) transcripts for CD19 and HA±GLUT1OE CAR-T cells at
baseline and stimulated for 4 h and 14 h with anti-idiotype. Data from n = 3
donors. P values calculated using DESeq2. (RIGHT) Schematic of pathways
involved in GSH REDOX with relevant metabolomic derivatives. Red arrows
indicate elements found to be enriched with GLUT1OE. Blue arrows indicate
elements found to be decreased with GLUT1OE. B TPMs of CTH (cystathionine
gamma-lyase) transcripts for CD19 and HA±GLUT1OE CAR-T cells stimulated for
(LEFT) 4 h and (RIGHT) 14 h with anti-idiotype. Data from n = 3 donors. P values
calculated using DESeq2. C (LEFT) Representative histograms showing CAR+

intracellular GSH content using ThiolTracker for CD19 ±GLUT1OE CAR-T cells ±
4 h 1 µg / mL anti-idiotype stimulation. (RIGHT) Quantitative data of CAR +GSH
MFI. Cotransduced cells were magnetically enriched for greater than 95% double
positive prior to experiment. Data from n = 4 donors. P values determined by
paired t-tests. D Untargeted LC-MS data depicting cysteineglutathione disulfide
(GSSG, or oxidized GSH) abundance in electronically sorted CD19 and HA±
GLUT1OE CAR-T cells at day 14. Pooled data of n = 4 donors. P values determined
by unpaired two-tailed t-tests. Error bars represent SD. E Pooled mitochondrial
ROS data collected via intracellular staining. Day 15 CAR-T cells were subject to 2 h
anti-idiotype stimulation. Data were reflective of n = 4 donors. P values

determined by paired t-tests. F A TPMs of glutaminolysis-related genes GOT2,
GLUD1, and GPT2 transcripts for CD19 ± GLUT1OE CAR-T cells unstimulated or
stimulated for 4 h with anti-idiotype. Data from n = 3 donors. P values calculated
using DESeq2. G Untargeted LC-MS data depicting L-glutamine abundance in
electronically sorted CD19 ± GLUT1OE CAR-T cells at day 14. Pooled data of n = 4
donors. P values determined by unpaired two-tailed t-tests. Error bars represent
SD. H Intracellular IL-2 staining for CD8+ CD19 ± GLUT1OE CAR-T cells ± pre-
exposure to oxidative stress (hydrogen peroxide). (LEFT) Representative flow
cytometry. (RIGHT) Pooled data. Cells were challenged with Nalm6-GL at a 1:1
ratio on day 14. Data from n = 4 donors. P values determined by paired t-tests.
Error bars represent SEM. I Intracellular IL-2 staining for CD8+ CD19 ± GLUT1OE
CAR-T cells stimulated ± BSO (Buthionine Sulfoximine). Cells were stimulated via
1 ug/L plate-bound anti-idiotype on day 14. Data from n = 4 donors. P values
determined by paired t-tests. Error bars represent SEM. J Intracellular IL-2 staining
for CD4+ CD19 ± GLUT1OE CAR-T cells ± pre-exposure to oxidative stress
(hydrogen peroxide). Cells were challengedwith Nalm6-GL at a 1:1 ratio on day 14.
Data from n = 4 donors. P values determined by paired t-tests. Error bars repre-
sent SEM. K Cytokine secretion of CD19 ± GLUT1OE CAR-T cells challenged 1:1
with Nalm6 leukemia ± 6-Aminonicotinamide (6-AN) on day 14 as measured by
ELISA. Data reflective of n = 3 donors. P values determined by paired t-tests. Error
bars represent SEM.
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56), CD45RO-PE/Cy7 (clone UCHL1), CCR6-BV421 (clone G034E3),
CCR4-PE (clone L291H4).

From eBioscience: PD-1-PE-Cy7 (clone eBio J105), LAG-3-PE (clone
3DS223H), CD45RO-PE-Cy7 (clone UCHL1), CD45-PerCp-Cy5.5
(clone HI30).

From BD: LAG-3-BV421 (clone T47-530), CD62L-BV605 (clone
DREG-56), CD4-BUV395 (clone SK3), CD8-BUV805 (clone SK1), BrdU-

PerCP-Cy5.5 (clone 3D4), CD271-BUV737 (clone C40-1457), Fixable
Viability Stain 510 (0.4:100).

