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LETTER TO TH E JOURNAL

Prediction of COVID-19 severity using machine learning

Dear Editor,
Prediction of COVID-19 severity is a critical task in

the decision-making process during the initial stages of
the disease, enabling personalised surveillance and care
of COVID-19 patients. To develop a machine learning
(ML) model for the prediction of COVID-19 severity, a
consortium of 15 institutions from 12 European countries
analysed expression data of 2906 blood long noncoding
RNAs (lncRNAs) and clinical data collected from four
independent cohorts, totalling 564 patients with COVID-
19. This predictive model based on age and five lncRNAs
predicted disease severity with an area under the receiver
operating characteristic curve (AUC) of .875 [.868–.881] and
an accuracy of .783 [.775–.791].
The sudden onset of the COVID-19 pandemic caught the

world unprepared, leading to more than 774 million con-
firmed cases and over 7million reported deaths worldwide
(over a period from January 2020 to March 2024), accord-
ing to theWorld Health Organization (WHO).1 Other than
having an impact on the respiratory system, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) can
also infect nonpulmonary cells such as cardiac and brain
cells leading to cardiovascular or neurological symptoms.2
With the recent advances in high throughput sequenc-
ing, a large number of RNA signatures have emerged
as promising biomarkers involved in the progression of
various diseases, including cardiovascular diseases.3 As
a response to the COVID-19 pandemic, partners of the
EU-CardioRNA COST Action network4–6 joined forces
in the H2020-funded COVIRNA project to develop an
RNA-based diagnostic test using artificial intelligence (AI)
that can help predict clinical outcomes after COVID-19.7
We chose to implement a targeted sequencing approach
using the FIMICS panel of 2906 cardiac-enriched or heart
failure-associated lncRNAs previously characterised by
our consortium.8 In the present study, we aimed to apply
the FIMICS panel to identify lncRNAs that will predict dis-
ease severity of COVID-19 patients. We used an approach
based on ML to conduct the predictive analysis, as ML
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algorithms are suitably capable of analysing the complex
relationships between biomedical data.9
The overall workflow of the study is illustrated in

Figure 1A. Briefly, four European cohorts were included
in the study consisting of a total of 564 patients with
COVID-19: the PrediCOVID cohort from Luxembourg
(n = 162; recruitment period May 2020 to present), the
COVID19_OMICS-COVIRNA cohort from Italy (n = 100;
recruitment period March 2020 to January 2021), the
TOCOVID cohort from Spain (n= 233; recruitment period
April 2020 to June 2021), and the MiRCOVID cohort
from Germany (n = 69; recruitment period April 2020 to
November 2021). Patient characteristics are presented in
Table 1. Plasma samples collected from patients at base-
line were stored at−80◦C in a central NF S96-900-certified
Biobank at Firalis SA. Samples were then processed using
the following workflow: RNA extraction, quality check,
library preparation, and analysis by targeted sequencing
using the FIMICS panel. Overall, 463 datasets representing
each unique patient from four independent cohorts were
available for the present analysis (Figure 1B).
The 463 datasets were then used in a ML workflow

to identify the most important predictors (lncRNAs and
clinical variables) and to build a model predicting disease
severity of COVID-19 patients in balanced (Figure 2A) and
imbalanced (Figure 2B) datasets. Briefly, the available data
was split into training and validation sets (80/20 split),
then feature selection was performed on the training
set—for features to be selected they had to appear in
90 out of the 100 iterations. The selected features were
included in a model which was then evaluated using the
validation set before the final model with the highest
predictive capacity (highest AUC) was chosen. Using the
described method, we identified six features as best pre-
dictors of COVID-19 severity which were selected in more
than 90 out of 100 iterations (Figure 3A). Cross-validation
of the selected features was also performed using 2
biostatistical methods (GLMnet and Stability selection;
Figure 3B). The six features identified were age and five
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F IGURE 1 Study workflow and data available for the analysis (A) Study workflow. Blood samples stored at −80◦C in a central NF
S96-900 certified Biobank at Firalis SA were collected from 564 patients with COVID-19. Following this, RNA extraction, quality check, library
preparation, and analysis by targeted sequencing using the FIMICS panel were performed. RNA seq data was then merged with patients’
clinical data and stored in a central database. Data was curated and made available for analysis using ML. (B) Baseline datasets available for
analysis from four European cohorts: PrediCOVID from Luxembourg (n = 162), MiRCOVID from Germany (n = 69),
COVID19_OMICS-COVIRNA from Italy (n = 100), and TOCOVID from Spain (n = 233). Patient numbers indicated for each cohort after data
curation and preprocessing: PrediCOVID from Luxembourg (n = 133), MiRCOVID from Germany (n = 65), COVID19_OMICS-COVIRNA
from Italy (n = 75), and TOCOVID from Spain (n = 195). A total of 463 datasets were available for the analysis.
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TABLE 1 Characteristics of patients in the study cohort.

All (n = 463) Critical (n = 101) Stable (n = 362)
p (critical vs.
stable)

Age (mean ± SD) 53 ± 15.9 64.3 ± 14.3 49.8 ± 14.9 3.86E-17
BMI (median [min, max]) 27.5 [14.4, 57.8] 27.8 [14.4, 53.3] 27.3 [18.4, 57.8] 6.34E-02
Sex_male (n (%)) 275 (59.40) 72 (71.29) 203 (56.08) 6.00E-03
Smoker_current (n (%)) 47 (10.15) 12 (11.88) 35 (9.67) 5.76E-01
Smoker_ex (n (%)) 59 (12.74) 9 (8.91) 50 (13.81) 2.38E-01

BMI, body mass index; SD, standard deviation.