From Thermo Fisher Scientific: Phospho-S6-PE/Cy7 (clone
cupk43k), Thioltracker Violet (glutathione detection reagent).

Data was collected with an LSR Fortessa X-20 (BD Bioscience)
or Cytek Aurora (Cytek Biosciences) and analyzed using FlowJo
software.
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[U13C] glucose tracing
CAR-T cells were resuspended in glucose free media and serum (5%)
for 1 h at 37 °C. 2 × 106 cells were plated with 11mM glucose or [U13C]
glucose ± idiotype stimulation for 4 h at 37 °C. Harvested cells were
spun down, resuspended in ammonium carbonate, spun down, and
resuspended in lysis buffer. Lysates were spun down at 18,000 × g for
10min and placed at −80 °C.

[U13C] LC-MS/MS Data Acquisition
Metabolite extracts arising from the isotopic labeling experiment
outlined above were further processed for LC-MS/MS and analyzed
by General Metabolics (Cambridge, MA). 6 µL of each sample was
injected and separated by UHPLC using a Nexera UHPLC system
(DGU-405 degasser unit, LC40DX3 solvent delivery system, SIL-
40CX3 auto sampler, CBM-40 system controller, CTO-40C column
oven; Shimadzu). Separation was achieved by hydrophilic inter-
action liquid chromatography (HILIC) using an Atlantis Premier
BEH Z-HILIC column (1.7 µm, 2.1 × 50mm; 186009978, Waters).
Separation was achieved using a 5 min multi-phase linear gradient
of the following buffers: Buffer A) 9:1 acetonitrile:water (v:v)
10mM ammonium acetate pH 9.2, B: 1:9 acetonitrile:water (v:v)
10mM ammonium acetate pH 9.2. Samples were ionized using an
Optimus Turbo V + Dual TIS ion source (S ciex) and were analyzed
using an X500R mass spectrometer (Sciex). Samples were ana-
lyzed in negative ionization mode and were acquired using data-
dependent acquisition. MS1 data was acquired with a 0.2 s accu-
mulation followed by top 5 MS2 data acquisition with an accu-
mulation time of 0.04 seconds per target. Dynamic background
subtraction was used and former candidate ions were
excluded for 10 s. A collision energy of −15 V was used with a CE
spread of 10.

[U13C] metabolic tracing analysis
LC-MS/MS data processing and ion annotation was performed
according to accepted protocols for mass spectrometry data pro-
cessing and metabolite annotation69, as well as the comparison of
isotopic labeling patterns. Briefly, annotation was based on
matching of chromatographic retention times and MS1 values from
detected features to those of measured purified standards and/or
matching of the resulting MS2 spectra from fragmentation to spec-
tral libraries of authentic fragmented metabolite standards. This
matching was performed by comparison with signals from control
samples that were not exposed to metabolic labeling. The expected
m/z values for isotopologues of identified features were generated
and those features were annotated based on the observed retention
time for the unlabeled M+0 mass to the expected MS1 values for
those isotopologues across the remaining labeled samples
in the dataset. Mass distribution vectors (MDVs)70 were calculated
per sample measured and based on the ratio of the feature
height detected for the indicated isotopologue compared to the sum
of the feature heights for all detected isotopologues for that

annotated metabolite. These analyses and calculations were exe-
cuted at General Metabolics, a commercial metabolomics service
vendor.

2-NBDG staining
0.1 × 106 CAR-T cells were plated in 96-well plates with and without
plate bound coated idiotype and stimulated for 24H. For the last
30min, cells were incubated in no glucose RPMI 1640 and then for
another 30min 50 µM of 2-NBDG was added (abcam 235976) was
performed accordingly to the manufacturer protocol.

In vitro glucose uptake
Glucose uptake for 0.3 × 106 CAR T cells wasmeasured by 2-Deoxy-D-
[1,2-3H (N)]-glucose uptake as described71. Briefly, cells were washed
3 times with the KRH buffer and subjected to serum starvation in
KRH buffer supplemented with 0.2% BSA for 2–3 h. For measurement
of glucose uptake, CAR T cells in both stimulated and unstimulated
stages were incubated with 2-Deoxy-D-[1,2-3H (N)]-glucose
(1.71μCimL-1) along with 500 uM of 2-deoxy-D-glucose for 10min.
Cells were immediately washed 3 times with ice-cold PBS followed by
cell lysis in 0.1% SDS buffer (w/v in water). A small amount of
lysate (90 µl) was used to count the radioactivity in the liquid scin-
tillation counter. Deoxy-D-[1,2-3H (N)]-glucose was purchased from
Perkin Elmer which is now Revvity (catalog number,
NET328A001MC).

Cytokine production assays
T cells and tumor cells (E:T as specified in figure legends) were
cocultured in 250 μl media without IL-2 in round bottom 96-well
plates for 24 h. Culture supernatants were collected and analyzed
by enzyme-linked immunosorbent assay (ELISA). IL-2 and IFNγ
were detected with the ELISA MAX kit (Biolegend), and TNFα was
detected with the Quantikine kit (R&D Systems). Bead-based
multiplex cytokine detection assays were performed at the
Human Immune Monitoring Center (Stanford University) using the
Luminex platform. Mock T cells, incubated with respective tumor,
were included as a negative control.

In vitro staining for intracellular glutathione content
0.1 × 106 CAR-T cells were resuspended in RPMI containing serum and
1.1mM glucose 14 days post activation. Cells were stimulated using
1mg/mL plate bound idiotype for 4 h, washed, then stained with 5mM
ThiolTracker Violet for 20min in DPBS containing calcium/magne-
sium/glucose/pyruvate (Thermo Scientific). Both stimulated and
unstimulated cells were fixed overnight at 4 °C and stained for flow
cytometry analysis the following day.

In vitro intracellular staining for IL2 in the presence of BSO
0.2 × 106 CAR-T cells were plated in 96-well plates with and without
plate bound coated idiotype. Cells were resuspended in IL-2-free AIMV
media with 5% serum or AIMV containing 4mM BSO (Sigma Aldrich).

Fig. 6 | GLUT1 overexpression alters arginine metabolism. A LC-MS data
depicting top metabolomic pathways enriched in electronically sorted (TOP)
CD19-GLUT1 and (BOTTOM) HA-GLUT1 CAR-T cells on day 14. Significantly dif-
ferential metabolites were analyzed using MetaboAnalyst. B Volcano plots of
metabolite abundance related to the Urea Cycle in electronically sorted (TOP)
CD19-GLUT1 and (BOTTOM) HA-GLUT1 CAR-T cells on day 14. Red circles indicate
metabolites that significantly increased. Blue circles indicate metabolites that
significantly decreased. Data from n = 4 donors. C Quantitative data showing
metabolites involved in Urea Cycle for electronically sorted CD19 and HA±
GLUT1OE on day 14. Data from n = 3 or 4 donors. P values determined by unpaired
two-tailed t-tests. Error bars represent SD. D Flow cytometric analysis of

intracellular expression of Argininosuccinate synthase 1 (ASS1) on (LEFT) CD4 and
(RIGHT) CD8 CD19 and HA±GLUT1OE CAR-T cells on day 16. Quantitative data
from n = 2 donors. P values determined by paired two-tailed t-tests. Error bars
represent SD. E TPMs of (LEFT) ASL (argininosuccinate lyase) and (RIGHT) SLC7A1
transcripts for CD19 and HA±GLUT1OE CAR-T cells at baseline. Data from n = 3
donors. P values determined by paired two-tailed t-tests. Error bars represent SD.
F (LEFT) Representative histograms of intracellular phosphorylated ribosomal
subunit 6 (pS6) 5 and 24 h after anti-idiotype stimulation for CD8+HA±GLUT1OE
CAR-T cells on day 16. (RIGHT) Quantitative data of CD8+ pS6+ HA ±GLUT1OE
CAR-T cells ± stimulation. Data from n = 4 or 5 donors. P values determined by
paired two-tailed t-tests.
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Cells were treated with 1x Protein Transport Inhibitor Cocktail
(eBiosciences) at start of culture and stimulated for 6 h. Fixation and
permeabilization for analysis of IL-2 were done following the manu-
facturer’s protocol (eBiosciences).