F IGURE 2 Machine learning workflow. Machine learning workflow using (A) balanced dataset and (B) imbalanced dataset.
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F IGURE 3 Feature selection. (A) Six features were selected as best predictors of COVID-19 severity in more than 90 out of 100 iterations:
age, SEQ0548 (LINC01088-201), SEQ0817 (FGD5-AS1), SEQ1056 (LINC01088-209), SEQ3051 (lncCOVIRNA1), and SEQ1321 (AKAP13-SI). The
line plot shows the top 10 selected features. X-axis: feature names: SEQXXXX is the code of the probe of the FIMICS panel. SEQ0548 and
SEQ1056 probes recognise two different isoforms of the same gene LINC01088 (the former LINC01088-201, and latter LINC01088-209),
SEQ0817 recognises FGD5-AS1, SEQ3051 recognises an unannotated lncRNA (i.e. lncCOVIRNA1), and SEQ1321 recognises AKAP13-SI. Y-axis:
the number of times a feature appeared in the 100 iterations of the feature selection process. (B) GLMNet and SS methods used to
cross-validate the selected features. The probability of selection of predictors plotted against the values of the regression coefficients (ß) for the
leave-one-out cross-validated GLMNet model. Each point represents a unique predictor. In the plot, the X-axis represents the values of the
regression coefficients of the predictors, where nonzero values indicate selection by the GLMNet model. The Y-axis represents the frequentist
probability of predictor selection when running a SS model. The probabilities of the features selected by the Boruta method are as follows: age
(.95), LINC01088-201 (.93), lncCOVIRNA1 (.71), LINC01088-209 (.47), AKAP13-SI (.29) and FGD5-AS1 (.01).

F IGURE 4 Comparison of selected features between stable and critical patients. Box/violin plots for (A) age, and expression of: (B)
LINC01088-201, (C) FGD5-AS1, (D) LINC01088-209, (E) lncCOVIRNA1, and (F) AKAP13-SI showing regulations in the critical group of the
merged cohort (n = 101) as compared to the group of stable patients (n = 362). p Value is from Student’s t test. Boxes are drawn from Q1 (25th
percentile) to Q3 (75th percentile) with a horizontal line inside it to denote the median. The length of the whiskers indicates 1.5 times of IQR
(interquartile range Q3–Q1).
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TABLE 2 Performance of six ML models to predict COVID-19 severity using selected features (age, LINC01088-201, LINC01088-209,
lncCOVIRNA1, AKAP13-SI and FGD5-AS1) and the balanced dataset.

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)
NB .875 (.868–.881) .783 (.775–.791) .765 (.747–.784) .788 (.778–.797)
LR .866 (.858–.873) .769 (.762–.776) .762 (.743–.782) .771 (.761–.78)
XGB .863 (.855–.87) .775 (.766–.784) .804 (.787–.822) .767 (.755–.779)
SVM .855 (.848–.863) .751 (.742–.76) .787 (.77–.805) .740 (.728–.753)
MLP .839 (.83–.848) .762 (.754–.771) .762 (.742–.782) .762 (.752–.773)
K-NN .833 (.824–.841) .751 (.742–.759) .777 (.757–.797) .744 (.733–.754)

Note: Bold indicates the best predictions
NB, Naïve Bayes; LR, logistic regression; XGBoost, extreme gradient boosting, SVM, support vector machine; MLP, multilayer perceptron; K-NN, K-nearest
neighbours.

lncRNAs: SEQ0548 (LINC01088-201), SEQ0817 (FGD5-
AS1), SEQ1056 (LINC01088-209), SEQ3051 (an unanno-
tated lncRNA, henceforth referred to as lncCOVIRNA1)
and SEQ1321 (AKAP13-SI). Box/violin plots of the selected
predictors (Figure 4A–F) show significant (p < .001)
differences between patients in the critical and stable
groups.
Table 2 presents results on the balanced dataset using

the six selected features (age, LINC01088-201, FGD5-AS1,
LINC01088-209, lncCOVIRNA1 and AKAP13-SI) across
multiple ML models (Naïve Bayes, Logistic Regression,
Extreme gradient boosting, Support Vector Machine, Mul-
tilayer Perceptron, K-Nearest Neighbours). We also built
and evaluated the performance of ML models using only
age as a predictor (Table S1) and using only the five selected
lncRNAs (Table S2). Overall, the best results were obtained
using all six selected features (age and the five lncRNAs)
in the Naïve Bayes model which allowed an AUC of .875
(95%CI .868–.881) and an accuracy of .783 (95%CI .775–.791,
Table 2 and Figure S1).
The developed ML model can be used as an integral

part of the development of a molecular diagnostic assay
utilising routinely available quantitative PCR methods to
quantify blood levels of the five lncRNAs to be used as
input to the ML model for COVID-19 severity prediction.
Together with another whole blood-basedML algorithm,10
the use of the present ML model based on plasma samples
could have significant clinical implications, for instance
by selecting high-risk patients for tailored treatment. An
advantage of the present method is that it allows faster
risk stratification of patients for decision making, which
is especially useful during a pandemic, and is based on
a widely used plasma sample. LncRNAs can be easily
and quickly (2 h) measured in a noninvasive plasma sam-
ple. The increasing interest of the biomedical community
on RNA molecules to treat or vaccinate patients could
be followed by approval of circulating RNAs as disease
biomarkers for personalised medicine, coupled with arti-
ficial intelligence methods.7 Moreover, identification of

novel disease biomarkers could enhance our knowledge
of the mechanisms leading to adverse outcomes or death,
which could pave the way to the development of new
therapies or repurposing of existing ones.
Taken together, these findings could have significant

clinical value to predict disease severity and help to
improve the management and outcomes of COVID-19
patients.
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