In vitro intracellular ROS suppression assay
1 × 106 CAR+ cells were exposed to 50 or 100mM hydrogen
peroxide (Sigma Aldrich) for 1 h at 37 °C in RPMI without IL-2. As a
control, some cells were also given 100U/mL catalase just prior to
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Fig. 7 | 13C-Glucose tracing in CD19 CAR-T cells with GLUT1OE. A [U13C] glucose
tracing. CAR-T cells ± GLUT1OE were administered 11mM labeled glucose ± 4 h
idiotype stimulation. X axis reflects isotopologue. Y axis represents Height in

aleatory units. Statistics generated by paired, two tailed t-test (90% confidence)
based on sum of total isotopologues ≥ 1 in each condition. Data from n = 3 donors.
Error bars represent SD.
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exposure to hydrogen peroxide. Cells were subsequently
spun down to remove hydrogen peroxide and/or catalase from
the media. 1 × 105 CAR+ cells were replated for challenge with 1 × 105

Nalm6-GD2 for 6 h in a 96 well plate. Cells were treated

with 1x Protein Transport Inhibitor Cocktail (eBiosciences) 2 h
after start of culture. Fixation and permeabilization for analysis
of IL-2 were done following the manufacturer’s protocol
(eBiosciences).
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Phospho-flow for pS6 after idiotype stimulation
Stimulation was achieved by coating non tissue cultured 24 well plates
with either 1mg/mL or 5 µg/mL IA7 idiotype in PBS overnight. 1 × 106

HA or HA-GLUT1 CAR-T cells were stimulated 15 days post-activation
after plate blocking with 2% BSA in PBS. Cells were cultured in RPMI
without IL-2 for either 6 or 24 h, harvested, and stained for surface
markers. Cells were fixed and permeabilized as per manufacture’s

protocol (Invitrogen) with the addition ice cold methanol introduced
during fixation.

Co-culture assays with 6-AN
Control or overexpressing GLUT1 CAR-T cells at day 14 post-
activation were cultured with Nalm6 tumor at the 1:1 ratio in the
presence of 10 µM 6-AN resuspended in DMSO. Cell culture

Fig. 8 | GLUT1 overexpression enhances potency and delays onset of exhaus-
tion in response to tumor rechallenge. AMFI of exhaustionmarkers CD39, LAG3,
PD1 and TIM3 expressed by (TOP) CD19 or (BOTTOM) HA ± CD8+ GLUT1OE CAR-T
cells on day 14. Pooled data of n = 14 donors. P values determined by paired two-
tailed t-tests. Error bars represent SEM. B ELISA analysis of IL-2 and IFNγ secretion
by CD19 and HA ± GLUT1OE CAR-T cells after 24 hour stimulation with (LEFT)
Nalm6 or (RIGHT) Nalm6-GD2 leukemia tumor lines on day 14. Data from n = 6
donors. P values determinedbypaired two-tailed t-tests.C ELISAanalysis of IL-2 and
IFNγ secreted by CAR-T cells ± GLUT1OE CAR-T cells after 24 hour stimulation with
143b against (LEFT) CD19 and (RIGHT) HA on day 14. Data from n = 2–4 donors.
P values determined by paired two-tailed t-tests.D Intracellular staining of IL-2 and
TNFα by (LEFT) CD19 and (RIGHT) HA±GLUT1OE CAR-T cells after 24h of stimu-
lation with Nalm6-GD2 leukemia at 1:1 and 1:2 E:T onday 14. Data from n = 4 donors.
P values determined by paired two-tailed t-tests. E Serial rechallenge and tumor-
GFP killing kinetics data using Incucyte. Pooled data of 4 donors (TOP) CD19 and

(BOTTOM) HA±GLUT1OE CAR-T cells sequentially challenged at 1:2 ratio with
Nalm6 leukemia ±GD2. Incucyte p values generated using two way ANOVA. Error
bars represent SEM. F Flow cytometry measurements of CD39 and PD-1 of CD8+

(TOP) CD19 and (BOTTOM) HA±GLUT1OE CAR-T cells after each stimulation
denoted by arrows in (E). P values determined by paired two-tailed t-tests.
G Memory formation data of serially rechallenged CD8+ CAR-T cells after (LEFT)
4 stimulations for CD19±GLUT1OE with representative flow cytometry of
CD62L+ cells and (RIGHT) 3 stimulations for HA±GLUT1OE. EM- effector memory,
CM- central memory. P values determined by paired two-tailed t-tests. H Pooled
intracellular expression of TCF1 in CD19 and HA±GLUT1OE CAR-T cells on day 16.
Data from n = 3–4 donors. P values determined by paired two-tailed t-tests. Error
bars represent SEM. I Pooled surface expression of CD62L in CD19 or HA±
GLUT1OE CAR-T cells on day 16. P values determined by paired two-tailed t-tests.
Error bars represent SEM.
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Fig. 9 | GLUT1 overexpression increases potency of GPC2-CAR T cells against
neuroblastoma in vitro. A Design of GPC2 CAR and GLUT1 expressing vector (B)
Intracellular cytokine staining after 24 h of GPC2 ±GLUT1OE CART cells stimulated
with three different tumor lines on day 14. Error bars represent mean ± SD of tri-
plicate wells from one donor. P values determined by unpaired two-tailed t-tests.
C Day 14 post activation CAR T cells stimulated with NGP-GPC2 at 1:1 E:T ratio. IL-2
and IFNγ secretion was assessed 24h post-stimulation via ELISA. Data from n = 3

donors. P values determined by paired two-tailed t-tests. Error bars represent SEM.
D Day 14 post-activation CAR T cells stimulated with SMS-SAN-GL tumor line at 1:5
E:T ratio and tumor killing was assessed using Incucyte. Error bars represent
mean ± SDof triplicatewells fromone representative donor (n = 2 donors). P values
determined by two-way ANOVA. E Tumor killing kinetics of GPC2±GLUT1OE CAR
T cells challenged with NGP-GPC2 across E:Ts captured by Incucyte. P values
determined by two-way ANOVA.
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supernatants were collected at 24 h, and interleukin-2 (IL-2) and
interferon-g concentrations were determined by enzyme-linked
immunosorbent assay (BioLegend). Triplicate wells were plated
for each condition.

Staining for mitochondrial ROS
0.3 × 106 CAR T cells were subject to ± stimulation (2 h) in RPMI with-
out IL-2. Cells were stained as per manufacturer’s protocol (Cayman
Chemical 701600) for 20min in mitochondrial detection reagent at a
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Fig. 10 | GLUT1 overexpression enhances CAR-T cell tumor clearance in vivo.
A Tumor progression was monitored using bioluminescent imaging. Data are
mean ± SD of n = 5 mice per group. Data representative of n = 2 experiments. P
values determined by Mann-Whitney test. B Flow cytometry analysis of total sple-
nocytes for (LEFT) %CAR+ cells of human CD45 and (RIGHT) Nalm6 GFP. Statistics
generated by unpaired two-tailed t-tests reflective of n = 5 mice per group.
C Representative BLI of tumor progression in vivo. D Tumor progression was
monitored using bioluminescent imaging. Data are mean± SD of n = 5 mice per
group. Data representative of n = 3 experiments. P values determined by Mann-
Whitney test. E T cells detected in peripheral blood at (TOP) 25 and (BOTTOM)
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concentration of 0.5 uM. After subsequent washes cells were analyzed
using BD Fortessa on the PE channel.

Serial restimulation of CAR-T cells
Tumor killing kinetics of 0.05 × 106 CAR-T cells challenged against
0.1 × 106 GFP+ tumor was monitored using Incucyte instrument. Upon
observation of tumor clearance cells were counted and replated again
at a 1:2 E:T and stained for CD39 and PD-1.

Statistical analysis and graphical design
Unless otherwise noted, statistical analyses for significant differences
between groups were conducted using unpaired two-tailed t-tests
without correction for multiple comparisons and without assuming
consistent s.d. using GraphPad Prism 10. Graphical abstract and
schematics were designed in Adobe Illustrator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data generated in this study have been deposited in the
GEO database under accession code GSE275152 and can be found at:
Source data are provided with this paper.
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